Disconnecting the G₂ moduli space

Johannes Nordström

7 July 2015

Joint work in progress with Diarmuid Crowley and Sebastian Goette

C-N, New invariants of G₂-structures, arXiv:1211.0269 C-G-N, An analytic invariant of G₂-manifolds, arXiv:1505.02734

The G₂ moduli space

Let M be a smooth closed 7-manifold admitting metrics with holonomy G_2 . The moduli space

 $\mathcal{M} := \{ \text{Holonomy } G_2 \text{ metrics on } M \} / \mathsf{Diff}(M)$

is an orbifold, locally homeomorphic to finite quotients of $H^3_{dR}(M)$. So far little is known about the *global* properties of \mathcal{M} .

Main results:

Exhibit examples of closed G_2 -manifolds with $\mathcal M$ disconnected, both

- by studying homotopies of G₂-structures, and
- where the G_2 -structures are indistinguishable using homotopy theory

Outline:

- Background
- Examples
- Invariants
- Constructions
- Computation

The group G_2

 $\begin{aligned} & G_2 := \operatorname{Aut} \, \mathbb{O}, \quad \mathbb{O} = \text{octonions, normed division algebra of real dimension 8.} \\ & G_2 \text{ acts on } \operatorname{Im} \mathbb{O} \cong \mathbb{R}^7, \text{ preserving metric, orientation, cross product} \end{aligned}$

$$a \times b := \mathsf{Im}(ab), \text{ and}$$

 $\varphi_0(a, b, c) := \langle a \times b, c \rangle.$

In terms of basis $e^1,\ldots,e^7\in(\mathbb{R}^7)^*$

$$arphi_0=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}\in \Lambda^3(\mathbb{R}^7)^*.$$

Peculiar algebra facts:

- G_2 is not just contained in stabiliser of φ_0 in $GL(7, \mathbb{R})$, but equality holds.
- The $GL(7,\mathbb{R})$ -orbit of φ_0 is open in $\Lambda^3(\mathbb{R}^7)^*$.

G_2 , spinors and SU(3)

The spin representation Δ of Spin(7) is real of rank 8. $G_2 \longrightarrow SO(7)$ Spin(7) acts transitively on $S^7 \subset \Delta$ with stabiliser G_2 .

The action of SU(3) on $\mathbb{C}^3 \cong \mathbb{R}^6$ preserves

$$egin{aligned} &\omega_0 := rac{i}{2} (dz^1 \wedge dar{z}^1 + dz^2 \wedge dar{z}^2 + dz^3 \wedge dar{z}^3) \in \Lambda^2(\mathbb{R}^6)^* \ &\Omega_0 := dz^1 \wedge dz^2 \wedge dz^3 \in \Lambda^3(\mathbb{R}^6)^* \otimes \mathbb{C} \end{aligned}$$

On $\mathbb{R}^7 = \mathbb{R} \oplus \mathbb{C}^3$.

 $\varphi_0 = e^1 \wedge (e^{23} + e^{45} + e^{67}) + e^{246} - e^{257} - e^{347} - e^{356} \cong e^1 \wedge \omega_0 + \operatorname{Re}\Omega_0$

and the stabiliser in G_2 of a non-zero vector is SU(3).

A 3-form $\varphi \in \Omega^3(M^7)$ such that $(T_xM,\varphi) \cong (\mathbb{R}^7,\varphi_0)$ for all $x \in M$ defines a G_2 -structure. (*Open* condition on φ) Because $G_2 \subset SO(7)$, this induces a metric and orientation.

The holonomy group of a Riemannian manifold M

 $\{P_{\gamma}: \gamma \text{ closed loop based at } x \in M\} \subseteq O(T_xM)$

where P_{γ} denotes parallel transport along γ . Parallel tensor fields on $M \leftrightarrow$ invariants of Hol(M).

