Strong shift equivalence of matrices over a ring

joint work in progress with Scott Schmieding

Mike Boyle

University of Maryland

Introduction

For problems of \mathbb{Z}^d SFTs and their relatives:

 $d \ge 2$:

computability conditions are fundamental.

d = 1:

Key features:

- (1) Algebra around matrices
- (SSE, SE, related invariants)
- (2) Positivity constraints

This talk reports progress on (1).

All rings and semirings are assumed to contain $\{0,1\}$.

Strong shift equivalence

Let S be a semiring.

And on the first day [1973], Williams defined strong shift equivalence.

Matrices A,B over $\mathcal S$ are elementary strong shift equivalent over $\mathcal S$ (ESSE- $\mathcal S$) if they are square and there exist matrices U,V over $\mathcal S$ such that

$$A = UV$$
 and $B = VU$.

A, B are strong shift equivalent over \mathcal{S} (SSE- \mathcal{S}) if there exists a chain

$$A = A_0, A_1, \dots, A_\ell = B$$

with A_{i-1} and A_i ESSE- \mathcal{S} for $0 < i \le \ell$.

Why did Williams define SSE?

- Up to topological conjugacy, every shift of finite type (SFT) is an "edge SFT" σ_A , defined by a square matrix A over \mathbb{Z}_+ .
- σ_A and σ_B are isomorphic (topologically conjugate) iff A, B are SSE- \mathbb{Z}_+ .

But SSE over \mathbb{Z}_+ is very hard to understand completely (not known to be decidable, even restricted to small cases).

So on the second day, Williams defined ...

Shift equivalence

DEFN Square matrices A,B are shift equivalent over \mathcal{S} (SE- \mathcal{S}) if \exists matrices U,V over \mathcal{S} and $\ell \in \mathbb{N}$ such that

$$A^{\ell} = UV$$
 $B^{\ell} = VU$
 $AU = UB$ $BV = VA$

Always: SSE-S implies SE-S. Also

- SE- \mathbb{Z}_+ is decidable (Kim-Roush).
- SE- \mathbb{Z}_+ turns out to be reasonably tractable, and closely related to significant applications in symbolic dynamics
- ullet SE over \mathbb{Z} (or other rings) has useful and conceptually satisfying algebraic reformulations.

Classifying shifts of finite type.

Williams gave us:

- Theorem (Annals of Math 1973) $SE-\mathbb{Z}_{+} \implies SSE-\mathbb{Z}_{+}$.
- Conjecture (Annals of Math 1974) $SE-\mathbb{Z}_{+} \implies SSE-\mathbb{Z}_{+}$.

Eventually counterexamples were constructed (Kim Roush 1992,1999), based on a lovely algebraic topological structure created by Wagoner ("strong shift equivalence space").

No progress since on understanding refinement of SSE- \mathbb{Z}_+ by SE- \mathbb{Z}_+ .

However ...

From here S is a ring.

There are good reasons to study SSE over other rings and semirings.

- ullet To approach the $\mathbb Z$ problem.
- There are other symbolic dynamical systems presented by matrices over \mathcal{S}_+ and classified up to conjugacy by SSE over \mathcal{S}_+ . E.g.:

$$\mathcal{S} = \mathbb{Z}G$$
, G finite:
SSE- \mathbb{Z}_+G classifies free G -SFTs.

$$S = \mathbb{Z}G$$
, $G = \mathbb{Z}^n$: SSE- \mathbb{Z}_+G classifies irred. SFTs with Markov measure.

 $\mathcal{S}=$ integral semigroup ring of a certain noncommutative semigroup: SSE over \mathcal{S}_+ classifies sofic shifts.

- For understanding constraints of order on algebraic properties of matrices.
- ullet Understanding SSE- $\mathcal S$ for its own sake.
- Understand better proofs that can't work and theorems that can't be proved.

Before confronting the hard problem of understanding how SSE- S_+ refines SE- S_+ , we would like to understand how SSE-S refines SE-S.

```
It was known that SE-\mathcal S implies SSE-\mathcal S if
```

 $S = \mathbb{Z}$ (Williams, 70s)

S = PID (Effros, 80s)

S = Dedekind domain (B-Handelman, 90s).

That was it.

