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2. Outline

I Brief overview: classical theory of hypergeometric functions
and elliptic integrals.

I Riemann-Hilbert problem for period integrals.

I Introduction to tautological systems.

I D-module description of tautological systems.

I Some applications.



A study on the interplay between

SPECIAL FUNCTIONS↔ COMPLEX GEOMETRY



4. What is a special function?

Loosely defined, a special function is a (multi-valued) analytic
function that is governed by a system of linear PDEs with
polynomial coefficients in Cn.

E.g. sin(z), cos(z), ez , zα, log(z),...

But without further restrictions, there does not appear to be a
coherent theory...
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5. Let’s look to the ancient masters ...

Figure: Leonhard Euler 1707-1783 Carl F. Gauss 1777-1855



6. Euler-Gauss hypergeometric functions

The EG hypergeometric equation is the ODE defined on
P1 = C ∪ {∞}:

z(1− z)
d2

dz2
+ [c − (a + b + 1)z ]

d

dz
− ab = 0

where a, b, c ∈ C are fixed parameters.

Every second-order linear ODE on P1 with three regular singular
points can be transformed into this equation.

A EG hypergeometric function is a local solution to this equation.
For c /∈ Z≤0, around z = 0, it has a power series solution of the
form

2F1(a, b, c ; z) :=
∑
n≥0

(a)n(b)n
(c)n

zn

n!
,

with radius of convergence 1. Here (α)n =
∏n−1

k=0(α+ k) = Γ(α+n)
Γ(α) .
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7. From complex geometry to EG functions

Figure: Portrait of Adrien-Marie Legendre (1752-1833) by Julien-Leopold
Boilly

The first connection to complex geometry of the hypergeometric
functions is attributed to Legendre, through the theory of elliptic
integrals.



7. From complex geometry to EG functions

Figure: Portrait of Adrien-Marie Legendre (1752-1833) by Julien-Leopold
Boilly

The first connection to complex geometry of the hypergeometric
functions is attributed to Legendre, through the theory of elliptic
integrals.



8. From complex geometry to EG functions

The Legendre family of elliptic curves:

Yλ : y2 = x(x − 1)(x − λ), (x , y) ≡ [x , y , 1] ∈ P2

parameterized by λ ∈ B := C− {0, 1}.

For λ ∈ B,
Yλ 'homeo. T 2.

For a given λ0 ∈ B, we also have canonical identification

H1(Yλ,C) ≡ H1(Yλ0 ,C) ≡ H1(T ,C) ∼= C2

if λ varies in any contractible neighborhood U of λ0.

The 1-form

ωλ :=
dx

y

is holomorphic on Yλ, so it is d-closed and defines a cohomology
class on [ωλ] ∈ H1(T ,C) ≡ C2. This vector varies holomorphically
with λ ∈ U.
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9. Period integrals

Fix a basis γ1, γ2 ∈ H1(T ,Z) = H1(T ,Z)∗. Then

[ωλ] = γ∗1〈γ∗1 , ωλ〉+ γ∗2〈γ∗2 , ωλ〉 = γ∗1

∫
γ1

ωλ + γ∗2

∫
γ2

ωλ.

The coefficient functions
∫
γi
ωλ ∈ OB(U) are called period

integrals of the family Yλ.

Remark: Even though they are defined locally, these period
integrals admit (multi-valued) analytic continuations along any
path in B. Therefore the period integrals generate a local system
on B.
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10. Differential equations for period integrals

Proposition: The period integrals are precisely the solutions to
the EG equation (for a = b = 1

2 , c = 1):

Lϕ := λ(1− λ)
d2

dλ2
ϕ+ (1− 2λ)

d

dλ
ϕ− 1

4
ϕ.

Proof. Check that

Lωλ =

(
∂

∂x

(x − 1)2x2

2y3

)
dx

Right side is an exact 1-form on Yλ-finite set.

It follows that

L
∫
γi

ωλ =

∫
γi

Lωλ = 0

by Stoke’s theorem. 2
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11. Computing period integrals

Remarks: This effectively reduces the task of computing each
integral

∫
γi
ωλ to one of determining two constants in the general

solution to an ODE.

For example, at λ = 0, the curve Yλ develops a node. With a little
more work – basically by studying how the form ωλ develops a pole
when λ = 0, we can determine those constants.
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12. Computing period integrals

If γ1 is the basic 1-cycle on Y0 that avoids the node, then∫
γ1

ωλ = 2F1(
1

2
,

1

2
, 1, λ).

