Motivated by subtle questions in Donaldson-Thomas theory, we study the spectrum of the inertia operator on the Grothendieck module of algebraic stacks. We hope to give an idea of what this statement means. Along the way, we encounter some elementary, but apparently new, questions about finite groups and matrix groups. Prerequisites for this talk: a little linear algebra, and a little group theory.
We will survey recent developments dealing with characterization of absolutely almost simple algebraic groups having the same isomorphism/isogeny classes of maximal tori over the field of definition. These questions arose in the analysis of weakly commensurable Zariski-dense subgroups. While there are definitive results over number fields (which we will briefly review), the theory over general fields is only emerging. We will formulate the existing conjectures, outline their potential applications, and report on recent progress. Joint work with A. Rapinchuk and I. Rapinchuk.
The work of Misha Gromov has revolutionized geometry in many respects, but at the same time introduced a geometric point of view in many questions. His impact is very broad and one can say without exaggeration that many fields are not the same after the introduction of Gromov's ideas.I will try and explain several avenues that Gromov has been pursuing, stressing the changes in points of view that he brought in non-technical terms.Here is a list of topics that the lecture will touch:
The Sylvester-Gallai Theorem states that, given any set P of n points in the plane not all on one line, there is at least one line through precisely two points of P. Such a line is called an ordinary line. How many ordinary lines must there be? The Sylvester-Gallai Theorem says that there must be at least one but, in recent joint work with T. Tao, we have shown that there must be at least n/2 if n is even and at least 3n/4 - C if n is odd, provided that n is sufficiently large. These results are sharp
This is a lecture given on the occasion of the launch of the PIMS CRG in "L-functions and Number Theory".
The theory of expander graphs is undergoing intensive development. It finds more and more applications to diverse areas of mathematics. In this talk, aimed at a general audience, I will introduce the concept of expander graphs and discuss some interesting connections to arithmetic geometry, group theory and cryptography, including some very recent breakthroughs.
Some photos from the Hyperplane Arrangements and Applications conference which took place at UBC Vancouver, August 8-12. This conference was held in honour of Hiroaki Terao.