 $Hol(M) \subseteq G_2 \Leftrightarrow$ metric induced by some G_2 -structure φ such that $\nabla \varphi = 0$. Then call φ torsion-free. This is equivalent to the first-order non-linear PDE

$$d\varphi = d^*\varphi = 0$$

Proposition (Joyce)

If M^7 is closed and $Hol(M) \subseteq G_2$ then

 $Hol(M) = G_2 \Leftrightarrow \pi_1(M) \ finite$

Two perspectives on *G*₂-structures

$$G_2 \qquad \qquad = \quad \begin{array}{c} \text{stabiliser in } GL(7,\mathbb{R}) \\ \text{of } \varphi_0 \in \Lambda^3(\mathbb{R}^7)^* \end{array} = \begin{array}{c} \text{stabiliser in } Spin(7) \\ \text{of a unit spinor } s_0 \end{array}$$

 $\begin{array}{rcl} & & \text{metric } g \\ G_2\text{-structure on } M^7 & \leftrightarrow & \text{positive } \varphi \in \Omega^3(M) & \leftrightarrow & + \text{ spin structure} \\ & & + \text{ unit spinor field } s \end{array}$

$$\mathsf{Holonomy} \subseteq \mathsf{G}_2 \quad \Leftrightarrow \qquad \mathsf{d}\varphi = \mathsf{d}^*\varphi = \mathsf{0} \qquad \Leftrightarrow \qquad \nabla s = \mathsf{0}$$

Useful for differential geometry homotopy theory

Homotopies of G₂-structures

Let M be a closed 7-dimensional spin manifold. All metrics on M are homotopic.

Two G_2 -structures homotopic if connected by path of non-vanishing spinors.

 $\begin{array}{rcl} \text{Homotopy classes of} & & \text{Homotopy classes of non-} \\ G_2\text{-structures on } M & & \text{vanishing sections of } SM \end{array}$

The spinor bundle SM is a real rank 8 vector bundle. Easy consequences:

- There exist G_2 -structures on M.
- For G₂-structures φ and φ' on M, the signed count of zeros of interpolating section of rank 8 bundle on M × [0, 1] can take any integer value, and vanishes if and only if φ is homotopic to φ'.

 $\therefore \{ \mathit{G}_2 \text{-structures on } M \} / \text{homotopy} \stackrel{\text{affine}}{\cong} \mathbb{Z}$

Diff(M) can act by non-trivial translations. Each component of \mathcal{M} maps to a fixed class of G_2 -structures modulo homotopies *and* diffeomorphisms.

2-connected 7-manifolds

Let *M* be a closed smooth 7-manifold with $\pi_1(M) = \pi_2(M) = 0$ and $H^4(M)$ torsion-free. Remaining algebraic topology captured by $b_3(M)$. Let d(M) := greatest integer dividing the Pontrjagin class $p_1(M) \in H^4(M)$ (d(M) := 0 if $p_1(M) = 0$).

Theorem (Wall-Wilkens)

Such M are classified up to homeomorphism by $(b_3(M), d(M)) \in \mathbb{N} \times 4\mathbb{N}$. The number of inequivalent smooth structures on the topological manifold underlying M is

$$\operatorname{GCD}\left(28, \operatorname{Numerator}\left(\frac{d(M)}{8}\right)\right)$$

Theorem (C-N)

The number of G₂-structures on M modulo homotopy and diffeomorphism is

24 Numerator
$$\left(\frac{d(M)}{224}\right)$$
.

Examples

Example A (C-G-N)
$$b_3 = 97, d = 4$$

There are G_2 metrics on M whose associated G_2 -structures are not equivalent under homotopies and diffeomorphisms. Thus M is disconnected.

Example B (C-G-N)
$$b_3 = 109, d = 4$$

There are G_2 metrics on M that lie in different components of \mathcal{M} , but whose associated G_2 -structures are homotopic.

Side remark:

Example B shows that there is no h-principle for torsion-free G_2 -structures (would have been surprising for an essentially elliptic equation). However, the h-principle holds for coclosed G_2 -structures (C-N).

Ingredients

Invariants

- **A** The G_2 -structures are distinguished by a homotopy invariant $\nu(\varphi) \in \mathbb{Z}/48\mathbb{Z}$.
- **B** An analytic refinement $\hat{\nu}(\varphi) \in \mathbb{Z}$ of $\nu(\varphi)$ is invariant under deformations through torsion-free G_2 -structures, and can distinguish components of \mathcal{M} even when the G_2 -structures are homotopic.

