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A mathematical view

...of reflection seismic imaging, as practiced in the petroi industry:

e an inverse problem, based on a model of seismic wave prapagat

e contemporary practice relies partial linearizationand high-frequency asymp-
totics

e recent progress in understanding capabillities, limitetiof methods based on
linearization/asymptotics in presence stfong refraction applications ofmi-
crolocal analysiswith implications for practice

e limitations of linearization lead to many open problems




Agenda

1. The reflection seismic experiment, nature of data and dhiBaechanical fields,
the acoustic model, linearization and its limitations, wiéfhn of imaging based
on high frequency asymptotics, geometric optics analyidissomodel-data rela-
tionship and the GRT representation, zero-offset mignastandard processing
= layered imaging

2. Analysis of GRT migration, asymptotic inversion, diffiteis due to multipathing,
global theory of imaging, "wave eqguation” imaging;

3. The partially linearized inverse problem (“velocity &ss”), extended models,

Importance of invertibility, geometric optics of extenss) some invertible ex-
tensions, automating the solution of the partially linead inverse problem via

differential semblance.




Marine reflection seismology

e acoustic source (airgun array, explosives,...)
e acoustic receivers (hydrophone streamer, ocean bottola,cgb

e recording and onboard processing

—

hydrophoge streamer ./ :
acoustic source
Xy h Xg (airgun array)

Land acquisition similar, but acquisition and processing more complex. Vast
bulk (90%-+) of data acquired each year is marine.

Data parameters: time source locatiorx,, and receiver locatios, or half offset
h = =% h = |h|.




|Idealized marine “streamer” geometry, andx, lie roughly on constant depth
plane, source-receiver lines are parallel3 spatial degrees of freedom (eg. h):
codimension 1 [Other geometries are interesting, eg. ocean bottom sabld

streamer surveys still prevalent.]

How much data? Contemporary surveys may feature

e Simultaneous recording by multiple streamers (up to 12!)
e Many (roughly) parallel ship tracks (“lines”), areal coage
e single line (“2D”) ~ Gbyte; multiple lines (“3D")~ Thyte

NB: In these lectures, will largely ignore sampling issues aedttdata as contin-
uously sampledrirst of many approximations...




Gathers: distinguished data subsets

Aka “bins”, extracted from data after acquisition.

Characterized by common value of an acquisition parameter

e shot (or common source) gather: traces with same shot docati (previous
expls)

e Offset (or common offset) gather: traces with same halfebffs




Shot gather, Mississippi Canyon

offset (km)
-2

-4 -3

-1

(thanks: Exxon)




Lightly processed...see the waves!

bandpass filter 4-10-25-40 Hz, mute




A key observation

The most striking visual characteristic of seismic reflattlata: presence of wave
events (“reflections”) = coherent space-time structures.

What features in the subsurface structure cause refled¢barccur?

Abrupt (wavelength scale) changes in material mechanicasamternal bound-
aries, causing reflection of waves.

What is the mechanism through which this occurs?




Well logs: a “direct” view of the subsurface

Blocked logs from well in North Sea (thanks: Mobil R & D). Sailip-wave ve-
locity (m/s), dashed: s-wave velocity (m/s), dash-dot:sitgr(kg/m?). “Blocked”
means “averaged” (over 30 m windows). Original sample réategtool < 1 m.
Reflectors= jumps in velocities, densityelocity trends.




The Modeling Task

A useful model of the reflection seismology experiment must

e predict wave motion
e produce reflections from reflectors
e accomodate significant variation of wave velocity, matetemsity,...

A really goodmodel will also accomodate

e multiple wave modes, speeds

e material anisotropy

e attenuation, frequency dispersion of waves
e complex source, receiver characteristics
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The Acoustic Model

Not really good but good enough for this week and basis of most contemporary
processing.

Relatesp(x)= material density)A(x) = bulk modulusp(x, t)= pressurey(x,t) =
particle velocityf(x, t)= force density (sound source):

ov
_ = — f
p@t Vp+1,
% = —AV v (+1c/s,b.c.'s)

(compressional) wave speed- \/%
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acoustic field potentiak(x, t) = [*_ dsp(x, 5):

ou 1
p = T V—qu

Equivalent form: second order wave equation for potential

1 0%u ! f f
Lo glg, - v-(-)==<
pc? Ot P /oo (p) p

plus initial, boundary conditions.
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Theory

Weak solutiorof Dirichlet problem inQ2 ¢ R’ (similar treatment for other b. c.’s):
u € CH([0, T]; L*(92)) N C°([0, T]; Hy (%))
satisfying for anyp € Cg°((0,7T) x ),

g 1 Judgp 1 1
/O /thd:z: {pc2at oy —;vu-v¢+;f¢}_o

Theorem (Lions, 1972) Suppose thate p,logc € L¥(Q), f € L*(Q x R). Then
weak solutions of Dirichlet problem exist, uniquely deterad by initial data

du
ot

u(+,0) € Hy(Q), —-(-,0) € L(Q)

NB: No hint of waves here...
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Further idealizations

e density is constant,

e source force density isotropic point radiator with known time dependence
(“source pulse’w(t))

f(x,t;xs) = w(t)d(x — Xy)

= acoustic potential, pressure dependsxgalso.

Forward map F|c| = time history of pressure for eash at receiver locations,
(predicted seismic data), as function of velocity fie{d):

Fl] = {p(x:, ;%) }

14



Reflection seismic inverse problem

givenobserved seismic datj find ¢ so that

Fle] ~d
This inverse problem is

e large scale - up to Thytes, Pflops
e nonlinear

e yields to no known direct attack
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Partial linearization

Almost all useful technology to date relies on partial lingation: writec = v(1+r)
and treat- as relative first order perturbation abaytresulting in perturbation of
presure fieldp = 2t = 0,¢ < 0, where

1 2 2r 0%u
(—aT -V ) =
Definelinearized forward map F' by
Flolr = {0p(x,,t;x5)}

Analysis ofF'|v] is the main content of contemporary reflection seismic theor
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Linearization error

Critical question: If there is any justicE|v|r = directional derivativeD F |[v||vr]
of F - but in what sense? Physical intuition, numerical simalatand not nearly
enough mathematics: linearization error

Flo(l1+r)] — (Flv] + Flu)r)

e smallwhenv smooth; rough or oscillatory on wavelength scale - well-separated
scales

¢ large whenwv not smooth and/or not oscillatory - poorly separated scales

2D finite difference simulation: shot gathers with typicanne seismic geometry.
Smooth (lineary(x, z), oscillatory (randomj(zx, z) depending only o (“layered
medium”). Source waveleb(t) = bandpass filter.
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x (km)
0 0.5 1.0 15 2.0

2.4

2.2

2.0

1.8

1.6

Left: Total velocityc = v(1 + r) with smooth (linear) backgroundz, =), oscilla-
tory (random)r(zx, z). Std dev ofr = 5%.

Right: Simulated seismic responsg[((1 + r)|), wavelet = bandpass filter 4-10-
30-45 Hz. Simulator is (2,4) finite difference scheme.
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x (km) x (km)
0 0.5 1.0 1.5 2.0

0.2+
0.10
2.4
0.05
2.2
S S 0
-0.05
1.8
-0.10
1.6

Model in previous slide as smooth background (left;, z)) plus rough perturba-
tion (right, r(z, 2)).
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Left: Simulated seismic response of smooth modéh(),
Right: Simulated linearized response, rough perturbaif@mooth model £'|[v]r)
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X (km)

2.4

2.2

2.0

z (km)

1.8

1.6

1.4

Model in previous slide as rough background (lefty, z)) plus smooth 5% pertur-
bation (z, 2)).
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Left: Simulated seismic response of rough mocgh),
Right: Simulated linearized response, smooth perturbatisough model '[v]r)
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X_r (km)

Left: linearization error v (1 +1)] — F|v] — F'|v]r), rough perturbation of smooth

background
Right: linearization error, smooth perturbation of rougitkground (plotted with

same grey scale).
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Summary

e v smooth,r oscillatory=- F'|v]r approximategprimary reflection = result of
wave interacting with material heterogeneity only oncadi scattering); error
consists oimultiple reflections, which are “not too large” if- is “not too big”,
and sometimes can be suppressed.

e v nonsmoothy smooth=- error consists ofime shiftsin waves which are very
large perturbations as waves are oscillatory.

No mathematical results are known which justify/explassthobservations in any
rigorous way, except in 1D.
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Velocity Analysis and Imaging

Velocity analysisproblem = partially linearized inverse problem: givéfnd v, r
SO that

Slv| + Flvlr ~d

Imaging problem = linear subproblem: givehandv, find r so that
Flolr ~d— S[v]

Last 20 years:

e much progress on imaging

e much less on velocity analysis
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Aymptotic assumption

Linearization is accurate> length scale otr >> length scale of- ~ wavelength,
properties ofF’[v] dominated by those aofs[v| (= F|[v] with w = §). Implicit in

migration concept (eg. Hagedoorn, 1954); explicit use: €& Bleistein, SIAM
JAM 1977.

Key idea:reflectors (rapid changes in) emulatesingularities reflections (rapidly
oscillating features in data) also emulate singularities.