If γ2 is the basic 1-cycle that runs through the node, then∫
γ2

ωλ = 2F1(
1

2
,

1

2
, 1, λ) log λ+ g1(λ)

where g1(λ) is a unique power series determined by the EG
equation.

Thus we have effectively solved an integration problem – elliptic
integrals – by relating it to the geometry of curves.
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13. Remarks

I There is a similar story for hyper-elliptic integrals (Euler)∫
γ

xkdx√
Q(x)

where Q(x) is square free polynomial.

I This interplay between special integrals and geometry will be
the spirit in which we proceed to study
higher dimensional analogues of elliptic integrals.



14. Remarks

I Consideration of other special functions (often with physics
motivations) have led to development of more general
hypergeometric functions: Kummer, Legendre, Hermit, Bessel,
H. Schwarz, Pochammer, Appell,...

I Modern theory (1990’s): Gel’fand school initiated a systematic
study of hypergeometric functions of several variables.

I In parallel, consideration of period integrals have also led to
development of modern Hodge theory: Riemann, Hodge,
Griffiths, Schmid, Simpson,...





15. Higher dimensional analogues: Period sheaves

Let B connected complex manifold (parameter space).

Let E → B be a vector bundle equipped with a flat connection

∇ : O(E )→ O(E )⊗ Ω1
B .

Let
〈 , 〉 : O(E )⊗O(E ∗)→ OB

be the usual pairing.

Fix global section s∗ ∈ Γ(B,E ∗).

Definition: The period sheaf

Π ≡ Π(E , s∗) ⊂ OB

is the image of the map

O(E ) ⊃ ker∇ → OB , γ 7→ 〈γ, s∗〉.
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16. Period sheaves from Complex Geometry

Let π : Y → B be a family of d-dimensional compact complex
manifolds, with Yb := π−1(b).

From topology: cohomology groups of fibers Hk(Yb,C) form a
vector bundle E ∗ := Rkπ∗C over B; dual bundle E = E ∗∗ has
fibers Hk(Yb,C), and

〈 , 〉 : O(E )⊗O(E ∗)→ OB

is the Poincaré pairing; E is equipped with a canonical flat
(Gauss-Manin) connection ∇.

Fix s∗ ∈ Γ(B,E ∗), and represent s∗(b) ∈ Hk(Yb,C) by a closed
form on Yb. Represent section γ ∈ ker∇ by cycle on Yb. So, a
local section f ∈ Π(U) becomes an integral

f (b) = 〈γ, s∗(b)〉 =

∫
γ
s∗(b).

We call this a period integral of Y with respect to s∗.
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17. Problem

Fix a compact Kähler manifold X d+1, and assume

π : Y → B

is a family of smooth Calabi-Yau hypersurfaces (complete
intersections) in X . Consider the associated flat bundle
E ∗ = Rdπ∗C.

The subspaces
Γ(Yb,KYb

) ⊂ Hd(Yb,C).

form a subbundle Htop ⊂ E ∗.
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18. Problem

Key Fact [Lian-Yau]: The line bundle Htop admits a canonical
trivialization, and we denote it by ω.

Remark: For simplicity, we restricted ourselves to the case of
Calabi-Yau families. (Almost all results here will generalize to
families of general type, i.e. the canonical bundle is ample.)

The Riemann-Hilbert Problem for Period Integrals:
Construct a complete system of partial differential equations for
the period integrals in Π(E , ω).

Goal: To study the explicit solutions and monodromy of this local
system.
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19. Why care?

• Physics: compute Yukawa coupling in Type IIB string theory
(Candelas-de la Ossa-Green-Parkes, 1990.)
and counting instantons (“Gromov-Witten” invariants) in Type IIA
string theory, by Mirror Symmetry.

• Hodge theory: study of period mapping, when the Yb are
projective and B simply-connected:

P : B → Pm, b 7→ [

∫
γ0

ω(b), ...,

∫
γm

ω(b)].

The local Torelli theorem for CY implies that locally P(b)
determines the isomorphism class of Yb.
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string theory, by Mirror Symmetry.

• Hodge theory: study of period mapping, when the Yb are
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20. Why care?