Twisted connected sums

The "twisted connected sum construction" of Kovalev and Corti-Haskins-N-Pacini produces large numbers of 2-connected G_2 -manifolds for which these invariants can be evaluated. However, $\hat{\nu}$ is always -24.

A more complicated version produces some 2-connected examples where $\widehat{\nu}$ takes different values.

Homotopy invariant of G₂-structures

Let X closed spin 8-manifold. Euler class of positive spinor bundle satisfies

$$e_+(X) = 24\widehat{A}(X) + \frac{\chi(X) - 3\sigma(X)}{2}, \qquad (*)$$

where χ is the Euler characteristic and σ the signature.

Let W be a compact spin 8-manifold with boundary M, s a transverse positive spinor field on W, and φ the G_2 -structure on M induced by $s_{|M}$. Let $n(W, \varphi)$ be the signed count of zeros of s. (*) implies

$$u(arphi) := \chi(W) - 3\sigma(W) - 2n(W, arphi) \mod 48$$

is independent of choice of coboundary W. On a fixed M, ν takes 24 values allowed by $\nu(\varphi) = \sum_{i=0}^{3} b_i(M) \mod 2$.

Corollary (C-N)

Let M closed 2-connected with $H^4(M)$ torsion-free. If $d(M) \mid 224$ then ν classifies G_2 -structures on M modulo homotopies and diffeomorphisms.

Analytic invariant of G₂-structures

Given metric, define

 $\begin{array}{l} D = \mbox{Dirac operator} \\ B: \Omega^{ev} \rightarrow \Omega^{ev} = \mbox{odd signature operator, } (-1)^k (*d - d*) \ \Omega^{2k} \\ h(D) = \mbox{dim} \mbox{ker}(D) \in \mathbb{Z} \\ \eta(D) := \eta(D,0) \in \mathbb{R} \ \mbox{measures "spectral asymmetry" of } D, \ \mbox{defined by} \\ \mbox{analytic continuation from} \end{array}$

$$\eta(D,s) := \sum_{\lambda \in \operatorname{Spec} D \setminus \{0\}} (\operatorname{sign} \lambda) |\lambda|^{-s} \quad ext{for } \operatorname{\mathsf{Re}} s >> 0$$

For a G_2 -structure φ on closed M^7 , define $MQ(\varphi) \in \mathbb{R}$ in terms of "Mathai-Quillen current".

Definition

$$\widehat{\nu}_{0}(\varphi) := -24\eta(D) + 3\eta(B) + 2MQ(\varphi) \in \mathbb{R}$$

 $\widehat{\nu}(\varphi) := \widehat{\nu}_{0}(\varphi) - 24h(D) \in \mathbb{R}$

$$\widehat{
u}_0(arphi) := -24\eta(D) + 3\eta(B) + 2MQ(arphi) \in \mathbb{R}$$

Reversing orientation changes the sign of $\hat{\nu}_0$.

All terms are continuous in φ , except that the first jumps by 24 when an eigenvalue of D changes between zero and non-zero.

$$\widehat{\nu}(\varphi) := \widehat{\nu}_0(\varphi) - 24h(D) \in \mathbb{R}$$

 $\widehat{\nu}$ is continuous in φ except for jumps by 48.

Theorem (C-G-N)

Let φ G₂-structure on closed M⁷. Then

$$\nu(\varphi) = \widehat{\nu}(\varphi) \mod 48.$$

(In particular $\hat{\nu}, \hat{\nu}_0 \in \mathbb{Z}$.)

Analytic invariant as refinement

$$\widehat{\nu}(\varphi) := -24(\eta + h)(D) + 3\eta(B) + 2MQ(\varphi) \in \mathbb{R}$$
$$\nu(\varphi) := \chi(W) - 3\sigma(W) - 2n(W,\varphi) \in \mathbb{Z}/48\mathbb{Z}.$$

Proof.

