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The G, moduli space

Let M be a smooth closed 7-manifold admitting metrics with holonomy Gj.
The moduli space

M := {Holonomy G, metrics on M} /Diff(M)

is an orbifold, locally homeomorphic to finite quotients of H3z(M).

So far little is known about the global properties of M.

Main results:

Exhibit examples of closed Gp-manifolds with M disconnected, both

m by studying homotopies of G,-structures, and

® where the G,-structures are indistinguishable using homotopy theory
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The group G,

Gy ;== Aut O, O = octonions, normed division algebra of real dimension 8.

G, acts on ImQ =2 R, preserving metric, orientation, cross product

ax b:=Im(ab), and
wo(a, b, c) :=(ax b, c).
In terms of basis el,..., e € (R7)*
0o = €123 | 15 | 67 4 @26 _ G257 _ M1 _ 356 ¢ \Y(RT)x,

Peculiar algebra facts:

m G, is not just contained in stabiliser of g in GL(7,R), but equality holds.
® The GL(7,R)-orbit of g is open in A3(R7)*.



G, spinors and SU(3)

Spin(7)
J/ The spin representation A of Spin(7) is real of rank 8.

Spin(7) acts transitively on S’ C A with stabiliser G,.
G,— SO(7)

The action of SU(3) on C3 = R® preserves

wo = 4(dz' A d2' + dz° A dZ? + dZ* A dZP) € N*(R?)*
Qo :=dz* Ndz? AdZ € NB(R®)* @ C

OnR"=ReC3,
0o = el A (€34 e 4 e0T) 4 &2 _ 2T _ oM _ 36 ol p o 4 ReQp

and the stabiliser in G, of a non-zero vector is SU(3).



G,-structures and holonomy

A 3-form ¢ € Q3(M7) such that (T M, ) = (R’ ¢o) for all x € M defines
a Gy-structure. (Open condition on ¢)
Because G, C SO(7), this induces a metric and orientation.
The holonomy group of a Riemannian manifold M
{P, : v closed loop based at x € M} C O(T.M)
where P, denotes parallel transport along .
Parallel tensor fields on M < invariants of Hol(M).

Hol(M) C G, < metric induced by some Gy-structure ¢ such that Vo = 0.
Then call ¢ torsion-free. This is equivalent to the first-order non-linear PDE
dp=d*p=0

Proposition (Joyce)
If M" is closed and Hol(M) C G, then

Hol(M) = G, & m (M) finite



Two perspectives on G,-structures

G _ stabiliser in GL(7,R) _ stabiliser in Spin(7)
? B of po € A3 (R7)* " of a unit spinor s
metric g

Gy-structure on M7« positive o € Q3(M)  «  + spin structure
+ unit spinor field s

Holonomy C G, < dp=d*¢=0 & Vs=0

Useful for differential geometry homotopy theory



Homotopies of G,-structures

Let M be a closed 7-dimensional spin manifold.
All metrics on M are homotopic.
Two Gp-structures homotopic if connected by path of non-vanishing spinors.

Homotopy classes of Homotopy classes of non-
Gy-structures on M vanishing sections of SM

The spinor bundle SM is a real rank 8 vector bundle. Easy consequences:
®m There exist Gp-structures on M.

m For Gy-structures ¢ and ¢’ on M, the signed count of zeros of
interpolating section of rank 8 bundle on M x [0,1] can take any integer
value, and vanishes if and only if ¢ is homotopic to ¢'.

affine

.. { Gy-structures on M}/homotopy = Z

Diff(M) can act by non-trivial translations. Each component of M maps to
a fixed class of G,-structures modulo homotopies and diffeomorphisms.



2-connected 7-manifolds

Let M be a closed smooth 7-manifold with 71 (M) = m(M) = 0 and H*(M)
torsion-free. Remaining algebraic topology captured by bs(M).

Let d(M) := greatest integer dividing the Pontrjagin class p1(M) € H*(M)
(d(M) := 0 if py(M) = 0).

Theorem (Wall-Wilkens)

Such M are classified up to homeomorphism by (bs(M),d(M)) € N x 4N.
The number of inequivalent smooth structures on the topological manifold

underlying M is
GCD<28, Numerator <d(8M)>> .
Theorem (C-N)

The number of Gy-structures on M modulo homotopy and diffeomorphism is

d(M)
24N — .
umerator( 554 )



Examples

Example A (C-G-N) bsy= 97, d=4
There are G, metrics on M whose associated G,-structures are not
equivalent under homotopies and diffeomorphisms. Thus M is disconnected.

Example B (C-G-N) b3 =109, d =4
There are G, metrics on M that lie in different components of M, but
whose associated G,-structures are homotopic.

Side remark:

Example B shows that there is no h-principle for torsion-free G,-structures
(would have been surprising for an essentially elliptic equation).

However, the h-principle holds for coclosed Gp-structures (C-N).



Ingredients

Invariants

A The Gy-structures are distinguished by a homotopy invariant
v(p) € Z/4A8Z.

B An analytic refinement () € Z of v(y) is invariant under deformations
through torsion-free Gy-structures, and can distinguish components of M
even when the Gy-structures are homotopic.