NB: “everybody’s favorite reflector’. the smooth interfageross which- jumps.
Butthis is an oversimplification - reflectors in the Earth may beplex zones of
rapid change, pehaps in all directions. More flexible notieaded!!
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Wave Front Sets

Recall characterization of smoothness via Fourier transfa € D’(R") is smooth
atx, < for some nbhdX of x,, any¢ € £(X) andN, there isCy > 0 so that for

any€ 40,
¢
‘f ((M( \&M < Ovr

Harmonic analysis of singularitiegpresHormander: thevave front setW F'(u) C
R" x R" — {0} of u € D'(R") - captures orientation as well as position of singu-
larities.

(x0,&y) € WF(u) <, thereis some open nbblfdx = C R" x R” {0} of (xq, &)
so that for anyy € £(X), N, there isCy > 0 so that for all¢ € =,

Flow ()| = v
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Housekeeping chores

(1) note that the nbhds may naturally be taken to m®nes
(i) u is smooth atk, < (x¢,&,) ¢ WF(u) forall§, € R" — {0};

(i) W F(u) is invariant under chg. of coords if it is regarded as a subt#te
cotangent bundl&™(R") (i.e. the¢ components transform as covectors).

[Good refs: Duistermaat, 1996; Taylor, 198191ishander, 1983]

The standard example: 4fjumps across the interfagéx) = 0, otherwise smooth,
thenW EF(u) C Ny ={(x,€): f(x) =0, &||Vf(x)} (normal bundleof f = 0).
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Wavefront set of a jump discontinuity

<0 ¢=0

¢>0
WF(H(¢)) ={(x,€) : ¢(x) = 0, &[|[Vo(x)}

29



Microlocal property of differential operators

Supposen € D'(R"), (x0,&,) ¢ WF(u), and P(x, D) is a partial differential
operator:

P(x,D) =Y au(x)D"

la|<m

D® = D™ ... D%
Then(xg, &) € WE(P(x, D)u) [i.e.. WEF(Pu) C WF(u)].
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Proof

ChooseX x = as in the definitiony € D(X) form the required Fourier transform

/ dz e (%) P(x, D)u(x)

and start integrating by parts: eventually

=) e / di ™, (x)u(x)
o] <m
where¢, € D(X) is a linear combination of derivatives gfand thea,s. Since
each integral is rapidly decreasing@as- oo for ¢ € =, it remains rapidly decreas-
ing after multiplication byr'®!, and so does the sur@. E. D.
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Formalizing the reflector concept

Key idea, restated: reflectors (or “reflecting elements’) ke points inWW F(r).
Reflections will be points i/ F'(d).

These ideas lead to a usable definitionnoége a reflectivity model is an image
of rif WE(r) C WFE(r) (the closer to equality, the better the image).

|dealizedmigration problem: givend (hencelV F'(d)) deduce somehow a function
which hashe right reflectorsi.e. a functior with W F' (7)) ~ W F'(r).

NB: you're going to need! (“It all depends on v(x,y,z)” - J. Claerbout)
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Integral representation of linearized operator

With w = §, acoustic potential is same as Causal Green’s functiGix, ¢; x,) =
retarded fundamental solution:

1 0* )
292 V7 G(x,t;xs) = 0(t)0(x — bxy)

andG = 0,¢ < 0. Then v = d!) p = &, §p = LE and

1 82 5 2 62G
(_— — v ) (5G<X, t, XS> = ’(}2<X> atZ <X7 t? XS>T(X)

Simplification: from now on, defing”[v|r = éG|,_, - i.e. lose at-derivative.
Duhamel’s principle=-

L 2r(x) - 0°G |
5G<X¢,t7Xs>—/dQZ o(x)? /dsG(Xr,t—s,X)W(x,s,xs)
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Add geometric optics...

Geometric optics approximation 6f should be good, asis smooth. Summary: if
x “not too far” fromx,, then

G(x, %) = a(X;X,)0(t — T(X:X;)) + R(X, 15 Xs)
where the traveltime(x; x;) solves the eikonal equation

X — X
U(X8>

and the amplitude(x; x) solves the transport equation

VT =1, 7(x;x4) ~ ;X — X

V- (a*VT) =0, ...

Refs: Courant & Hilbert, Friedland&ound PulsesNWS Foundationsand many
refs cited there...
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Simple Geometric Optics

“Not too far” means: there should be one and only one ray ofrgenc optics
connecting eacla, or x, to eachx € suppr.

Will call this thesimple geometric opticsassumption.

Within region satisfying simple geometric optics assumpti- is smooth & # x,)
solution of eikonal equation. Effective methods for nuroarisolution of eikonal,
transport equations: ray tracing (Lagrangian), variousssaf upwind finite differ-
ence (Eulerian) methods. See eg. Sethian book, WWS 1999 MiGtS (online)
for details.
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Caution - caustics!

For “random but smooth®(x) with variances, more than one connecting ray oc-
curs as soon as the distanceigr—2/3). Suchmultipathingis invariably accompa-
nied by the formation of aaustic= envelope of rays (White, 1982).

Upon caustic formation, the simple geometric optics fieldodigtion above is no
longer correct.

Failure of GO at caustic understood in 19th century. Gerzatadn of GO to re-
gions containing caustics accomplished by Ludwig and kK@yt1966-7, elabo-
rated by Maslov, Brmander, Duistermaat, many others.
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A caustic example (1)

sinl: velocity field

0

0.2

0.4

0.6

0.8

1

12

14

16

18

2
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

2D Example of strong refraction: Sinusoidal velocity field:, z) = 14-0.2sin % sin 3w
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A caustic example (2)

sinl: rays with takeoff angles in range 1.41372 to 1.72788
T T T T T T

Rays in sinusoidal velocity field, source point = origin. Blédrmation of caustic,
multiple rays to source point in lower center.
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An oft-forgotten detall

All of this is meaningful only if the remainddk is small in a suitable sense: energy
estimate Exercisel) =

/dx/ dt |R(x.t:x)[2 < vl

(this Iis an easy, suboptimal estimate - with more work cataogp4 with 2)

If v € C°°, can complete the geometric optics approximation of theessefunc-
tion so that the difference 5*° - then the two sides have the same singularities, ie.
the same wavefront set.
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Finally, a wave!

The geometric optics approximation to the Green’s function
G(x,t;x,) >~ a(x;X,)0(t — 7(X; X))

describes a (singular) quasi-spherical waves [spherital, = const., for then
T(X,Xs) = |x — X,|/].

Geometric optics is the the best currently available exatenm for waves in het-
erogeneous medidote the inadequacy! must besmooth but the compressional
velocity distribution in the Earth varies on all scales!
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The linearized operator as Generalized Radon
Transform

Assume:supp r contained in simple geometric optics domain (each poirnthred
by unique ray from any source or receiver point).

Then distribution kernek’ of F'[v] is

2
K(x,,t, X4 %) = / ds G(x,,t — s;x)%—g(x, S;XS)%
v

- / s 2a<X7~, X)CL(X, XS)5/(t e 7_(er X))(S”(S B T(X, Xs>)

v (%)
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~2a(x,xp)a(X,Xs) oy r(x.%.) — 7(X. X
_ v2(x) 0t — 7%, %) = 7(x, %))

provided that

VT (x,%X,) + Vi (X, X5) # 0

< velocity atx of ray fromx, not negative of velocity of ray fronx,. < no forward
scattering [Gel'fand and Shilov, 1958 - when is pullback of distrimrtiagain a
distribution].
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GRT = “Kirchhoff” modeling

So: forr supported in simple geometric optics domain, no forwardteoag =-
0G(x,,1;X;) >

6’_2 I 2r(x)
ot? v?(x)
That is: pressure perturbation is sum (integral) aver reflection isochron{x
t = 7(x,%x,) + 7(x, %) }, W. weighting, filtering. Note: ifv =const. then isochron

Is ellipsoid, asr(x;, x) = |xs — x|/v!

a(x, X, )a(x,x5)0(t — 7(x, X,.) — 7(X, X))

ET X
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Zero Offset data and the Exploding Reflector

Zero offset datax, = x,) is seldom actually measured (contrast radar, sonar!), but
routinelyapproximatedhroughNMO-stack(to be explained later).

Extracting image from zero offset data, rather than from(EHNO’s) of offsets, is

tremendougdata reduction- when approximation is accurate, leads to excellent
Images.

Imaging basis: thexploding reflectomodel (Claerbout, 1970’s).
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For zero-offset data, distribution kernel Bfv] is

0* 2
K (xs,1,%4;X) = @/ ds 02(X)G(Xs,t — 5:x)G(x, 8;%;)

Under some circumstances (explained beld), = G time-convolved with itself)
is “similar” (also explained) t@* = Green’s function fow /2. Then

0? - 2r(x
0G(Xs, ;X)) ~ ﬁ/ dIG(Xs,t,X>%

~ solutionw of

Thus reflector “explodes” at time zero, resulting field pggias in “material” with
velocity v /2.
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Explain when the exploding reflector model “works”, i.e. wil& time-convolved
with itself is “similar” to G = Green’s function for /2. If suppr lies in simple
geometry domain, then

Kt xix) = [ as 250 - k)

_ 20°(X, X,)
v*(x)

whereas the Green’s functi@nfor v/2 is

6" (t — 27(x, x,))

~

G(x,t;xs) = a(x,x5)0(t — 27(x, X5))

(half velocity = double traveltime, same rays!).
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Difference between effects @€, G: for eachx, scaler by smooth fcn - preserves
W F(r) henceW F(Fv]r) and relation between them. Also: adjoints have same
effect onW/ F’ sets.