Definitions

 $\operatorname{GL}(\mathcal{S})=\operatorname{group}\ \operatorname{of}\ \mathbb{N}\times\mathbb{N}\ \operatorname{matrices}\ \begin{pmatrix} U&0\\0&I \end{pmatrix}$ with U finite invertible.

 $\mathsf{EL}(\mathcal{S}) = \mathsf{subgroup}$ generated by basic elementary matrices E

 $(E=I\ {\rm except\ perhaps\ in\ one\ offdiagonal\ entry})$

EL(S) = commutator subgroup

$$K_1(S) = GL(S)/EL(S)$$

The central connection for clarifying SSE- \mathcal{S} is ...

THEOREM (B-Schmieding) Suppose A, B are matrices over \mathcal{S} . TFAE.

- (1) A and B are SSE over S.
- (2) There are E, F in E(S[t]) such that E(I tA)F = (I tB).

The finite matrices I - tA, I - tB are embedded as the upper left corners of matrices with all other entries zero (and identified with these infinite matrices).

This grows out of work by Shannon, BGMY, Wagoner, Kim-Roush-Wagoner, B-Sullivan.

The theorem above leads to ...

THEOREM (B-Schmieding)

Let A be a square matrix over S.

(I) If B is SE over $\mathcal S$ to A, then there is a nilpotent matrix N such that

$$\begin{pmatrix} A & 0 \\ 0 & N \end{pmatrix}$$

is SSE over S to B.

(II) The map

$$\begin{pmatrix} A & 0 \\ 0 & N \end{pmatrix} \to I - tN$$

induces a bijection from the set of SSE classes of matrices SE over $\mathcal S$ to A to the abelian group

$$NK_1(\mathcal{S})/H_A$$
.

The group $NK_1(S)$ is an important group in the algebraic K-theory of the ring S. It is the kernel of the map

$$K_1(\mathcal{S}[t]) \to K_1(\mathcal{S})$$

induced by $t \mapsto 0$.

The group H_A is the set of elements in $K_1(\mathcal{S})$ containing a matrix U such that there is E in $EI(\mathcal{S})$ such that U(I-tA)E=I-tA.

What about this group

$$NK_1(\mathcal{S})/H_A$$

which captures the refinement of SE- $\mathcal S$ by SSE- $\mathcal S$?

 $NK_1(S)$ if nontrivial is not finitely generated (Farrell 1977).

 $H_A=0$ if A is nilpotent or $\mathcal S$ is commutative.

Any consequences of Theorem?

Known fact: for S = ZG with G = Z/nZ: $NK_1(S) = 0$ iff n is squarefree.

For the not-squarefree case: we expect this will let us refute a working conjecture of Bill Parry on the classification of skew products of mixing SFTs by finite groups.

For a huge class of rings, we now know SE-S implies SSE-S. This includes $\mathbb{Z}G$ with $G = \mathbb{Z}^n$.

THM. Suppose A and B are matrices over a dense subring S of the reals, with A primitive and B SE over S to A, with trace(A) > 0. Then B is SSE over S to a primitive matrix.

(The "Generalized Spectral Conjecture" of B-Handelman is reduced to realization by any element of a shift equivalence class.) In "Path Methods for strong shift equivalence of positive matrices" (B-Kim-Roush 2013), the constructions of certain SSEs of positive matrices A,B over $\mathcal S$ a dense subring of R depended on an assumption A,B SSE over $\mathcal S$ (not just SE). We now know this is not an artifact of a deficient proof. E.g., $\mathcal S = \mathbb Q[\pi^2,\pi^3,e,e^{-1}]$ has $NK_1(\mathcal S)$ nontrivial.

In (B-Kim-Roush 2013), a 3-step program was proposed for understanding SSE- \mathcal{S}_+ of positive trace matrices over \mathcal{S} a dense subring of \mathbb{R} . One step was to understand the refinement of SE by SSE over \mathcal{S} .

In this work, we found a characterization of equivalence in the Bass group $\mathrm{Nil}_0(\mathcal{S})$ which (so far?) we have not found in the literature.

The connections involved in these results may lead to ideas useful for understanding the \mathbb{Z}_+ case of SSE. This suggestion is perhaps not so wild as it might appear.

As Sinai replied, when asked after a talk whether he thought his probabilistic approach to the Mobius subshift could lead to a proof of the Riemann Hypothesis:

The situation is not hopeless.