• Monodromy problem: study the monodromy representation on
cohomology. Computing period integrals around singularities allows
us to find local monodromies.

• D-module theory: explicitly realize the Gauss-Manin D-module in
some important cases: a multivariable version of Hilbert’s 21st
problem.

• Byproducts: e.g. applications to classical theory of GKZ systems.
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21. What’s known: hypersurfaces in X = Pd+1

Dwork-Griffiths’ reduction-of-pole method can (in principle) be
used to derive differential equations; often works for
one-parameter families only.

Example. For the Legendre family, this method yields precisely the
EG equation

λ(1− λ)
d2

dλ2
ϕ+ (1− 2λ)

d

dλ
ϕ− 1

4
ϕ = 0.

Once an ODE is found, one can apply standard techniques to solve
them.
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22. What’s known: hypersurfaces in a toric manifold

A toric manifold is, roughly speaking, a manifold containing a torus
(C×)n as an open dense subset, such that the action of the torus
on itself, extends to the whole manifold.

Let X d+1 be a toric manifold with respect to torus T , Assume
c1(X ) ≥ 0, and assume that generic CY hypersurface in X is
smooth. Consider the family π : Y → B of all such hypersurfaces.

Let t̂ be the Lie algebra of T × C×. Then T induces a linear
action on H0(−KX ), and C× acts by scaling. So, we have a Lie
algebra action

t̂→ End H0(−KX ), y 7→ Zy .

Let β : t̂→ C be a character which takes zero on T , and takes 1
on the Euler operator, as a generator of the Lie algebra of C×.

Each section f ∈ H0(−KX ) restricted to T ⊂ X is a Laurent
polynomial. In fact, the restriction of H0(−KX ) has a basis of
Laurent monomials xµi in x0, .., xd – coordinates on T = (C×)d+1.
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23. Toric hypersurfaces: differential equations

Proposition:The period integrals of the family Y of CY
hypersurfaces in X satisfy the PDE system

2lϕ = 0, (Zy + β(y))ϕ = 0, y ∈ t̂

where the l are integral vectors such that
∑

i liµi = 0,
∑

i li = 0,
and

2l :=
∏
li>0

(
∂

∂ai
)li −

∏
li<0

(
∂

∂ai
)−li

This system is called a GKZ hypergeometric system.

Remark: A theorem of GKZ says that solution space of this system
is finite dim. However, this system is never complete – there are
always more solutions than period integrals. But there are two
conjectural ways to pick out the period integrals among solutions.
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24. Beyond Toric

There were a few more isolated examples on the RH problem for
period integrals beyond toric hypersurfaces between 1996-2010.

For example, the problem was open even for the case of
hypersurfaces in a flag variety (i.e. GLn/P).

We’ll now discuss a partial solution to this problem for a large class
of manifolds including flag varieties.
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25. Tautological Systems

Consider the case of a general projective manifold X .

Data & notations:
X : projective manifold
G : complex algebraic group, with Lie algebra g
G × X → X , (g , x) 7→ gx , a group action
L: an equivariant base-point-free line bundle on X
V := H0(X , L)∗

φ : X → PV the corresp. equivariant map
Iφ: the ideal of φ(X )
〈, 〉: natural symplectic pairing on TV ∗ = V × V ∗

DV ∗ : the ring of polynomial differential operators on V ∗
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26. Example to keep in mind

X = P2

G = PSL3

L = O(3)
V ∗ = Sym3 C3

φ : X ↪→ PV is the Segre embedding,
[z0, z1, z2] 7→ [z3

0 , z
2
0 z1, z

2
0 z2, .., z

3
2 ].

Iφ=the quadratic ideal generated by the Veronese binomials.
DV ∗= the Weyl algebra C[a0, ..., a9,

∂
∂a0
, .., ∂

∂a9
].
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27. Group actions

Define a Lie algebra map (Fourier transform):

V ∗ → Der Sym(V ), ζ 7→ ∂ζ , ∂ζa := 〈a, ζ〉.

The linear action G → Aut V induces Lie algebra map

g→ Der Sym(V ), x 7→ Zx .