Upshot: from imaging point of view (i.e. apart from ampligydierivative (filter)),
kernel of F'|v] restricted to zero offset is same as Green'’s functiomw f@r provided
that simple geometry hypothesis holdsily one ray connects each source point to
each scattering point, i®o multipathing

See Claerbout, IEI, for examples which demonstrate thatipatihing really does
iInvalidate exploding reflector model.
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Standard Processing

Inspirational interlude: the sort-of-layered theory =i8tlard Processing”

Suppose were,r functions ofz = z3 only, all sources and receivers at= 0.
Then the entire system is translation-invariantcinz, = Green’s function its
perturbationdG, and the idealized dat&~|._ are really only functions of, z, and
half-offseth = |x;—x,|/2. There would b@nly one seismic experimeeguivalent
to anycommon midpoint gathg¢fCMP”).

This isn’t really true -look at the data!!! However it isapproximatelycorrect in
many places in the world: CMPs change very slowly with midgpei,, = (x, +

Xs)/2.
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Standard processing: treat each CEHif it were the result of an experiment per-
formed over a layered mediyrout permit the layers to vary with midpoint.

Thusv = v(z),r = r(z) for purposes of analysis, but at the end- v(x,,, 2),r =
(X, 2).

F[U]T(Xm t; Xs>

- / dmizézga(x7 ZUT>CL(X, x3)5//(t - T(Xv x?“) - T<X’ 333)>

2 .
:/dz T(Z)/dw/dazw%(x, ZC”CL(X, xg)ezw(t—f(x,xr)—T(x,xS))
v¥(2)
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Since we have already thrown away smoother (lower freqalresns, do it again
usingstationary phaseUpshot (see 2000 MGSS notes for details): up to smoother
(lower frequency) error,

Flolr(h,t) ~ A(z(h, 1), h)R(z(h,t))
Herez(h,t) is the inverse of the 2-way traveltime

t(h, ) = 27((h, 0, 2), (0,0,0))
l.e. z(t(h,2"),h) = 2'. Ris (yet another version of) “reflectivity”
Ldr
=5,
That is, F'[v] is a a derivative followed by a change of variable followedntylti-

plication by a smooth functiorSubstitute, (vertical travel time) forz (depth) and
you get “Inverse NMO” {, — (¢, h)). Will be sloppy and calt — (¢, ) INMO.
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Anatomy of an adjoint

/dt/dhd(t,h)F[u]r(t,h):/dt/dhd(t,h)A( (t

h), h)R(=(t, h))

= / dz R(z) / dh%(z h)A(z, h)d(t(z, h), h) = / dzr(z)(Flv]"d)(z)

soF[u]* = —2£SM[v]N[v], where

e N|v] = NMO operator N{v|d(z,h) = d(t(z,h),h)
e M[v] = multiplication by(%A
e S = stacking operator Sf(z) = [ dh f(z, h)
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Normal Op is PDQO= Imaging

FRJ Flolr(z) = — [ / ah (2 ) A%z, )| ()

Microlocal property of PDOs> W F(F[v]*F|v|r) C W F(r) i.e. F[v|* is an imag-
INng operator

If you leave out the amplitude facton{[v]) and the derivatives, as is commonly
done, then you get essentially the same expression - so (MMCK) is an imaging
operator!

It's even easy to get an (asymptotic) inverse out of this r@se for the reader.

Now make everything dependent &p, and you've got standard processing. (end
of layered interlude).
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But the Earth is not layered!

In general,
Is F[v]* an imaging operator?
What sort of thing is'[v]* F'|v]??

Stay tuned!
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Review: Normal Operators and imaging

If d = Flv|r, then
Flol*d = Fu]"Flv|r

Recall: In the layered casé;|v]*F|v] is an operator which preserves wave front
sets.

WhenevelF'[v|* F'[v] preserves wave front set8[v|* is an imaging operator.




Review: Generalized Radon Representation

Assume (1) (oscillatory) supported in simple geometric optics donam (smooth),
(2) no forward scattering. Then

Flolr(x,,t;x;) ~

/ dx f;g;(;a(x, X, )a(x,x,)0" (t — 7(x, %) — 7(x, X))

Similar representation of adjoint follows:

F[U]*d(x):///d.iErd.iESdta(X,XT)a(X,Xs)éﬁ(t—T(X;XS)—T(X;XT»d(XT,t;Xs)




Beylkin, J. Math. Phys1985

Forr supported in simple geometric optics domain,

o WE(F|*Flvlr) c WE(r)

o if d = Flv]+ F|v]r (data consistent with linearized model), thep|*(d — F|v])
IS an image of

e an operatoi’[v]" exists for whichF'[v]'(d — F[v]) — r is smoothethanr, under
some constraints on- aninverse modulo smoothing operatasparametrix




Outline of proof

ExpressF'|v]*F|v] as “Kirchhoff modeling” followed by “Kirchhoff migration;”
(i) introduce Fourier transform; (iii) approximate forr¢gge wavenumbers using
stationary phase, leads to representatio’ef* F'[v] modulo smoothing error as
pseudodifferential operatdf WDO"):

Flo]Flulr(x) = px D)r(x) = [ de plx,e*Er(g
In whichp € C°, and for somen (the order of p), all multiindices«, 5, and all

compactK’ C R", there exist constants, s x > 0 for which

DEDp(x,8)] < Copr(L+1€)" V), x € K

Explicit computation oymbol p - for details, see Notes on Math Foundations.




Microlocal PropertyoftDOs

if p(z, D)isa¥DO,u € &'(R") thenW F(p(z, D)u) C W F(u).

Will prove this, from which imaging property of prestack Bnhoff migration fol-
lows. First, a few other properties:

e differential operators aré DOs (easy - exercise)
e UDOs of ordern form a module ove’>°(R") (also easy)

e product ofUDO orderm, YDO orderl = VDO order< m + [; adjoint of DO
orderm is WDO orderm (harder)

Complete accounts of theory, many apps: books of Duistdarnhaglor, Nirenberg,
Treves, Hhrmander.




Proof of Microlocal Property

Supposex, &,) ¢ W F(u), choose neighborhoods, = as in defn, with= conic.
Need to choose analogous nbhds fre, D)u. Pickd > 0 so thatBss(xg) C X,
setX’ = Bs(xp).

Similarly pick 0 < ¢ < 1/3 so thatBs.(&,/|&,|) C =, and chos&’ = {7£ : € €
B.(&y/[&ol), 7 > 0}

Need to choose € £'(X’), estimateF (¢P(x, D)u). Choosey € £(X) so that
’QD =1o0n Bg(g(Xo).

NB: this implies that ifx € X', ¢)(y) # 1 then|x — y| > 6.




Write u = (1 — ¢)u + vu. Claim: ¢ P(x, D)((1 — ¢)u) is smooth.
¢(x)P(x, D)((1 = )u))(x)

— o) [ dePx.&exE [ dy(1 - vy)uly)e S
= [ de [ ayPx. 060 — vy Euty)

= [t [ dy(-9VPex.gox)1 - vly)lx -y Ve Euly)




using the identity
6%’(X—Y)'£ = |x — y\_2 [_vgei(x—.\/)'g}
and integrating by part8M times in&. This is permissible becausgx)(1 —
(y)) #0=[x—y|[>0.
According to the definition o’DO,
(VY P(x, &) < Cle™

For anyK, the integral thus becomes absolutely convergent &aftdifferentiations
of the integrand, provided/ is chosen large enough. Q.E.D. Claim.

This leaves us witlp P(x, D)(yu). Pickn € = and w.l.0.g. scalé;| = 1.




Fourier transform:

FloPtx, D)) = [ do [ d Pix,&)otx)u(e)e €

Introducerf = &, and rewrite this as

:7'”/ dx / df P(x, 79)¢(X)?ﬁu(79)ewx'(9_”)

Divide the domain of the inner integral inf@ : |6 — n| > €} and its complement.
Use

_vieirx-(Q—n) _ 7'2‘6 o n‘QeiTx-(Q—n)




Integrate by part8 M times to estimate the first integral:

et [ [ o (-9 P oo u(eo

x |9 o 77‘—2M6i7'x-(«9—77)

< CTner—QM

m being the order of°. Thus the first integral is rapidly decreasingrin
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For the second integral, note that— n| < ¢ = 6 € =, per the defn oE’. Since

X x =z Is disjoint from the wavefront set af, for a sequence of constanisy,
Wu(fﬁ)l < Cx7 uniformly for # in the (compact) domain of integration, whence
the second integral is also rapidly decreasing.iQ. E. D.