For $\partial W = M$ with metric that is product on collar of M

$$\sigma(W) = \int_{W} L(\nabla) - \eta(B)$$

ind $D_{W}^{+} = \int_{W} \widehat{A}(\nabla) - \frac{1}{2}(\eta + h)(D)$
 $n(W, \varphi) = \int_{W} e_{+}(\nabla) - MQ(\varphi)$

Chern-Weil term boundary correction

Chern-Weil terms add up to $\chi(W)$ (essentially by characteristic class formula (*) used to show that ν is well-defined), so

$$\widehat{\nu}(\varphi) = \chi(W) - 3\sigma(W) - 2n(W,\varphi) + 48 \text{ ind } D_W^+ \in \mathbb{Z}$$
.

$$egin{aligned} \widehat{
u}_0(arphi) &:= -24\eta(D) + 3\eta(B) + 2MQ(arphi) \in \mathbb{Z} \ \widehat{
u}(arphi) &:= \widehat{
u}_0(arphi) - 24h(D) \in \mathbb{Z} \end{aligned}$$

For torsion-free φ

- $MQ(\varphi) = 0$
- $h(D) = 1 + b_1(M)$ (so 1 when $Hol = G_2$)
- $\eta(D)$ does not jump

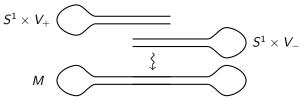
Therefore $\hat{\nu}_0$ and $\hat{\nu}$ are constant on connected components of \mathcal{M} , and can distinguish components even when the associated G_2 -structures are homotopic.

Even if we are only interested in ν (like in Example A), it may be easier to evaluate the intrinsic formula for $\hat{\nu}$ than to find a spin coboundary to compute ν .

Twisted connected sums

Donaldson, Kovalev, Corti-Haskins-N-Pacini

- Construct simply-connected, complete, Ricci-flat Kähler 3-folds V, with "asymptotically cylindrical end" $\mathbb{R} \times S^1 \times K3$.
- $Hol(S^1 \times V) = SU(3) \subset G_2$, so $S^1 \times V$ has torsion-free G_2 -structure
- Find pairs of such V_{\pm} , with a diffeomorphism F of the cylindrical ends of $S^1 \times V_+$ and $S^1 \times V_-$ ensuring
 - $\square M = S^1 \times V_+ \cup_F S^1 \times V_- \text{ is simply-connected } (F \text{ is "twisted"})$
 - □ Gluing G₂-structures on the halves with "neck length" T >> 0 defines φ_T on M with $\nabla \varphi_T$ exponentially small in T.



• Perturb to φ_T so that $d\varphi_T = d^*\varphi_T = 0$. Then $Hol(M) = G_2$.

Matching

The ACyl end of $S^1 \times V_{\pm}$ is $\mathbb{R} \times S^1 \times S^1 \times K3_+ \cong \mathbb{R} \times T_{\pm}^2 \times K3_{\pm}$. Glue the cylindrical ends using a product isometry

$$\mathsf{F} \ := \ (-1) \times \mathsf{m} \times \mathsf{r} : \ \mathbb{R} \times \mathsf{T}_{-}^2 \times \mathsf{K3}_+ \ \to \ \mathbb{R} \times \mathsf{T}_{-}^2 \times \mathsf{K3}_-,$$

where $m: T_+^2 \to T_-^2$ is the reflection $S^1 \times S^1 \to S^1 \times S^1$, $(u, v) \mapsto (v, u)$. *m* swaps "internal" and "external" circles $\Rightarrow \pi_1 M = 0$ by van Kampen.

Matching problem: Find pairs V_+ and V_- such that there is an isometry $r: K3_+ \rightarrow K3_-$ making F an isomorphism of the ACyl G_2 -structures.

Kovalev:

Use Fano 3-folds to produce examples of pairs V_+ , V_- with solution to the matching problem.

Corti-Haskins-N-Pacini:

Millions of examples from weak Fano 3-folds. Topological type determined in many cases. Many gluings give same smooth manifold.

Invariants of twisted connected sums

Theorem (C-N)

Any twisted connected sum has $\nu = 24 \in \mathbb{Z}/48\mathbb{Z}$.

Theorem (C-G-N)

Any twisted connected sum has $\hat{\nu} = -24 \in \mathbb{Z}$.