Twisted connected sums

The “twisted connected sum construction” of Kovalev and Corti-Haskins-
N-Pacini produces large numbers of 2-connected Gp-manifolds for which
these invariants can be evaluated. However, U is always —24.

A more complicated version produces some 2-connected examples where U
takes different values.



Homotopy invariant of G,-structures

Let X closed spin 8-manifold. Euler class of positive spinor bundle satisfies

~ X) —30(X
e+(X):24A(X)+M’ (%)
where Y is the Euler characteristic and o the signature.

Let W be a compact spin 8-manifold with boundary M, s a transverse
positive spinor field on W, and ¢ the Gy-structure on M induced by sju.
Let n(W, ¢) be the signed count of zeros of s. (x) implies

v(p) = x(W) —=30(W)—2n(W,p) mod 48
is independent of choice of coboundary W.
On a fixed M, v takes 24 values allowed by v(p) = Z?:()b,-(/\/l) mod 2.

Corollary (C-N)

Let M closed 2-connected with H*(M) torsion-free. If d(M) | 224 then v
classifies Gp-structures on M modulo homotopies and diffeomorphisms.



Analytic invariant of G,-structures

Given metric, define

D = Dirac operator

B : Q¢ — Q% = odd signature operator, (—1)%(xd — dx) Q2K
h(D) = dimker(D) € Z

n(D) :=n(D,0) € R measures “spectral asymmetry” of D, defined by
analytic continuation from

n(D,s):= Y (signA)A"°
A€SpecD\ {0}

For a Gy-structure ¢ on closed M7, define MQ(y) € R in terms of
“Mathai-Quillen current”.

Definition

for Res >>0

~

o(p) :

—247(D) 4 3n(B) + 2MQ(¢) € R
() = Do(p) — 24h(D) € R



Analytic invariant as refinement

Do(p) == —24n(D) + 3n(B) + 2MQ(p) € R
Reversing orientation changes the sign of 7.

All terms are continuous in ¢, except that the first jumps by 24 when an
eigenvalue of D changes between zero and non-zero.

U(p) :=1o(p) —24h(D) e R
U is continuous in ¢ except for jumps by 48.

Theorem (C-G-N)
Let ¢ Gy-structure on closed M. Then

v(p) =0(p) mod 48.

(In particular v, vy € Z.)



Analytic invariant as refinement

U(p) = —24(n + h)(D) + 3n(B) + 2MQ(p) € R
v(p) == x(W) = 30(W) —2n(W, ¢) € Z/48Z.

Proof.
For W = M with metric that is product on collar of M
o(W) = [yLV) - n(B)
indDy, = [y AY)  — 30+ h)(D)
n(W,0) = [ye(V) — MQ(y)
Chern-Weil term boundary correction

Chern-Weil terms add up to x(W) (essentially by characteristic class
formula () used to show that v is well-defined), so

U(p) = x(W) —30(W) —2n(W, o) +48ind D}, € Z .



Analytic invariant of torsion-free G,-structures

~

Vo(p) :== =24n(D) 4+ 3n(B) + 2MQ(¢p) € Z
() :=vo(p) — 24h(D) € Z

For torsion-free ¢

" MQ(p) =0

m h(D) =1+ by(M) (so 1 when Hol = G,)

m (D) does not jump

Therefore 7y and U are constant on connected components of M, and can

distinguish components even when the associated G,-structures are
homotopic.

Even if we are only interested in v (like in Example A), it may be easier to
evaluate the intrinsic formula for 7 than to find a spin coboundary to
compute v.



Twisted connected sums

Donaldson, Kovalev, Corti-Haskins-N-Pacini
m Construct simply-connected, complete, Ricci-flat Kahler 3-folds V/, with
“asymptotically cylindrical end” R x S* x K3.

® Hol(S! x V) =SU(3) C Gy, so S* x V has torsion-free Gy-structure

® Find pairs of such V., with a diffeomorphism F of the cylindrical ends of
St x V, and S* x V_ ensuring

0 M=S'x V, UFS" x V_ is simply-connected (F is “twisted”)
O Gluing Gy-structures on the halves with “neck length” T >> 0 defines o1
on M with V1 exponentially small in T.

51><V+<?
#)Slxv_

T ——39

® Perturb to @1 so that dpot = d*¢1 = 0. Then Hol(M) = G,.




Matching

The ACyl end of S x Vi is R x St x ST x K3, =R x T3 x K34.
Glue the cylindrical ends using a product isometry

F = (-1)xmxr: RxT?xK3, — RxT2xK3_,

where m: T2 — T2 is the reflection S* x St — S x S', (u,v) — (v, u).
m swaps “internal” and “external” circles = 71 M = 0 by van Kampen.

Matching problem: Find pairs V. and V_ such that there is an isometry
r: K3, — K3_ making F an isomorphism of the ACyl G,-structures.
Kovalev:

Use Fano 3-folds to produce examples of pairs V., V_ with solution to the
matching problem.

Corti-Haskins-N-Pacini:

Millions of examples from weak Fano 3-folds.

Topological type determined in many cases.