And that’s why Kirchhoff migration works, at least in the $il@a geometric optics
regime.

11



Inversion aperture

M) CR?Px R? =0

if WEF(r) C '], thenW F(Fv|*Flv]r) = W F(r)andF|v]*F|v] “acts invertible”.
[construction ofl'[v] - later!]

Beylkin: with proper choice of amplitud&x,, t; x,), the modified Kirchhoff mi-
gration operator

/// dx, dzs dt b(x,,t;Xs)0(t — 7(x; Xs) — T(X;%,) ) d(Xp, T Xs)
yields F[v]' Flv]r ~ r if WF(r) C ['[v]

12



For details of Beylkin construction: Beylkin, 1985; Millet al 1989; Bleistein,
Cohen, and Stockwell 2000; WWS Math Foundations, MGSS nb®&s8. All
components are by-products of eikonal solution.

aka: Generalized Radon Transform (“GRT”) inversion, RaprBinversion, migra-
tion/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, BurridgeHdop, Lambas, ...

Apparent limitation: construction relies on simple geoneaiptics (no multipathing)
- IS this really necessary?

13



CDP

800 1000 1200 1400

0 200 400 600

500

Depth in Meters

Example of GRT Inversion (application df[v|): K. Araya (1995), “2.5D" in-
version of marine streamer data from Gulf of Mexico: 500 seypositions, 120

receiver channels, 750 Mb.
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Why Beylkin isn’t enough
The theory developed by Beylkin and others cannot be the £tk story:

e The “single ray” hypotheses generally fails in the presasfc#trong refraction.

e B. White, “The Stochastic Caustic” (1982): For “random buio®th” v(x) with
variancec, points at distanc&(c—2/?) from source have more than one ray
connecting to source, with probability inultipathingassociated with formation
of caustics= ray envelopes.

e Formation of caustics invalidates asymptotic analysis biclwvBeylkin result is
based.

15



Why it matters

e Strong refraction leading to multipathing and caustic fation typical of salt
(4-5 km/s) intrusion into sedimentary rock (2-3 km/s) (egulfGf Mexico),
also chalk tectonics in North Sea and elsewhere - some of ds promising
petroleum provinces!

16



Escape from simplicity - the Canonical Relation

How do we get away from “simple geometric optics”, SSR, DSR,all violated
In sufficiently complex (and realistic) models? Raké&xmm. PDE1988, Nolan
Comm. PDEL997: global description aF;s|v| as mapping reflectors: reflections.

Y = {x,,t,x,} (time x set of source-receiver pairs) submfdRf of dim. < 5,
I1: T*(R") — T*Y the natural projection

suppr C X C R’

Canonical relationCp,) C T%(X) — {0} x T*(Y) — {0} describes singularity
mapping properties af’":

(Xa ga Y, 77) < OE;[U] A
for someu € £'(X), (x,£) € WF(u), and(y,n) € WF(Fu)

17



Rays Construction of the Relation

Rays of geometric optics: solutions of Hamiltonian system

dX d=
T _V=H(X.E), == - _VxHX.E
At vu ( ) )7 At vX ( ) )

with H(X, E) = 1[1 — v*(X)|E[*] = 0 (null bicharacteristic}.

Characterization of Cp:

(%,8), (%, 8, %, &, 7, &) € Cpyp) € T7(X) — {0} x T7(Y) — {0}
& there argays of geometric opticsX;, E;), (X, E,) and timeg,, ¢, so that

[(X(0), 8, X (), Bs(0), 7, B (1)) = (X5, 5%, 5, T5 &1 ),

X,(ts) = Xo(t —t,) =%, ty+ 1, = t, By(ts) — Bt — t,)||€

18



SinceZ,(ts), —E,(t — t,) have same length, sum = bisectervelocity vectors of
Incident ray from source and reflected ray from receiverdé@ backwards in time)
make equal angles with reflectoratwith normalg¢.

Upshot: canonical relation dfs[v] simply enforces the equal-angles law of reflec-
tion.

Further,rays carry high-frequency energy exactly the fashion that seismologists
Imagine.

Finally, Rakesh’s characterization 6f is global: no assumptions about ray geom-
etry, other than no forward scattering and no grazing imméeon the acquisition
surfaceY’, are needed.

19



The Picture

20



Proof: Plan of attack

Recall that
Flelr(x,, 1) = (%,
where
1 9%0u 9 1 0%u
oV ouT aae’
1 0%u N
ﬁw — Vu = 5(t>5(X — X5>

andu,ou =0, t < 0.

Need to understand (1) F'(u), (2) relationWV F(r) « W F(ru), (3) W F of soln
of WE in terms ofiV/ F' of RHS (this also gives (1)!).

21



Singularities of the Acoustic Potential Field

Main tool: Propagation of Singularitiestheorem of Hhrmander (1970).

Given symbolb(x, &), order m, with asymptotic expansion, defmal bicharater-
Istics (= rays) as solutiongx(t), £(t)) of Hamiltonian system

dx Op dg _@
dt _ ag(xa 5)7 E — aX(Xa €>

with p(x(t),&(t)) = 0.

Theorem: Suppose(x, D)u = f, and suppose that fog < ¢t < ¢, (x(t),&(t))
WE(f). Then eithed (x(t),&(t)) : to <t < t;} C WF(u) or{(x(t),&(t)) : to
t <t} CT*R") — WF(u).

IA A
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Source to Fleld

RHS of wave equation far = § function inx, t. WF set ={(x,t,&,7) : X = X,,t =
0} - i.e. no restriction on covector part.

= (x,t,&€,7) € WF(u) Iff a ray starting at(x;, 0) passes ovefx,t) - i.e. (x,t)
lies on the “light cone” with vertex dtx,, 0). Symbol for wave op i9(x,t,&,7) =

2 —v%(x)[€]?), so Hamilton’s equations for null bicharacteristics are

2
dX 5 d=
— = — = — =VI X
o ve(X)E, o V log v(X)

Thusé is proportional to velocity vector of ray.

[(&, 7) normalto light cone.]
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Singularities of Products

To computelV/ F'(ru) from W EF(r) andW F'(u), useGabor calculugDuistermaat,
Ch. 1)

Herer is really (r o m)u, wheren(x,t) = x. Choose bump function localized
near(x, t)

—_—

o1 o m)u(, ) = / d¢’ dr'or(€)s(r)a(E — €7 — 1)

_ / A€o (€)a(E — €, 7)

24



This will decay rapidly as(&, 7)| — oo unless (i) you can findx’, &) € WF(r)
so thatx, x’ € w(suppg), € — & € WF(u),i.e. (§,7) € WF(rom)+ WF(u), or
(i e WF(r)or(g,7) € WF(u).

Possibility (ii) will not contribute, so effectively

WE((rom)u) = {(x, 1, & + Ey(t,), ) : (x,€) € WF(r), x = X, (t,)

for a ray(Xs, ;) with X(0) = x,, somer.

25



Wavefront set of Scattered Field

Once again use propagation of singularities;,t,&,.,7.) € WF(du) < on ray
(X, E,) passing throughV’ F'(r«). Can argue that time of intersectiontis t, < t.

That Is,
X, (t) =%, X, (t — t,) = X(ts) = x,

t=t,+t,, and

for some¢ € WF(r). Q. E.D.
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Rakesh’s Thesis

Rakesh also showed thatwv| is aFourier Integral Operator= class of oscillatory
Integral operators, introduced byoknmander and others in the '70s to describe the
solutions of nonelliptic PDEs.

Phases and amplitudes of FIOs satisfy certain restriciorelitions. Canonical
relations have geometric description similar to that®s|. Adjoint of FIO is FIO
with inverse canonical relation.

UDOQOs are special FIOs, as are GRTSs.

Composition of FIOs doesot yield an FIO in general. Beylkin had shown that
Flv*Flv] is FIO (DO, actually) under simple ray geometry hypothesis - bug thi
IS only sufficient. Rakesh noted that this follows from gehegsults of Hhrmander:
simple ray geometrys- canonical relation is graph of ext. deriv. of phase function

27




The Shell Guys and TIC

Smit, tenKroode and Verdel (1998): provided that

e source, receiver positionig,, x,.) form anopen4D manifold (“complete cover-
age” - all source, receiver positions at least locally), and

e the Traveltime Injectivity Conditio*TIC”) holds: C;[%}] CTY —{0} xT*X —
{0} is afunction- that is, initial data for source and receiver rays and toéadel

time together determine reflector uniquely.

then F'[v]*F|v] is WDO =- application ofF'[v]* produces image, anBl[v|* F'|v] has
microlocal parametrix (“asymptotic inversion”).

28



TIC Is a nontrivial constraint!

X X

S r

X|
>

Symmetric waveguide: timex( — x — x,) same as timex;, — x — x,), SO TIC
fails.
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Stolk’s Thesis

Stolk (2000): under “complete coverage” hypothesigor which Flv|*F|v] is =
[WDO + rel. smoothing op] form open, dense set (without assgmig!).

NB: application of F'|v]* involves accounting forll rays connecting source and
receiver with reflectors. Standard practice still attenmp@&ging with single choice
of ray pair (shortest time, max energy,...). Operto et aD@@ive nice illustration
that all rays must be included.

