Emergent Research: The PIMS Postdoctoral Fellow Seminar
Abstract:
Despite being the most efficient set of computational techniques available to the theoretical physicist, quantum field theory (QFT) does not describe all the observed features of the quantum interactions of our universe. At the same time, its mathematical formulation beyond the approximation scheme of perturbation theory is yet to be understood as a whole. I am following a path that tries to solve these two parallel problems at once and I will tell the story of how that way is paved by the study of equivariant differential systems and homology with local coefficients. More precisely, I will introduce these main characters in two space-time dimensions and describe how their symplectic geometry contains the data of correlation functions in conformally invariant QFT. If time allows, I will discuss how the Lax formulation of integrable systems in terms of Higgs bundles gives us hints as per how to extend the method to cases with four space-time dimensions.
Emergent Research: The PIMS Postdoctoral Fellow Seminar
Abstract:
The semi-random graph process can be thought of as a one player game. Starting with an empty graph on n vertices, in each round a random vertex u is presented to the player, who chooses a vertex v and adds the edge uv to the graph (hence 'semi-random'). The goal of the player is to construct a small fixed graph G as a subgraph of the semi-random graph in as few steps as possible. I will discuss this process, and in particular the asympotically tight bounds we have found on how many steps the player needs to win. This is joint work with Trent Marbach, Pawel Pralat and Andrzej Rucinski.
We will give examples from grade 1 to through high school where the logical insights of the last century impact classroom teaching. We include both "do's and don'ts". These examples range through such topics as "equals" vs "evaluate" vs "solve", "why multiplication is not JUST repeated addition", "lies my teacher told me", "identities, equalities and quantifiers", and "Is it true that the sum of the angles of a triangle is 90o". We will briefly discuss the place of formal logic in the secondary school.
The Riemann zeta function plays a central role in our understanding of the prime numbers. In this talk we will review some of its amazing properties as well as properties of other similar functions, the Dirichlet L-functions. We will then see how the method of moments can help us in the study of L-functions and some surprising properties of their values. This talk will be accessible to advanced undergraduate students and is part of the May12, Celebration of Women in Mathematics.
Wasserstein distances, or Optimal Transport methods more generally, offer a powerful non-parametric toolbox to conceptualise and quantify model uncertainty in diverse applications. Importantly, they work across the spectrum: from small uncertainty around a selected model (e.g., the empirical measure) to large uncertainty of considering all models consistent with the data. I will showcase this using examples from mathematical finance (pricing and hedging of options, optimal investment) and statistics (non-parametric estimators, regularised regression methods). I will illustrate the large uncertainty regime using Martingale OT problems. For the small uncertainty regime I will consider a generic stochastic optimization problem and its distributionally robust version using Wasserstein balls. I will derive explicit formulae for the first order correction to both the value function and the optimizer. Throughout, I will present both theoretical result, as well as comments on the available numerical methods.
The talk will be borrow from many joint works, including with Daniel Bartl, Samuel Drapeau, Stephan Eckstein, Gaoyue Guo, Tongseok Lim and Johannes Wiesel.
Were they any different 30 to 50 thousand years ago?
How might they change in the next 100 years as global temperatures continue to rise?
The presentation will start with how a thunderstorm looks in 3-D using radar technology and lightning mapping arrays. We will then travel tens of thousands of years into the past using chemistry analysis of cave stalactites in Texas to see how storms behaved as the climate underwent large shifts in temperature driven by glacial variability. I will end the talk with predictions of how lightning frequency may change over North America by the end of the century using numerical models run on supercomputers, and the potential impacts to humans and ecosystems.
Large sets in Euclidean space should have large projections in most directions. Projection theorems in geometric measure theory make this intuition precise, by quantifying the words “large” and “most”.
How large can a planar set be if it contains a circle of every radius? This is the quintessential example of a curvilinear Kakeya problem, central to many areas of harmonic analysis and incidence geometry.
What do projections have to do with circles?
The talk will survey a few landmark results in these areas and point to a newly discovered connection between the two.
Emergent Research: The PIMS Postdoctoral Fellow Seminar
Abstract:
The question of which functions acting entrywise preserve positive semidefiniteness has a long history, beginning with the Schur product theorem [Crelle 1911], which implies that absolutely monotonic functions (i.e., power series with nonnegative coefficients) preserve positivity on matrices of all dimensions. A famous result of Schoenberg and of Rudin [Duke Math. J. 1942, 1959] shows the converse: there are no other such functions. Motivated by modern applications, Guillot and Rajaratnam [Trans. Amer. Math. Soc. 2015] classified the entrywise positivity preservers in all dimensions, which act only on the off-diagonal entries. These two results are at "opposite ends", and in both cases the preservers have to be absolutely monotonic. We complete the classification of positivity preservers that act entrywise except on specified "diagonal/principal blocks", in every case other than the two above. (In fact we achieve this in a more general framework.) The ensuing analysis yields the first examples of dimension-free entrywise positivity preservers - with certain forbidden principal blocks - that are not absolutely monotonic.
Monitoring marked individuals is a common strategy in studies of wild animals (referred to as mark-recapture or capture-recapture experiments) and hard to track human populations (referred to as multi-list methods or multiple-systems estimation). A standard assumption of these techniques is that individuals can be identified uniquely and without error, but this can be violated in many ways. In some cases, it may not be possible to identify individuals uniquely because of the study design or the choice of marks. Other times, errors may occur so that individuals are incorrectly identified. I will discuss work with my collaborators over the past 10 years developing methods to account for problems that arise when are only individuals are only partially identified. I will present theoretical aspects of this research, including an introduction to the latent multinomial model and algebraic statistics, and also describe applications to studies of species ranging from the golden mantella (an endangered frog endemic to Madagascar measuring only 20 mm) to the whale shark (the largest know species of fish, measuring up to 19m).