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1 Khovanov homology generalizes the Jones polynomial

Khovanov homology is obtained by the following process:

knot / link L with
projection in R2

cube of circles
(“smoothings”)

in R2

chain complex of
graded vector spaces

Khovanov
homology

Roughly, Khovanov homology generalizes the Jones polynomial in that its Euler charac-
teristic is the Jones polynomial. In more detail, a chain complex of graded vector spaces has
a graded Euler characteristic, which is a polynomial rather than a number. This is because
a graded vector space V =

⊕
i Vi, has a graded-dimension, defined as

qdim(V ) =
∑
i

qi dim(Vi).

In the process shown above, we associate a certain graded vector space to each smoothing.
The homology of the complex is the Khovanov homology, and its graded Euler characteristic
is the unnormalized Jones polynomial Ĵ(L).

One can slightly generalize the above process by replacing chain complexes of graded
vector spaces by chains of objects in a cobordism category, and then obtaining the rightmost
arrow by the TQFT underlying Khovanov homology. The most immediate concrete payoff is
an extension from knots and links to tangles, but we also get the conceptual benefit of being
able to view Kh as a functor between two cobordism categories with some extra structure
(which we define later).

First recall the types of smoothings of a crossing:

0-smoothing

or

1-smoothing

As in the Jones polynomial lecture, we calculate the cube of circles for the Hopf link,
with an ordering on the crossings. Start with all 0-smoothings on the left-most diagram, and
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with each column to the right, increase the number of 1-smoothings by 1.

L =

1

2

00

01

10

11

Each vertex of the cube is called a smoothing and denoted sα for the α as written above
each smoothing. If we have an n-crossing link, then the cube of smoothings is indexed by
α ∈ {0, 1}n. For a fixed smoothing, set

k := number of circles in S1,

r = |α| := number of 1-smoothings in α.

where r is called the height of α. The Jones polynomial Ĵ(L) was defined by associating a
monomial mα to each smoothing sα:

mα := (−1)rqr(q−1 + q)k,

Ĵ(L) :=

(∑
α

mα

)
(−1)n−qn+−2n− ,

Here n+ the number of positive crossings in the oriented link diagram, and n− the number
of negative link crossings, with

positive crossing

,

negative crossing

.

For the Khovanov homolgy, each smoothing sα has an associated vector space Vα = V ⊗k,
or more accurately, V ⊗k{r}, where {r} is the grading shift. The space V is a graded vector
space with one basis element v+ of grading +1 and one basis element v− of grading −1.
One defines a chain complex by setting the r-th term to be

⊕
α:|α|=r Vα. See Diagram (3) in

Section 3.2 of Bar-Natan’s paper arxiv:0201043 for an example of calculating these (so far
ungraded) chain groups in the chain complex JLK and graded chain complex C(L).

The differential is a direct sum of maps, one for each edge joining vertices of height r to
vertices of height r − 1. Each of these maps is obtained by drawing a cobordism for each
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such edge and applying a TQFT. Notice that the smoothings joined by edges differ by either
“merging two circles” or “splitting one circle into two.” In these two cases respectively, draw
the “pants” (upside-down pants) and “co-pants” (right-side-up pants) cobordisms (going
from top to bottom). The map between Vα’s is then determined by applying the 2-TQFT
(or Frobenius algebra) given by H∗(CP1), where

v+ ←→ 1 ∈ H∗(CP1) , v− ←→ x ∈ H∗(CP1).

2 Isotopy invariance

Theorem 1. The homology of this C∗(L) depends only on the isotopy class of L. That is,
it is independent of the projection to R2.

The proof of this theorem is not given. Instead, we sketch a proof of the generalization,
given by Theorem 2. We end the discussion by noting that the Jones polynomial can be
recovered from the Poincaré polynomial of H∗(C(L)),

∞∑
r=−∞

trqdim(Hr(C(L))).

In fact, plugging in t = −1, we get

∞∑
r=−∞

(−1)rqdim(Hr(C(L))) = Ĵ(L).