30



Nolan’s Thesis

Limitation of Smit-tenKroode-Verdel: most idealized datequisition geometries
violate “complete coverage”. for example, idealized margstreamer geometry
(src-recvr submfd is 3D)

Nolan (1997): result remains true without “complete cogefecondition: requires
only TIC plus addl condition so that projecti@ry, — T*Y Is embedding - but
examples violating TIC are much easier to construct whencgereceiver submfd
has positive codim.

Sinister Implication: When data is just a single gather - common shot, common
offset - image may contaiartifacts i.e. spurious reflectors not present in model.
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Horrible Example |

Synthetic 2D Example (Stolk and WWS, 200Geophysic2004)
Strongly refracting acoustic lens)(over horizontal reflector-{, d = F|v|r.

(i) for open source-receiver set|v]*d = good image of reflector - within limits of
finite frequency implied by numerical methalljv]* F'[v] acts likeWDO;

(if) for common offsetubmfd (codim 1), TIC is violated and’ F'( F[v|*d) is larger
thanWW F(r).

32



X1
-1 0 1

N

H 1
0.6

Gaussian lens velocity model, flat reflector at depth 2 kmrlawewith rays and
wavefronts (Stolk & S. 2002 SEQG).

| AR
/S TR\

PN X
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receiver position (km)

time
(s)

Typical shot gather - lots of arrivals
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offset

1.6

travel time # s,r
— 11
33
—21
---12
31
— 3,2

Xy 2.0 R ————

2.4

Offset common image gather (slice Bfv]*d), with kinematically predicted reflec-
tor images overlain.
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Horrible Example Il

Stolk and Symes(zeophysic2004: “Marmouflat” model = smoothed Marmousi
(Versteeg & Grau 1991) with two flat reflectors.

X (km)

5.5km/s

36



Typical shot gather:

receiver position (km)
5.2 5.6 6 6.4 6.8 7.2

time
(s

much evidence of multipathing, caustimation.
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angle (deq)
0] 20 4|0 80

2.2+

< 2.4+

2.6-

Typical common scattering angle image gather: note nonfettan box - results
from data event migrating alongrong ray pair.
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X (km)
5.6 6 6.4 6.8 7.2 7.6

zZ 12
(km)

Blue rays = energy path producing data event. Black raysiggrmath for migra-
tion, resulting in displaced, angle-dependent imagesattif
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What it all means

Note that a gather scheme makes the scattering operatértiiagonal: for exam-
ple with data sorted into common offset gathers (x, — x;)/2,

Flv] = [Fy, |v], ...,FhN[v]]T, d = |dp,, ...,th]T

Thus Fv]*d = ), Fy [v]*dp,. Otherwise put: to form imagemigrate ith gather
(apply migration operatof;, [v]*, thenstack individual migrated images (hence
prestack migratioh

Horrible Examples show that individual migrated images maytain nonphysical
apparent reflectors (artifacts).

Smit-tenKroode-Verdel, Nolan, Stolk: if TIC holds, therefie artifacts are not sta-
tionary with respect to the gather parameter, hestaek ou(interfere destructively)
In final image.
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Wave Equation Migration

Techniques for computing'|v]*:
() Reverse time

(i) Reverse depth




Reverse Time Migration, Zero Offset

Start with the zero-offset case - easier, but only if youaeelit with the exploding
reflector model, which replaces/v] by

Flulr(x,,t) = w(x,,t), x, € X,,0<t < T

2
(ia——v2>w:(5(t)2—r w=0,1t<0

v2’

To compute the adjoint, start with its definition: choase £( X x (0,7)), so that

< Fl*d,r >=< d, F[v]r >

T
:/ de/ dt d(xg, t)w(xs, t)
s 0




The only thing you know aboub is that it solves a wave equation withon the
RHS. To get this fact into play, (i) rewrite the integral agppace-time integral:

_ /33 dx /OT dt /S drsd(xs,1)0(x — Xs)w(x, t)

(i) write the other factor in the integrand as the image oé#lfy under the (adjoint
of the) wave operator (it's self-adjoint), that is,

4 0? )
V) alxt) = / A, d(x., £)(x — x,)

= /R3 da /OT dt Kv??x) g; - V2> q(x, t)] w(x, 1)

SO




(1)) integrate by parts

/R do / dt [(024 5’22 _ v2> w(x,t)] 7(%, 1)

which works if¢g = 0, ¢t > T (final value conditioly (iv) use the wave equation for

[ ' X)d(t)g(x, 1

(v) observe that you have computed the adjoint:

_ /Rg dz 7 (x) [ > alx, 0)] < Elo'd >

v(x)




Summary of the computation, with the usual description:

e Use that data as sources, backpropagate in time - i.e. swvimtl value (“re-
verse time”) problem

4 0? 5
A v q(x,t):/ drsd(xs,t)0(x —x4), ¢q=0,t>T

V2 Ot? .
e read out the “image” (= adjoint output) at 0:
S 9
F[U] d T U(X)QQ(X’ O)

Note: The adjoint (time-reversed) fielgis not the physical field u) run back-
wards in time, contrary to some imputations in the literatur




Historical Remarks

e Known as “two way reverse time finite difference poststacgnadion” in geo-
physical literature (Whitmore, 1982)

e uses full (two way) wave equation, propagates adjoint figicklvards in time,
generally implemented using finite difference discreiat

e Same as “adjoint state method”, Lions 1968, Chavent 1974dotrol and in-
verse problems for PDEs - much earlier for control of ODEsiHly,ararantola
'80s.

e My buddy Tapia says: all you're doing is transposing a matrixue (after
discretization), but it's important that these matrices trangular, so can be
Implemented by recursions - forward for simulation, bactdggor adjoint.




Reverse Time Migration, Prestack

A slightly messier computation computes the adjointFof| (i.e. multioffset or
prestackmigration):

Fu]*d(x) = —% / dx /0 ' dt (%v%,) (x,t;X,)

whereadjoint fieldq satisfies; =0, t > 17" and

2
(2, f s
(V)




Proof

< Fll'd,r >=<d, Flv|r >

T
://d:vsda:r/ dtd(XT,t;Xs)%(Xr,t;Xs)

0 t

T

:/de/dx/ dt {/ dx'rd(Xr,t;XS)é(X_Xr)}%(Xat;xs>
0
I 1 0? 5 dou
= [ae [ [} o[ (v o) T




T 1 07 ) dq
_—/de/dx/O dt [(Ew—V)CSU] a(xatuxs)

(boundary terms in integration by parts vanish becauseu(i= 0, t << 0; (i)
g =0, t >> 0; (ili) both vanish for largex, at each)

g 2r 0?1 Oq
— —/ dxg / dx/o dt (U2 572 (9?5) (x,t; Xs)
2 g 0%udq
— —/ dl’s / d.I'T(X)U2(X>/O dt (@E) (X,t,X3>

=<, Flv]"d >

g.ed.




Implementation

Algorithm: finite difference or finite element discretizati in x, finite difference
time stepping.

e For eachx,, solve wave equation far forward int, record final (t=T) Cauchy
data, also (for example) Dirichlet boundary data.

e Stepu andq backwards in time together; at each time step, data senssiase
for ¢ (“backpropagate data”)

e During backwards time stepping, accumulate (approximatto)

2 g 0?1 dq .
Q(x)+ = U2(X)/0 dt (ﬁ%) (x,t; Xs)

(“crosscorrelate reference and backpropagated field”).
e nextx, - after lastx,, F'lv]*d = Q.
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Reverse Depth Migration, Zero Offset

aka: depth extrapolation, downward continuation, or syfipiave equation migra-
tion”.

Introduced by Claerbout, early 70’s (“swimming pool eqaat). Again, assume
exploding reflector model:

Flulr(x,,t) = w(x,,t), x, € X,,0<t<T

Basic idea: 2nd order wave equation permits waves to mové diractions, but
waves carrying reflected energy are (mostly) mowipgShould satisfy a 1st order
equation for wave motion in one direction.

11



Coming up...

For the moment use 2D notatien= (z, z) etc. Write wave equation as evolution
equation inz:

0> 4 9% 0

ow_ _ w=—3(t) =
072 V20t Ox? V2

Suppose that you could take the square root of the operap@arantheses - call it
B. Then the LHS of the wave equation becomes

(% _ B) (% | B) w = _5@%

so settingd = (£ + B) w you get

12



Some Issues

This mightbe the required equation for upcoming waves.
Two major problems: (i) how the h—Il do you take the square obatPDO?
(i) what guarantees that the equation just written goveptming waves?

Answers to be found in the theory ¢DOs!

13



ClassicalvDOs

Importantsubclassof classical Y'DOs: those whose (“classical’) symbols have
asymptotic expansions:

p(x,€) ~ > pi(x,€), |€] — o0

j<m

In which p; is homogeneous ié of degreey:

pi(x, 7€) = 'p;(x, 7€), T, |€| > 1

Theprincipal symbols the homogeneous term of highest degree pi,gabove.
14




Products oftDOs arerDOSs.