Let ai and ζi be any dual bases of V ,V ∗. Then ∂ζi = ∂
∂ai

.
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28. Tautological systems

Definition: Fix β ∈ C. Let τ(X , L,G , β) be the left ideal in DV ∗

generated by the following differential operators:
{p(∂ζ)|p(ζ) ∈ Iφ}, (polynomial operators)
{Zx |x ∈ g}, (G operators)
εβ :=

∑
i ai

∂
∂ai

+ β, (Euler operator.)
We call this system of differential operators a tautological system.



29. Regularity & Holonomicity

Theorem: [Lian-Song-Yau] Suppose X has only finite number of
G orbits. Then the tautological system τ(X , L,G , β) is regular
holonomic. Moreover, the solution rank is bounded above by the
degree of X 7→ PV if the C[X ] is Cohen-Macaulay.

Corollary: Any formal power series solution is analytic; the sheaf
of solutions is a locally constant sheaf of finite rank on some open
V ∗gen ⊂ V ∗.
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30. From complex geometry to special functions

Let X be a compact complex G -manifold such that −KX is base
point free. Consider the family Y of all CY hypersurfaces in X .

Theorem: [Lian-Yau] The period integrals of the family Y∫
γ
ω

are solutions to the tautological system τ(X ,−KX ,G , 1).



30. From complex geometry to special functions

Let X be a compact complex G -manifold such that −KX is base
point free. Consider the family Y of all CY hypersurfaces in X .

Theorem: [Lian-Yau] The period integrals of the family Y∫
γ
ω

are solutions to the tautological system τ(X ,−KX ,G , 1).



30. From complex geometry to special functions

Let X be a compact complex G -manifold such that −KX is base
point free. Consider the family Y of all CY hypersurfaces in X .

Theorem: [Lian-Yau] The period integrals of the family Y∫
γ
ω

are solutions to the tautological system τ(X ,−KX ,G , 1).



31. Solution rank of τ – special case

Consider the family of CY hypersurfaces Yσ in X , and write
τ ≡ τ(X ,−KX ,G , 1) for the corresponding tautological system.

Theorem: [Bloch-H-Lian-Srinivas-Yau] Let G be a semisimple
group and X n a projective homogeneous G -space (i.e. G/P), such
that g⊗ Γ(X ,K−rX )� Γ(X ,TX ⊗K−rX ). Then the solution rank of
τ at any point σ is dimHn(X − Yσ).

Remark: (1) It was conjectured that the statement is true without
the surjectivity assumption. The latter seems difficult to check in
general.

(2) The proof uses a method of Dimca to interpret the de Rham
cohomology of the complement and the Lie algebra homology
group of certain g-module.
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32. Solution rank of τ & the completeness problem

Theorem: [H-Lian-Zhu] Let G be a semisimple group and X n a
projective homogeneous G -space. Then the solution rank of τ at
any point σ is dimHn(X − Yσ).

Recall that rk Π(E , ω) ≤ solution rk of τ . When is this an equality,
i.e. when is τ complete?

Corollary: Suppose X is a projective homogeneous space. Then
the tautological system τ is complete iff the primitive cohomology
Hn(X )prim = 0.
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33. Solution rank of τ & the completeness problem

Corollary: For X = Pn−1, G = PSLn, the system τ is complete.

Remark: This was conjectured by Hosono-Lian-Yau (1995).

Remark: The geometric rank formula is proved using the
Riemann-Hilbert correspondence [Kashiwara, Mebkhout].
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34.Algebraic rank formula

Introduce notations:

Fix a very ample line bundle L over a projective G -variety X , and
put

R = ⊕∞j=0Γ(X , Lj)

the coordinate ring of X with respect to the tautological
embedding X ↪→ PV , V := Γ(X , L)∗.

Let
Z ∗ : ĝ = g⊕ C→ EndV ∗

be the dual representation of V .

Let
f =

∑
i

aia
∗
i : V ∗ × X → L

be the universal section of L.
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35.Algebraic rank formula

Observation:

(1) The space R[V ]ef has a natural DV ∗ = C[a, ∂]-module
structure given by (the “ 1

2 -Fourier transform”):

ai 7→ ai , ∂i 7→ a∗i + ∂i .

(Note that ai ∈ V ⊂ R and a∗i ∈ V ∗ acts by left multiplications on
R[V ]ef .)

(2) The operators Z ∗(ĝ) commute with DV ∗ , hence Z ∗(ĝ)R[V ]ef

is a DV ∗-submodule of R[V ]ef .