3 Extending to tangles

We will soon generalize from links to tangles, which are embeddings of a (not necessarily
connected) compact 1-dimensional manifold, now possibly with boundary, into D3. When
taking a projection to R2, we require the boundary of the 1-manifolds to lie on S1 = ∂D2

in some specific arrangement of points B ⊂ S1. We consider tangles up to isotopies that are
the identity on ∂D3. Here is an example of a tangle diagram:

T =

Smoothings of tangle diagrams are defined similarly to smoothings of link diagrams.
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4 Categories and bordisms

Definition 1. A category C is called pre-additive if Mor(A,B) is an abelian group for all
A,B ∈ Ob(C) and if composition of morphisms is bilinear.

We can make any category pre-additive by taking formal sums of morphisms. Next, let
C be pre-additive and define the following categories.

category objects morphisms

Cob3(B) tangle smoothings with boundary B bordisms between such smoothings

Mat(C)
⊕n

i=1Oi for all Oi ∈ Ob(C)
F :

⊕nOi →
⊕mO′i

with Fjk : Ok → O′j
Kom(C) · · · d

r−1

−−→ Ωr dr−→ Ωr+1 dr+1

−−→ · · ·
with dr+1dr = 0 for all r

F = (Fr) that commutes with
the differentials dr

Define Kob(B) := Kom(Mat(Cob3(B))), and note that the cube JT K is an object in
Kob(B). Sometimes we suppress the dependence on B in the notation. Next, to get an
invariant of tangles, we need to mod out by chain homotopies of complexes on objects of
Kom and “local relations” on morphisms of Cob3. The local relations are defined below.

S: If a bordism has an S2 component, set the bordism to 0.

T :
If a bordism has a torus component, remove the torus and multiply the
bordism by 2.

4Tu: If the intersection of a bordism and a 2-sphere is four circles , then

+ = + ,

where the bordism outside the diagram of each term is the same.

These relations come from the Frobenius algebra given by H∗(S2) (see the last section of
this note). In fact, S can be deduced by decomposing the sphere as a cap and a cup, and T
can be deduced from decomposing the torus as a cap, co-pants, pants, and cup.

Let Kom/h(C) be the category Kom(C) modulo chain homotopies of objects, Cob3/`(B)

the category Cob3(B) modulo the S, T , and 4Tu relations of morphisms, and Kob/h(B) :=
Kom/h(Mat(Cob3/`(B))).

Theorem 2. The assignment T 7→ Kh(T ) ∈ Kob/h(B) is an isotopy invariant of tangles.

Proof. We only provide a sketch of how to prove invariance under R1. Let T be a tangle
diagram with an R1 twist and T ′ the same tangle diagram without the mentioned R1 twist,
so

T = and T ′ = .
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Let T0 be the diagram of T with a 0-smoothing at the crossing made by the R1 twist, and
T1 the diagram of T with a 1-smoothing at the same crossing, so

T0 = and T1 = .

We now show there exist two morphisms (bordisms) F : JT ′K→ JT K and G : JT K→ JT ′K such
that both compositions are null-homotopic. Diagrammatically, we show that the diagram
on the right commutes.

t |

=

s {
=

GF

0 0

0 0 0

d

h

F0 G0
F1 G1

The maps F1 and G1 are 0, and h is a chain homotopy as shown in the diagram of cochain
complexes below.

· · · Ci−1(T ) Ci(T ) Ci+1(T ) · · ·

· · · Ci−1(T ) Ci(T ) Ci+1(T ) · · ·

IFG IFG IFG
h h

Define the maps

F0 = − , G0 = , d = , h = .

The maps are given only for the region of the diagram under consideration, with the rest of
the diagram having the identity map applied to it. The action of the map moves from the
top of the cylinder to the bottom. To complete the proof, the identities

G0F0 = IT ′ , G0h = 0,

F0G0 + hd = IT0 , dF0 = 0

need to be proved, which are left as an exercise (remember to use the S, T , and 4Tu
relations).
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We now define a category Cob4(B). An object is a (based, oriented) tangle diagram, which
can be thought of as a tangle in R2 × (−ε, ε) whose projection to R2 yields the diagram.
A morphism is a cobordism is R4 ∼= R2 × (−ε, ε) × R between two such diagrams. The
category Cob4(B)/i is defined similarly, but morphisms are taken up to isotopy.