ClassicalDOs have more completealculus including prescriptions for “com-
puting” adjoints, products, and the like. From now on unlet®rwise stated, all
UDOQOs are classical.

Product rule for?DOs: if p', p? are classical,
= px8) =D px€
]<m ]<m

then so isp'(x, D)p*(x, D), and its principal symbol ip! ,(x,£)p’,(x, &), and
there is an algorithm for computing the rest of the expansion

In an open neighborhood x = of (x, &,), symbol ofp'(x, D)p?(x, D) depends
only on symbols op', p? in X x =.

15



Consequence: if(x, D) has an asymptotic expansion and is of ordee R, and
am(x0,&y) > 0in P C R" x R" — 0, then there exists(x, D) of orderm /2 with
asymptotic expansion for which

(a(x, D) = b(x, D)b(x, D))u € E(R")
foranyu € &'(R") with W F(u) C P.
Moreover,b,, »(x, &) = \/an(x,€), (x,€) € P. Will call b amicrolocal square
root of a.
Similar construction: iti(x, &) # 0 in P, then there ig(x, D) of order—m so that
c(x, D)a(x, D)u — u, a(x,D)c(x, D)u —u € E(R")
foranyu € &'(R") with W F(u) C P.

Moreover,c_,,(x,&) = 1/a,(x,€), (x,&) € P. Will call b amicrolocal inverseof
a.

16



Application: the Square Root Operator

0> 4 9? 4

ale, 2, Dy, D) = 022 v(z,2)202  u(x, z)QD752 - D
IS
a(x,z,7,§) = ! T — £
v(x, 2)?
Foro > 0, set

17



The SSR Operator

Then according to the last slide, there i1s an orderdO-valued function ofz,
b(x, z, Dy, D), with principal symbol

2
bl(az,z,T,f)\/ ! 72527\/2)(4 _¢ (z,1,€,7) € Ps(2)

v(x, 2)? r,z)?2 1%

for whicha(z, z, Dy, D,)u ~ b(x, z, Dy, D,)b(x, 2z, Dy, D)u if WE(u) C Ps(z).

b is the world-famousingle squareroot (“SSR”) operator - see Claerbout, IEI.

18



The SSR Assumption

To what extent has this construction factored the wave ¢opera

o . g .
(@ —1b(z, 2z, Dy, Dt)> (@ +ib(x, z, D, Dt))
2
= a— + b('ra 2 D:U: Dt>b<x7 2 DI? Dt) + @(CE’, 2 DfU? Dt)

022 0z

SSR Assumption: For some) > 0, the wavefieldv satisfies

(x,2,t,&,(,7) e WF(w) = (x,t,£,7) € Ps(z) and(T > 0

19



This statement has a ray-theoretic interpretation (whidlewentually make sense):
rays carrying significant energy are nowhere horizontabnglany such ray; de-
creases asincreases eoming up!

w(x,z,t) = (é +ib(x, z, D,, Dt)> w(z, z,t)

0z
b(x,z, Dy, Di)b(x, z, D, Dy)w >~ ! D? — D% ) w
) T t )~ €T t — ’U(ﬂj‘, 2)2 t T
with a smooth error, so
o . ) 2r(z, 2)
(@ o Zb(l‘, 2, Dxa Dt)) ’LU(I‘, <y t) — _’U(.I', Z>25(t)

(0
+1 (&b(x, 2, D, Dt)> w(z, z,t)

20



(sinceb depends on, the z deriv. does not commute with). Sow = wy + wy,
where

2r(x, z)

70(t)

o . s
(& o Zb(.I',Z, D:U7 Dt)) wo(l', Z7t> - =

v(x, 2)

(this is theSSR modeling equation)

o ) (0
(& —ib(z, z, Dy, Dt)) wi(x, 2,t) =1 (@b(%za Dy, Dt)) w(z, z,1)

Claim: W F(w;) C W F(w). Granted this= W F'(wy) C W F(w) also.
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Upshot: SSR modeling
ﬁO[U]T<x37 Zs) t) — UNJO<3787 Zs) t)

produces the same singularities (i.e. the same waves) axlexgpreflector model-
INg, SO is as good a basis for migration.

SSR migration: assume that sources all liezpg- 0.

<F0 *d?"> <dF0[]

/de/dtd T, t)Wo(ws, 0, 1)

22



_ / d. / it / dz (24, 1)5(2)T0(@s, 2, 1

Define the adjoint field by

(6’2 —b(z, 2, Dy, Dt)) q(z,2,t) =d(z,1)0(2), q(r,2,t) =0, 2 <0
Z

which is equivalent to solving the initial value problem

(ag - ib(x”z?Dx)Dt)) Q(I',Z,t> — 07 Z > O” Q(I',O,t) - d($7t>
<

Insert in expression for inner product, integrate by parsg self-adjointness of
get

<d, Fylr >:/da:/dz QZSSQ(;(W,O)

(V)

23



whence

Folold(z, 2) = —>

v(x, z)QQ(x’ %0)

Standard description of the SSR migration algorithm:

e downward continue data (i.e. solve fgr

e Iimage att = 0.

The art of SSR migration: computable approximation$(ta z, D.., D;) - swim-
ming pool operator, many successors.
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Proof of the Claim

Unfinished business: proof of claim
Depends on celebrat@&ilopagation of Singularitiestheorem of Hhirmander (1970).

Given symbolp(x, &), order m, with asymptotic expansion, definieharateristics
as solutiongx(t), &£(t)) of Hamiltonian system

dx Op d€ Op

dt — a€<X7 6)7 % — _a_X<X7 6)

with p(x(t),&(t)) = 0.

Theorem: Suppose(x, D)u = f, and suppose that fog < ¢t < t;, (x(¢),&(t)) ¢
WEF(f). Then eithed (x(t),&(t)) : tg <t < t1} C WF(u)or{(x(t),&(t)) : tg <
t <t} CTHR") — WF(u).




P of S has at least two distinct proofs:

e Nirenberg, 1972
e HOormander, 1970 (in Taylor, 1981)

Proof of claim: check that bicharacteristics for SSR omgratre just upcoming
rays of geom. optics for wave equation. These passtnto 0 where RHS is
smooth, also initial condn at largeis smooth - so each ray has one “end” outside
of W F'(w,). If ray carries singularity, must pass @f F of w, but then it's entirely
contained by P of S applied to. g. e. d.
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Reverse Depth Migration, Prestack

Nonzero offset (“prestack™): starting point is integrgbresentation of the scattered
field

F[U]r(xr,t;xs):% / da ?(”S; / ds G(x,,t — 5 X)C(X0, 5 X)

By analogy with zero offset case, would like to view this agpgleding reflectors
In both directions”: reflectors propagate energy upwaratoces and to receivers.

However can’'t do this because reflection locatioeamefor both.
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The “survey sinking” idea

Bold stroke: introduce a new space variapléa “sunken source”, think of as a
“sunken receiver”), define

PlolR(x,, 1:x.) — / / dr dy R(x, y) / ds G(x,, t — 5 X)G(Xs, 5:y)

and note thaf'[v]R = F[v]r if
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This trick decomposeg’|v] into two “exploding reflectors”:

~

F[U]R<XT7 t, Xs) — U<X7 t, XS) |X=X7~

where

(v(i)zgjz - Vi) u(x, t; Xs) = / dy R(x,y)G(xs,t;y)

= w,(Xg, t;X)

(“‘upward continue the receivers”),

(v<;>2§t2 ) Vi’) wi(y, %) = R(x, y)d(t)

(“upward continue the sources”).
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This factorization ofF'[v] (r — R — F[v]R) leads to a reverse time computation
of adjoint F[v]* - will discuss this later.

It's equally possible to continue the receivers first, tHedources, which leads to

(v&)?g; ) ng) e t9) = [ e R )Gl 19

= wT(XM t? Y>
(“‘upward continue the sources”),

1 0? ) o Rl
(v<x>26t2 - VX) wi(x,t:y) = R(x,y)3(t)

(‘upward continue the receivers”).
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The DSR Assumption

Apply reverse depth concept: as before, go 2D temporarity,(z, 2,), vy = (v, zs),
all sources and receivers on= 0.