Theorem(BHLSY,HLZ): There is a canonical D-module
isomorphism

τ ' R[V ]ef /Z ∗(ĝ)R[V ]ef .
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36.Applications

The theorem has many interesting applications.

I Corollary(BHLSY,HLZ): Let X be a projective homogeneous
G -space. Then the space of solutions of the differential
system τ at any point b ∈ V ∗ is canonically isomorphic to

HLie
0 (ĝ,Refb)∗.

I Example: G = PSLn, and X = Pn−1. Then
L = K−1

X = O(n). Let x1, ..., xn be the homogeneous
coordinates of X . Then for generic b ∈ V ∗, the monomials

xk1
1 · · · x

kn
n efb , n|

∑
ki , 0 ≤ ki ≤ n − 2

form a basis of HLie
0 (ĝ,Refb).



37.Applications

I Completeness. Counting the monomials, we find that
generically there are exactly

n − 1

n
((n − 1)n−1 − (−1)n−1)

solutions to the tautological system τ for the universal CY
family in Pn−1 above. This proves τ is complete, because the
period sheaf of this family has this rank.

I Explicit solutions (M. Zhu): The result on solution rank has
recently led to proof of the so-called ‘Hyperplane Conjecture’
for X = Pn−1. Namely, the period integrals of the universal
CY family are precisely given by the combinatorial solution
formula of Hosono-Lian-Yau (1995), to the extended GKZ
system.



38.Applications: mirror symmetry

I Constructing LCSL degenerations. Recall that a LCSL
degenerate CY Yb∞ corresponds to b∞ ∈ V ∗, where the local
monodromy is maximally unipotent, hence there is just one
analytic solution at b∞. By the rank formula, we have

dimHLie
0 (ĝ,Refb∞ ) = 1.

I Example. Consider the degenerate CY b∞ = x1 · · · xn = 0.
Then one finds that

HLie
0 (ĝ,Refb∞ ) = Cefb∞ .

This is the famous LCSL degeneration for the CY family in
Pn−1, where instanton counting can be done by Mirror
Symmetry.



39. Applications: constructing LCSL degenerations

I More generally, for X n any projective homogenous G -variety
and L = K−1

X , we have

Hn(X − Yb) ' HomD(τ,Oan
b ) ' HLie

0 (ĝ,Refb)∗

for any b ∈ V ∗. So, we can construct LCSL candidates by
either geometric methods (lhs) or representation theoretic
methods (rhs): look for points b ∈ V ∗ where either side is 1
dim.

I Detecting rank 1 fibers. We say that a fiber Yb has rank 1
if dimHn(X − Yb) = 1. Thus to look for LCSL CY, we can
look for divisor Yb in X whose complement has a particular
homotopy type.
Example. For b∞ = x1 · · · xn = 0 in Pn−1, the complement is
homotopic to n-torus.



40. Applications: constructing LCSL degenerations

I (BHLSY) For the Grassmannian X = G (k , n), we consider the
degenerate CY

b∞ = x1···kx2···(k+1)...xn1···(k−1) = 0

where the xI are the Plücker coordinates. We can compute
directly the sln coinvariants on the module Refb∞ :

HLie
0 (ĝ,Refb∞ ) = Cefb∞ .

Or, we can also compute Hn(X − Yb∞) topologically by
induction on the n components of the divisor Yb∞ , starting
from

x1···k = 0.



41. Applications: constructing LCSL degenerations

(HLZ): Next, we generalize in two ways.

I First, we can “glue” together lower dimensional rank 1 fibers
in smaller Grassmannians to yield rank 1 fibers in an arbitrary
(type A) partial flag variety.

I Second, we can construct directly a canonical rank 1 fiber in
every projective homogenous variety X = G/P as follows.



42. Applications: constructing LCSL degenerations

I There is a natural stratification of the flag variety G/B, called
the Richardson stratification. It induces a similar stratification
under the projection G/B → G/P. Then

Yb∞ := union of closures of codimension 1 strata.

is Yb∞ an anticanonical divisor.

I Moreover, Yb∞ is a rank 1 fiber of the universal CY family in
X = G/P. This is a consequence the solution rank formula,
together with the classical BGG multiplicity theorem for
Verma modules (or the Kazhdan-Lusztig conjecture).

I Remark: Taking X = G (k, n) recovers the rank 1 fiber

Yb∞ = {x1···kx2···(k+1) · · · = 0}.