Theorem 3. Kh is a functor Cob4/i(B) → Kob/h(B)/(±1), where “/(±1)” is the quotient
on morphisms by ±1.

The first step in proving this theorem is to show that Kh is a functor Cob4(B) →
Kob/h(B). This is not too difficult. The “elementary” cobordims in R4 (morphisms in
the source) are given by the three Reidemeister moves, as well as the cap, cup, and saddle.
One can associate a morphism in Kob to a Reidemeister move in the same way that one does
in the proof of Theorem 2, partly sketched above. It is easy to see that the cup, cap, and
saddle induce morphisms in Kob.

The second, harder step is verifying that Kh descends to the quotient by isotopy of mor-
phisms. Following Carter and Saito (taken as a black box here), this means verifying that
certain movies (see Figures 11-13 in Bar-Natan’s paper on tangles) are taken to automor-
phisms in Kob which are homotopic to ±1. The strategy is to show that for every start/end
tangle diagram T in these movies, the only automorphism of Kh(T ) is ±1, up to homotopy.
Showing this in turn uses a structure of “horizontally” stacking tangle diagrams side by side
or, more generally, plugging tangle diagrams into other tangle diagrams.

The “horizontal” structure is the structure of a planar algebra, as considered by Jones
(see for example http://math.berkeley.edu/~vfr/planar.pdf). For an algebraic topolo-
gist, the quickest way to define a planar algebra is by defining a colored operad called the
planar operad, where the colors are the even natural numbers; a planar algebra is then just
an algebra over this operad. An element in arity (k1, ..., kn; k) is a crossingless tangle in
D2 with n holes and ki strands touching the boundary of the i-th hole; there are k strands
incident to the outer boundary circle, and each of the n+ 1 circles has a basepoint.

A tangle in Cob(B) can be plugged into the ki-th hole, provided |B| = ki. Thus the
objects of Cob (taken over all B) form a planar algebra. Furthermore, it turns out that both
the objects and morphisms of both Cob4 and Kob (taken over all possible B) form planar
algebras. Such a category (as Cob4 or Kob) with a compatible planar algebra structure is
called a “canopoly” by Bar-Natan, where the terminology comes from picturing cobordisms
of tangles stacked side by side as cans. A canopoly is slightly more general than a 2-category
because one has not just horizontal composition (say, from an object k′ to an object k) but
horizontal operations (from objects k1, ..., kn to an object k) from the planar algebra struc-
ture. In any case, the canopoly structure is useful for proving the above theorem because
it allows one to prove statements for tangle diagrams by a reduction to proving statements
about simpler tangle diagrams. We leave the reader to consult Bar-Natan’s paper on tangles
for details.
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5 Topological field theory

We now provide an explicit description of the Frobenius algebra (or TQFT) coming from
H∗(S2). After all, we do have to follow the functor in Theorem 3 by this TQFT to get the
Khovanov homology of a link.

Recall that a 2-TFT is a symmetric monoidal functor Bordor2 → V ect. The vector
space V = span{v+, v−} ∈ Ob(V ect), which was associated to every compact 1-manifold
without boundary above is given the structure of a Frobenius algebra as below. The bordisms
associated with the maps are also given.

k → V
1 7→ v+

unit

V → k
v+ 7→ 0
v− 7→ 1

counit

V ⊗ V → V
v+v+ 7→ v+
v+v− 7→ v−
v−v+ 7→ v−
v−v− 7→ 0

multiplication

V → V ⊗ V
v+ 7→ v+v− + v−v+
v− 7→ v−v−

comultiplication

V → V
v+ 7→ v+
v− 7→ v−

identity

The S, T , and 4Tu relations now follow directly.

Finally, we mention that Bar-Natan uses his Theorem 3 to extend Khovanov homology
to tangles, thus generalizing the Jones polynomial for tangles. This is nontrivial because
the Jones polynomial for tangles takes values in the “skein module.” Key ingredients for
this result include defining the trace and Euler characteristic of an arbitrary pre-additive
category. We again leave the reader to consult the references for details, but we point this
out as an application of staying in the world of cobordisms in Theorem 3 rather than passing
immediately to complexes of graded vector spaces/abelian groups.
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