Double Sguare Root (“DSR”) assumption: For some > 0, the wavefield: satis-
files

($72T7t7y7Z87£7C877_7777 CT> E WF(“) :>
<xat7€77-) S 7)5(27”)7 <y7t77777-) S P5<ZS>7 andCTT > 07 CST > 07

As for SSR, there is a ray-theoretic interpretation: ragaifisource and receiver to

scattering point stay away from the vertical and decreasefam increasing, i.e.
they are all upcoming.
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Sincez will be singled out (and eventualli(x, y) will have a factor ofé(x,y)),

Impose the constraint that

~

R(z,z,x,2) = R(x,y,2)0(z — z5)

Define upcoming projections as for SSR:

. 0 .
Wy = (@zs + ib(y, 25, D, Dt)> Wy,

iy = ( 0 +z‘b<az,zT,Dx,Dt>) w,,
0z,

U = ( 0 + 1b(y, zS,Dy,Dt)) ( 0 +ib(x,zr,Dx,Dt)) U

0z, 0z,
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Except for lower order commutators which we justify throg/eway as before,

(6(9 —ib(y, 2s, Dy, Dt)> Wy = R(S(zr — 25)0(t),
Zs

(aa —ib(x, 2, Dy, Dt)) W, = RO(2, — 2,)0(1),
2

0
(6’% —ib(x, 2, Dy, DQ) U = W,

0 . L
(625 o Zb(yaz&Dvat)) U = Wy

Initial (final) conditions are that,, w,, and all vanish for large: - the equations
are to be solve in decreasind“upward continuation”).
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Simultaneous upward continuation:
0 0

—’&(I’, Zat;ya Z) — a
2

0z

W, 2, 6 Y, 2)|oms, + =—0(x, 2,8 Y, 25) | =2,

0z,

= [1b(z, 2, Dy, Dy)t + W, + 10y, 25, Dy, Dy)U + W]

r—=is—=%

Sincew,(y, z, t; z, z) = W, (x, 2, t;y, z) = R(x,y, 2)d(t), & is seen to satisfy the

DSR modeling equation:

(aﬁ —ib(x, 2, Dy, Dy) — ib(y, z, Dy, Dt)) a(w, 2, by, 2) = 2R(x,y, 2)6(t)
Z

~

Flv)R(x,, t; x) = a(x,,0,t; x4, 0)
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DSR Migration

Computation of adjoint follows same pattern as for SSR, aadd to

DSR migration equation: solve

0
(0_ —ib(z, 2, Dy, Dy) — ib(y, 2, Dy, Dt)) G(x,y,z,t) =0
2

In increasingz with initial condition atz = 0:
q~(x7“7 x87 07 t) — d(mﬁ xS? t)
ThenFu]*d(z,y, z) = q(z,y, z,0)
The physical DSR model haB(z,y, z) = r(z, 2)é(z — y), so final step in DSR
computation off’[v]* is adjoint ofr — R:

Fll*d(z, z) = ¢(x,x, 2,0)
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Standard description of DSR migration

(See Claerbout, IEI):

e downward continue sources and receivers (solve DSR magratjuation)

e image at = 0 and zero offsetsf = y)

Another moniker: “survey sinking”: DSR field is (related to) the field that you
would get by conducting the survey with sources and receigedepth:. At any
given depth, the zero-offset, time-zero part of the fielthesihstantaneous response
to scatterers on which source = receiver is sitting, theeefonstitutes an image.

As for SSR, the art of DSR migration is in the approximatioha& DSR operator.
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Remarks

Stolk and deHoop (2001) derived DSR modeling and migratiaravmore system-
atic argument than that used here, involvinQO matrix factorization of the wave
equation written as a first order evolution system.imhis idea goes back to Tay-
lor (1975) who used it to show that singularities propagaéilong bicharacteristics
reflect as expected at boundaries.

Stolk (2003) has also carried out a very careful global goieibn of a family of
SSRUYDOs which are of non-classical type at near-horizontalatioas (“nearly
evanescent waves”). This construction should lead to nediate discretizations.

The last part of the course will present the various appbrext-hoc “prestack
modeling” ideas within a unified framework.
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A step beyond linearization: velocity analysis




Velocity Analysis

Partially linearized seismic inverse problem (“velocityadysis”). given observed
seismic datal, find smoothvelocityv € £(X), X C R’ oscillatory reflectivity
r € £'(X) so that

Flulr ~d

Acoustic partially linearized model: acoustic potentialdiz and its perturbation

du solve
1 0 5 1 0 2 2

plus suitable bdry and initial conditions.

F[v]r:@
ot |y

data acquisition manifold” = {(x,,;x,)} € R’, dimnY < 5 (many idealizations
here!).
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Flv] : £(X) — D'(Y) is a linear map (FIO of order), but dependence onis
guite nonlinear, so this inverse problem is nonlinear.

Agenda:

e reformulation of inverse problem viextensions

e “standard processing’ extension and standard VA

e the surface oriented extension and standard MVA

e the DO property and why it’s important

¢ global failure of thel’DO property for the SOE

e Claerbout’s depth oriented extension hasWi®O property

e differential semblance




Extensions

Extensionof F'[v]: manifold X and mapsy : &'(X) — &'(X), F[v] : £'(X) —
D'(Y) so that
P[]
£(X) — DY)

x 1 T id
&X) — DY)

commutes.
Invertible extensionf'[v] has aright parametrixG|v], i.e. I — Fv]G[v] is smooth-
Ing. [The trivial extension X = X, ' = F - is virtually never invertible.] Alsoy

has deft inversen.

Reformulation of inverse problem: givelfind v so thatG[v]d € R(x) (implicitly
determines- also!).
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Reformulation of inverse problem

Givend, find v so thatG[v]d € the range of.

Claim: if v is so chosen, thejm, r| solves partially linearized inverse problem with
r = nGlvld.

Proof. Hypothesis means

Glvld = xr

for somer (whence necessarily= nG|v]d), SO

Q.E.D.




Example 1: Standard VA extension

Treat each CMRs if it were the result of an experiment performed over arege
medium but permit the layers to vary with midpoint.

Thusv = v(z),r = r(z) for purposes of analysis, but at the end- v(x,,, z),r =

(X, 2).
Fo|R(Xpm, h,t) >~ A(Xm, h, 2(Xm, b, t)) R(Xp, 2(Xm, b, t))
Herez(x,,, h,t) is the inverse of the 2-way traveltime
t(Xm, by 2) = 27 (X + (R, 0, 2), X ) vu(xm.2)

computed with the layered velocityx,,, z), i.e.
2(Xpm, by t (X, by 27)) = 2.




That is, F'[v| is a change of variable followed by multiplication by a sniofatnc-
tion. NB: industry standard practice is to use vertical trawsdtt, instead ofz for
depth variable.

Can write this ad[v] = F[v]S*, whereF[v] = N[v]"!M[v]~! has right parametrix
G[v] = M[v]N|v]:

N[v] =NMO operator N[v]|d(x,, h, z) = d(Xm, b, t(Xp, b, 2))
M [v] = multiplication by A
S = stacking oper ator

Sf(xm,z) = / dh f(Xm, h, z), S*r(xm, h, z) = r(x, 2)




Identify as extension:F[v], G[v] as above X = {x,,,z},H = {h},X = X X
H,x = 5% n=25 -the invertible extension properties are clear.

Standard names for the Standard VA extension objeEts] = “inverse NMQO”,
G[v] = “NMO” [often the multiplication opM [v] is neglected]n = “stack”, y =
“spread”

How thisisused for velocity analysis: Look for v that make<:[v]d € R(x)

So what isR(x)? x[r](x, 2, h) = r(xm, 2) Anything in range ofy is independent
of h. Practical issues;> replace “independent of” with “smooth in”.




Flatten them gathers!

Inverse problem reduced to: adjusto makeG/[v]d°™ smooth inh, i.e. flatin z, h
display for eaclx,, (NMO-corrected CMF.

Replace: with ¢, v with vr\s em localizes computation: reflection through, £, 0
flattenedby adjustingurnis(x.m, to) = 1D search, do by visual inspection.

Various aids - NMO corrected CMP gathers, velocity speéta,
See: Claerboutmaging the Earth'’s Interior

WWS: MGSS 2000 notes
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L eft: part of survey {) from North Sea (thanks: Shell Research), lightly prepro-
cessed.

Right: restriction ofG[v]d to x,, = const (function of depth, offset): shows rel.
sm’ness i (offset) for properly chosen.
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Example 2: Surface oriented or standard MVA
extension

. Standard VA only works where Earth is “nearly layered”. \Whthis fails, replace
NMO by prestack migration.

Version based on common offset modeling/migratidii; = set of half-offsets in
data,X = X x 2, x[r](x,h) = r(x).
2
Fu)r(x,, t,h) = %/ dx 7(x,h) / ds G(xs + 2h,t — s;x)G(xs, s; X)
Note that this operator is “block diagonal” In
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Properties of SOE

Beylkin (1985), Rakesh (1988): ffv||-2(x) “not too big”, then

e [ hasthe UDO property: FF*is DO
e singularities off’ F'*d C singularities ofd

e straightforward construction of right parametrik= F*Q, () = DO, also as
generalized Radon Transform - explicitly computable.

Range ofy (offset version):7(x, h) independent oh = “semblance principle”:
find v so thatG[v]d°* is independent oh. Practical limitations=- replace “inde-
pendent oh” by “smooth inh”.
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Industrial MVA

Application of these ideas = industrial practice of migvatvelocity analysis.

Idea: twiddlev until G[v]d°® is smooth inh.

Since it is hard to insped®[v]d°™(x,y, z, h), pull out subset for constant, y =
common image gather (“CIG”): display function ofz, h for fixed x, y. These play
same role as NMO corrected CMP gathers in layered case.

Try to adjustv so that selected CIGs aflat - just as in Standard VA. This is much
harder, as there is no RMS velocity trick to localize the catapon - each CIG
depends globally on.