43. LCSL degeneration for toric hypersurfaces

I (HLY): Consider the case a projective toric manifold X n. Then

Yb∞ := union of T-invariant divisors in X

is anticanonical in X .

I Once again, we find

HLie
0 (̂t,Refb∞ ) = Cefb∞

hence Yb∞ is a rank 1 fiber. This is also a LCSL degeneration.



44. Applications: injectivity of parallel transport

I (HLZ): For arbitrary finite-orbit G -variety X n, one of the
isomorphisms generalizes to an injective map of local systems:

Hn(X − Yb) → HomD(τ,Oan
b ) ' HLie

0 (̂t,Refb)

Γ→
∫

Γ
ω
fb
.

Here ω is the unique (up to scalar) holomorphic top form on
the complement of the zero section in KX .

I Note that under the map, parallel transport on the local
system Hn(X − Y∗) coincides with analytic continuation on
HomD(τ,Oan). It follows that for a given point a ∈ V ∗, and b
any nearby point, the parallel transport map

Hn(X − Ya)→ Hn(X − Yb)

is also injective.

I Remark: This answers a question posed by of Bloch.



45.Mirror of G/P (work in progress)

These special points allow us to propose a mirror construction of
G/P. In addition, the algebraic rank formula, combined with a
mixed Hodge structure resulting in the geometric rank formula,
give rise to a Frobenius ring structure near the ”Fermat point”,
which is likely to be identified with the small quantum cohomology
ring on the mirror A-side– these constructions will hopefully help
clarify many issues regarding mirror of G/P, as well as the
”hyperplane conjecture”.
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46. Chain integral solutions to GKZ

A much more general formula is proved that gives the rank as the
(compactly supported) middle cohomology of a certain perverse
sheaf, for an arbitrary G -manifold X with a finite number of
G -orbits.

Remark: Before this result, the rank was only known for GKZ
(toric) case, at a generic point.

The general rank formula actually says much more about τ : As an
example, for X = Pn, G = (C∗)n: the maximal torus of SLn+1, τ
reduces to a GKZ system, for which now we can explicitly
construct all solutions, as integrals of the holomorphic top form,
over certain cycles and chains. This can be done in general for a
toric variety, and there are clear evidence that all these solutions
are in fact relevant in mirror symmetry.
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47. Chain integral solutions to GKZ

These chains are canonically constructed by a spectral sequence,
converging to a generic stalk of the solution sheaf of the GKZ
system, given in the general formula as a compactly supported
middle cohomology of a perverse sheaf.

In fact, these chain integrals were called ”semi-periods”, and are
also relevant in the arithmetic of Calabi-Yau over finite fields, as
was shown by Candelas, Ossa, and Rodriguez-Villegas. Some
examples of semi-periods were also studied by physicists Avram et
al.
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48. Computation of periods

The framework of tautological system gives rise to a way to
explicitly compute the periods of Calabi-Yau or general type
hypersurfaces in Pn, by combing our understanding of the
tautological D-module, and the explicit solutions to GKZ systems.
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49. Concluding remarks

• (Lian-Yau, H-Lian-Zhu, Chen-H-Lian) Most of the results
discussed here carry over to general type complete intersections,
and to the full period mapping, with some slight modifications.

• Tautological systems provide a new approach to study period
integrals for manifolds of general type – higher dimension
analogues of the classical hyper-elliptic integrals∫

C

xkdx√
Q(x)

where Q is a square free polynomial.
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50. Concluding remarks

• If X is a toric manifold and G = T the usual torus, then a
tautological system for X specializes to a GKZ hypergeometric
system (1989). Explicit formulas for general solutions are also
known in this case (G-K-Z, H-L-Y).

• If X is a toric manifold and G = Aut X , then a tautological
system for X specializes to an extended GKZ system, introduced in
a series of papers (∼1994) by Hosono-Klemm-Theisen-Yau and
Hosono-Lian-Yau on Mirror Symmetry.

• If X is a spherical variety, (a G-variety with an open dense
B-orbit) and G is a reductive algebraic group, then a tautological
system for X specializes to a Kapranov’s system (1997.)

• Therefore, tautological systems unify and generalize all of the
above classes of special functions. And thanks to the powerful
tools of the theory of D-modules, we also have a good control of
this differential system.
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Thank you for your attention!
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