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Introduction

For problems of Zd SFTs and their relatives:

d ≥ 2:

computability conditions are fundamental.

d = 1:

Key features:

(1) Algebra around matrices

(SSE, SE, related invariants)

(2) Positivity constraints

This talk reports progress on (1).

All rings and semirings are assumed to contain

{0,1}.
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Strong shift equivalence

Let S be a semiring.

And on the first day [1973], Williams defined

strong shift equivalence.

Matrices A,B over S are elementary strong

shift equivalent over S (ESSE-S)

if they are square and there exist matrices U, V

over S such that

A = UV and B = V U .

A,B are strong shift equivalent over S
(SSE-S) if there exists a chain

A = A0, A1, . . . , A` = B

with Ai−1 and Ai ESSE-S for 0 < i ≤ `.
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Why did Williams define SSE?

• Up to topological conjugacy, every shift of

finite type (SFT) is an “edge SFT” σA,

defined by a square matrix A over Z+.

• σA and σB are isomorphic (topologically

conjugate) iff A,B are SSE-Z+.

But SSE over Z+ is very hard to understand

completely (not known to be decidable, even

restricted to small cases).

So on the second day, Williams defined ...
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Shift equivalence

DEFN Square matrices A,B are shift equiva-
lent over S (SE-S) if ∃ matrices U, V over S
and ` ∈ N such that

A` = UV B` = V U

AU = UB BV = V A

Always: SSE-S implies SE-S. Also

• SE-Z+ is decidable (Kim-Roush).

• SE-Z+ turns out to be reasonably tractable,
and closely related to significant applica-
tions in symbolic dynamics

• SE over Z (or other rings) has useful and
conceptually satisfying algebraic reformu-
lations.
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Classifying shifts of finite type.

Williams gave us:

• Theorem (Annals of Math 1973)

SE-Z+ =⇒ SSE-Z+ .

• Conjecture (Annals of Math 1974)

SE-Z+ =⇒ SSE-Z+ .

Eventually counterexamples were constructed

(Kim Roush 1992,1999), based on a lovely al-

gebraic topological structure created by Wag-

oner (“strong shift equivalence space”).

No progress since on understanding refinement

of SSE-Z+ by SE-Z+.

However ...

From here S is a ring.
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There are good reasons to study SSE over

other rings and semirings.

• To approach the Z problem.

• There are other symbolic dynamical sys-

tems presented by matrices over S+ and

classified up to conjugacy by SSE over S+.

E.g.:

S = ZG, G finite:

SSE-Z+G classifies free G-SFTs.

S = ZG, G = Zn: SSE-Z+G classifies

irred. SFTs with Markov measure.

S = integral semigroup ring of a certain

noncommutative semigroup:

SSE over S+ classifies sofic shifts.
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• For understanding constraints of order on

algebraic properties of matrices.

• Understanding SSE-S for its own sake.

• Understand better proofs that can’t work

and theorems that can’t be proved.

Before confronting the hard problem of under-

standing how SSE-S+ refines SE-S+, we would

like to understand how SSE-S refines SE-S.

It was known that SE-S implies SSE-S if

S = Z (Williams, 70s)

S =PID (Effros, 80s)

S =Dedekind domain (B-Handelman,90s).

That was it.

7



Definitions

GL(S) = group of N× N matrices

(
U 0
0 I

)
with U finite invertible.

EL(S) = subgroup generated by basic elemen-

tary matrices E

(E = I except perhaps in one offdiagonal en-

try)

EL(S) = commutator subgroup

K1(S) = GL(S)/EL(S)

The central connection for clarifying SSE-S is

...
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THEOREM (B-Schmieding)

Suppose A,B are matrices over S. TFAE.

(1) A and B are SSE over S.

(2) There are E,F in El(S[t]) such that

E(I − tA)F = (I − tB).

The finite matrices I − tA, I − tB are embed-

ded as the upper left corners of matrices with

all other entries zero (and identified with these

infinite matrices).

This grows out of work by Shannon, BGMY,

Wagoner, Kim-Roush-Wagoner, B-Sullivan.

The theorem above leads to ...
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THEOREM (B-Schmieding)

Let A be a square matrix over S.

(I) If B is SE over S to A, then there is a

nilpotent matrix N such that(
A 0
0 N

)
is SSE over S to B.

(II) The map (
A 0
0 N

)
→ I − tN

induces a bijection from the set of SSE classes

of matrices SE over S to A to the abelian group

NK1(S)/HA .
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The group NK1(S) is an important group in

the algebraic K-theory of the ring S. It is the

kernel of the map

K1(S[t])→ K1(S)

induced by t 7→ 0 .

The group HA is the set of elements in K1(S)

containing a matrix U

such that

there is E in El(S) such that

U(I − tA)E = I − tA.
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What about this group

NK1(S)/HA

which captures the refinement of SE-S by SSE-

S ?

NK1(S) if nontrivial is not finitely generated

(Farrell 1977).

HA = 0 if A is nilpotent or S is commuta-

tive.

Any consequences of Theorem?
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Known fact: for S = ZG with G = Z/nZ:

NK1(S) = 0 iff n is squarefree.

For the not-squarefree case: we expect this

will let us refute a working conjecture of Bill

Parry on the classification of skew products of

mixing SFTs by finite groups.

For a huge class of rings, we now know SE-S
implies SSE-S. This includes ZG with G = Zn.

THM. Suppose A and B are matrices over a

dense subring S of the reals, with A primitive

and B SE over S to A, with trace(A) > 0.

Then B is SSE over S to a primitive matrix.

(The “Generalized Spectral Conjecture” of B-

Handelman is reduced to realization by any el-

ement of a shift equivalence class.)
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In “Path Methods for strong shift equivalence

of positive matrices” (B-Kim-Roush 2013), the

constructions of certain SSEs of positive ma-

trices A,B over S a dense subring of R de-

pended on an assumption A,B SSE over S (not

just SE). We now know this is not an artifact

of a deficient proof. E.g., S = Q[π2, π3, e, e−1]

has NK1(S) nontrivial.

In (B-Kim-Roush 2013), a 3-step program was

proposed for understanding SSE-S+ of posi-

tive trace matrices over S a dense subring of

R. One step was to understand the refinement

of SE by SSE over S.

In this work, we found a characterization of

equivalence in the Bass group Nil0(S) which

(so far?) we have not found in the literature.
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The connections involved in these results may

lead to ideas useful for understanding the Z+

case of SSE. This suggestion is perhaps not so

wild as it might appear.

As Sinai replied, when asked after a talk whether

he thought his probabilistic approach to the

Mobius subshift could lead to a proof of the

Riemann Hypothesis:
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The situation is not hopeless.
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