Description, some examples: Yilme&eismic Data Processing
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Bad news

Nolan (1997), Stolk & WWS (2004): big trouble! In generalastiard extension

doesnot have thel'DO property. Geometric optics analysis: for|| 2y “large”,
multiple rays connect source, receiver to reflecting points; block diagonal

structure ofF'[v] = info necessary to distinguish multiple raysi®jected out

14



Example (Stolk & WWS, 2001): Gaussian lens over flat refleatalepth z{(x) =
d(x1 — 2), 1 = depth).

15



offset

tavel te # 5
—11
33
| S —— )
--12
31
—3

Left: Const.h slice of Gd: several refl. points corresponding to same singularity
in d°.
Right: CIG (const.z, y slice) of Gd: not smooth ir!
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Example 3: Claerbout’s depth oriented extension

Standard MVA extension only works when Earth has simple egngetry. Claer-
bout (1971) proposed alternative extension:

¢ = somewhat arbitrary set of vectors near 0 (“offset&’)= X x 24, x[r](x,h) =
r(x)d(h), n|r)(x) = 7(x,0)

2
Fl|r(xs, t,%,) :%/ da:/ dh7(x,h) / ds G(xs,t — s;x + 2h)G(x,, $;X)
24
62
= —/ dx / dy 7(X,y — X) / ds G(xs,t — s;y)G(%X,, $;X)
ot x+25,

NB: in this formulation, there appears to be too many model patars.

17



Shot record modeling

for eachx, solve

Flolr(x,, t;x5) = u(x, t; Xs) |x=x,

where

1 o ) i
(U(X)28t2 — VX> u(x, t;Xs) = /x+22d dyr(x,y)G(y,t;X,)

Finite difference scheme: form RHS for eqgn 1, stgg: forward in t.

18



ComputingGy]

Instead of parametrix, be satisfied with adjoint.

Reverse time adjoint computation - specify adjoint fieldrastandard reverse time
prestack migration:

1 0 5
(v(x)28t2 — Vx> w(x, t;Xs) = / dr, d(x,,t;Xs)0(x — X,
with w(x, t;x,) = 0,t >> 0. Then
Fl]*d(x,h) = / dx / dt G(x + 2h, t; x5)w(x, t; X;)

l.e. exactly the same computation as for reverse time mlestacept that crosscor-
relation occurs at an offséh.

19



Nomenclature

NB: the “usual computation” ofi[v] is either DSR or a variant of shot record com-
putation of previous slide using depth extrapolatidnis usually restricted to be
horizontal, i1.e.h3 = 0.

Common names: shot-geophone or survey-sinking migrawah OSR), or shot
record migration.

“Downward continue sources and receivers, image=at, h = (0"

These are what is typically meant by “wave equation migrétio

20



What should be the character of the image when the velocdgrigect?
Hint: for simulation of seismograms, the input reflectivitd the formr(x)d(h).
Therefore guess that when velocity is corr@tiage is concentrated neair = 0.

Examples: 2D finite difference implementation of reverseetimethod. Correct
velocity = 1. Input reflectivity used to generate synthetic data: randdfor
output reflectivity (image off'[v]*), constrain offset to be horizontali(x,h) =
7(x, h1)o(hs). Display CIGs (i.ex; =const. slices).

21



offset (km) offset (km)
0 0

offset (km)
02 Q1 01 0.2 Q1 01 0 01

01 01

05 05

Offset Image Gather, x=1 km 0IG, =1 km: vel 10% high 0IG, =1 km: vel 10% low

Two way reverse time horizontal offset S-G image gathersabh drom random
reflectivity, constant velocity. From left to right: corteglocity, 10% high, 10%
low.
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Stolk and deHoop, 2001

Claerbout extension has tddO property, at least when restrictedrtof the form
7(x,h) = R(x, hy, ho)d(h3), and under DSR assumption.

Sketch of proof (after Rakesh, 1988):

This will follow from injectivity of wavefront orcanonical relationC's C T%(X) —
{0} x T*(Y') — {0} which describes singularity mapping properties-of

(Xahafa V?Y:ﬁ) S CF(;[U] A

for someu € £'(X), (x,h,&,v) € WF(u), and(y,n) € WF(Fu)
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Characterization of

(x,h,¢&,v), (Xs,t,%, &, 7, &) € Crlv] C THX) —{0} x T*(Y) — {0}
< there araays of geometric optic&X,, E;), (X, E,) and time<, t, so that
[1(X(0),t, X,.(0), 24(0), 7, 2,(0)) = (X, t, X, &, T, &),

X(ts) = x, X (t;) =x+2h, t,+t, =t,

~

ES(tS) + Er(trmfa Es(ts) — Er(trmy
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X(t.) k(te)

trt=ti+t,

x4t k(t)

X (€ K(t:)

X (t) k(L)

/
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Proof

Uses wave equations far G and

e Gabor calculus: computes wave front sets of products, ackib, integrals, etc.
See Duistermaat, Ch. 1.

e Propagation of Singularities Theorem

and that'’s all' [No integral representations, phase fumsj...]
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Note intrinsic ambiguity: if you have a ray pair, move tintgst, resp. t., ¢, for
whicht,+t, = t'+t'. = t then you can construct two poirits, h, £, v), (x',h’, &', /)
which are candidates for membershiplin/'(7) and which satisfy the above rela-
tions with the same point in the cotangent bundI&afY").

No wonder - there are too many model parameters!

Stolk and deHoop fix this ambiguity by imposing two constisin

e DSR assumption: all rays carrying significant reflected gmésource or re-
ceiver) are upcoming.

e RestrictF to the domainZ c £'(X)
rez & f(X, h) = R(X, hq, hg)é(hg)

27



If 7 € Z,then(x,h,&,v) € WF(rF) = hs = 0. So source and receiver raysaly
must terminate at same depth, to hit such a point.

Because of DSR assumption, this fixes the traveltitnés.
Restricted to Z, C'z isinjective.

— [*I'is YDO when restricted tE.

28



xdt) kdt)

X (t) K (t)
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Lens data, shot-geophone migration [B. Biondi, 2002]
Left: Image via DSR. MiddleG/[v]d - well-focused (ah = 0), i.e. in range ofy to
extent possible. Right: Angle CIG.
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Quantitative VA

SupposdV : £'(X) — D'(Z) annihilates range of:

X W
E'X) — &X) — D(Z) — 0

and moreovefV is bounded or.?(X). Then

Tlo:d) = S| WGl

minimizedwhen[v, nG[v]d] solves partially linearized inverse problem.

Construction ofinnihilator of R(F[v]) (Guillemin, 1985):

d € R(Fv])) < Gld € R(x) & WG[v|d =0
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Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

o IV =(I— A)‘%Vh (“differential semblance” - WWS, 1986)
oW =1-— ﬁ [ dh (“stack power” - Toldi, 1985)

o W =1 — xF[v]'F[v] = minimizing J[v, d] equivalent to least squares.

For Claerbout extension, differential semblame= h.
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But not many are good for much...

Sinceproblem is hugeonly W giving rise to differentiable — J{v, d| are useful -
must be able to use Newton!!! Once again, idealizée) = 6(¢).

Theorem (Stolk & WWS, 2003):v — J[v, d] smooth< W pseudodifferential.

l.e. only differential semblancegives rise to smooth optimization problenmi-
formly in source bandwidth

Numerical examples using synthetic and field data: WWS eCélauris & Noble
2001, Mulder & tenKroode 2002. deHoop et al. 2004.
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Example: NMO-based Differential Semblance

1| o ’

(recall that/V[v] is the NMO operator = composition withiz, 1))

Theory: under some circumstances, can showdhatationary points are global
minimizersWWS, TRIP annual reports '99, '01).

Example uses data from North Sea survey (thanks: Shell) hgith preprocess-
Ing: cutoff (“mute”) and multiple suppression (predictigecon) to enhance con-

formance with model, low pass filter.

Minimization of .J via quasi-Newton method.
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Beyond Born

Nonlinear effects not included in linearized modaiultiple reflections Conven-
tional approach: treat aoherent noiseattempt to eliminate - active area of re-
search going back 40+ years, with recent important devetopsn

Why not model this “noise”?

Proposalnonlinear extensionwith F'[v]r replaced byF|[c|. Create annihilators in
same way (now also nonlinear), optimize differential seanbeé.

Nonlinear analog of Standard Extended Model appears tonmtible - in fact
extended nonlinear inverse problenuisderdetermined

Open problems: no theory. Also must determine) (Lailly SEG 2003).
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And so on...

e Elasticity: theory of asymptotic Born inversion at smoo#ctkground in good
shape (Beylkin & Burridge 1988, deHoop & Bleistein 1997).edhy of exten-
sions, annihilators, differential semblance partiallynpbete (Brandsberg-Dahl
et al 2003).

¢ Anisotropy - work of deHoop (Brandsberg-Dahl et al 2003).

e Anelasticity - in the sedimentary sectia},= 100 — 1000, lower in gassy sedi-
ments and near surface. No mathematical results, but somerras - Minkoff
& WWS 1997, Blanch et al 1998.

e Source determination - actually always an issue. Some ssi@ageasting as an
Inverse problem - Minkoff & WWS 1997, Routh et al SEG 2003.
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