Many gluings give same smooth manifold.



Invariants of twisted connected sums

Theorem (C-N)
Any twisted connected sum has v = 24 € 7./48Z.

Theorem (C-G-N)

Any twisted connected sum has U = —24 € Z.

Related geometric feature:

m: Tﬁ — T2 aligns “external” circle tangents 0, at right angle.

o Ou,

il
I
%’

pou)

Oy,

Inevitable, because m is an isometry of rectangular tori, and is not allowed
to align the external circles: otherwise M would have an S! factor.



Tori with symmetries

Let a: S — S! be the antipodal map z > —2z.
Let 72 := S x S / a x a where the S! factors have circumference 1 and x.
For how many different x does T2 have rotation symmetries other than +17

1
x:17\/§,0r—
V3
. . . : )\ :
. R S S —
. . ¢ .



Extra-twisted connected sums

Suppose V is an ACyl Calabi-Yau with an involution 7, that acts on the
asymptotic cross-section S! x K3 by a x ldks
Then St x V / ax 7 is an ACyl Gy-manifold with cross-section

(S'x S' Jaxa)x K3=T?x K3.

Let M be a pair of ACyl G,-manifolds of this form, or of the form St x V.

Let m: T?r — T2 be a reflection. Depending on the circumferences of the
m™ T e

circles, the external circle directions can be aligned at angle 8 = 37 or 5

f-matching problem: Find pairs V., and V_ with involution, and with an
isometry r : K31 — K3_ such that (—1) x m x r an isomorphism of the
ACyl Gp-structures of M, and M_.

Some examples can be found from branched double covers of Fano 3-folds.



Extra-twisted connected sums

. T . . . .
Can achieve 0 = ) with an involution on one side.

. 8V+
‘8u_
hd — . % 6v,
N
N
. L] \o
L] L] L] au+
Example A:

Use classification of 2-connected 7-manifolds to identify a certain 7-TCS
that has v = 36 € Z/487Z with an ordinary TCS.
The latter has v = 24 € Z/48Z, so the Gy-structures are not homotopic.



Extra-twisted connected sums

. ) . . m
With involutions on both sides, one can achieve 8 = 3

Y S © O
. — - — .
. = O .

These examples have 3-torsion in H*(M), making it harder to apply
classification results to find different examples realising the same smooth

manifold.



Extra-twisted connected sums

. ) . . m
With involutions on both sides, one can achieve 8 = 5

*Ou. A . .
. e . + Ou
== — :
8V+ 0

Example B:

Use classification of 2-connected 7-manifolds to identify a certain Z-TCS
with 7 = —72 with an ordinary TCS.

Both Gj-structures have v = 24 € Z/48Z, and on this manifold v classifies
Go-structures up to homotopy.



Computing the eta invariants

My := S x Vi or St x Vi /a x 7, with asymptotic limit R x T3 x K3.
3
Construct family of torsion-free G,-structures @7 with “neck length” T on
M the result of gluing by (—1) x m x r.

m: T2 — T2 reflection, aligning external circle factors at angle 8 € (0
I gning

Theorem
Let p:=m —20. Thenn(D) — £ as T — oo.

Let Ny := Im(H?*(Vy) — H?(K3)), and Rn. : H*(K3;R) — H?*(K3;R) the
reflection in Ny (using L?-metric or intersection form gives same result!)

Theorem '
Define a unitary map U : H*(K3;C) — H?(K3;C) by e*"?Ry, Ry_ on
H?%(K3;C). Then )

n(B) = = Z arg A\

AESpecU
A£—1

as T — oo, where the branch of arg takes values in (—m, ).



Evaluating v

U:=e*?Ry, Ry on H**(K3;C). The theorems imply

~ 3
Uo = —24n(D) + 3n(B) = YL E arg \.
g m AESpeclU
A£-1

If 6 = g then p = m1—20 = 0, and U is the real orthogonal map Ry, Rn_.
Hence eigenvalues are +1 or occur in conjugate pairs, so »_ arg A =0, and

7o =0.
In general
Z arg\ = Z:tip + Z arg\ + b = —16p+ 7 b,
AESpeclU A€ESpecRn, Rn_
A7—1 A£-1

where b € Z counts “half branch jumps” between A and e*?\. Then

Do = —722 4 3b.
v



Sketch proof of theorem for 7(B)

Kirk-Lesch gluing formula:
n(B) — n(B;) + n(B-) + Maslov index

as T — oo, for By the odd signature operators on manifolds with boundary.

Because M. have an S!-factor they have an orientation-reversing isometry.
Therefore B1 has spectral symmetry, so n(Bx) = 0!

Consider H3(T? x K3) as a complex vector space, with complex structure .

The Maslov index is computed in terms of the spectrum of —R; R_, where
R. is reflection of H3(T?2 x K3) in the image of H3(M,).

H3(T? x K3) = HY(T?)® H*(K3) =2 C® H>%(K3) & C® H>~(K3).
R: = Ry, ® Ru,.

—Ra,, Ro,_ is rotation by p =m — 20 ~

—R{R_ = e*PRy Ry_ on H>*(K3;C).