Related geometric feature:

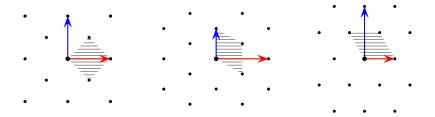
 $m: T^2_+ \to T^2_-$ aligns "external" circle tangents ∂_v at right angle.

Inevitable, because m is an isometry of rectangular tori, and is not allowed to align the external circles: otherwise M would have an S^1 factor.

Tori with symmetries

Let $a: S^1 \to S^1$ be the antipodal map $z \mapsto -z$. Let $T^2 := S^1 \times S^1 / a \times a$ where the S^1 factors have circumference 1 and x. For how many different x does T^2 have rotation symmetries other than ± 1 ?

$$x = 1, \sqrt{3}, \text{ or } \frac{1}{\sqrt{3}}$$



Suppose V is an ACyl Calabi-Yau with an involution τ , that acts on the asymptotic cross-section $S^1 \times K3$ by $a \times Id_{K3}$ Then $S^1 \times V / a \times \tau$ is an ACyl G_2 -manifold with cross-section

 $(S^1 \times S^1 / a \times a) \times K3 = T^2 \times K3.$

Let M_{\pm} be a pair of ACyl G_2 -manifolds of this form, or of the form $S^1 \times V$. Let $m: T^2_+ \to T^2_-$ be a reflection. Depending on the circumferences of the circles, the external circle directions can be aligned at angle $\theta = \frac{\pi}{3}, \frac{\pi}{4}$ or $\frac{\pi}{6}$.

 θ -matching problem: Find pairs V_+ and V_- with involution, and with an isometry $r: K3_+ \to K3_-$ such that $(-1) \times m \times r$ an isomorphism of the ACyl G_2 -structures of M_+ and M_- .

Some examples can be found from branched double covers of Fano 3-folds.

Can achieve $\theta = \frac{\pi}{4}$ with an involution on one side.

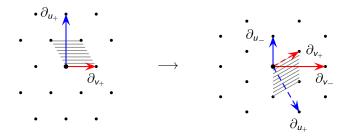
Example A:

Use classification of 2-connected 7-manifolds to identify a certain $\frac{\pi}{4}$ -TCS that has $\nu = 36 \in \mathbb{Z}/48\mathbb{Z}$ with an ordinary TCS. The latter has $\nu = 24 \in \mathbb{Z}/48\mathbb{Z}$, so the G_2 -structures are not homotopic.

With involutions on both sides, one can achieve $\theta = \frac{\pi}{3}$.

These examples have 3-torsion in $H^4(M)$, making it harder to apply classification results to find different examples realising the same smooth manifold.

With involutions on both sides, one can achieve $\theta = \frac{\pi}{6}$.



Example B:

Use classification of 2-connected 7-manifolds to identify a certain $\frac{\pi}{6}$ -TCS with $\hat{\nu} = -72$ with an ordinary TCS.

Both G_2 -structures have $\nu = 24 \in \mathbb{Z}/48\mathbb{Z}$, and on this manifold ν classifies G_2 -structures up to homotopy.

Computing the eta invariants

$$\begin{split} M_{\pm} &:= S^1 \times V_{\pm} \text{ or } S^1 \times V_{\pm} / a \times \tau, \text{ with asymptotic limit } \mathbb{R} \times T_{\pm}^2 \times K3. \\ m &: T_+^2 \to T_-^2 \text{ reflection, aligning external circle factors at angle } \theta \in (0, \frac{\pi}{2}]. \\ \text{Construct family of torsion-free } G_2 \text{-structures } \varphi_T \text{ with "neck length" } T \text{ on } \\ M \text{ the result of gluing by } (-1) \times m \times r. \end{split}$$

Theorem

Let
$$\rho := \pi - 2\theta$$
. Then $\eta(D) \to \frac{\rho}{\pi}$ as $T \to \infty$.

Let $N_{\pm} := \text{Im}(H^2(V_{\pm}) \to H^2(K3))$, and $R_{N_{\pm}} : H^2(K3; \mathbb{R}) \to H^2(K3; \mathbb{R})$ the reflection in N_{\pm} (using L^2 -metric or intersection form gives same result!)

Theorem

Define a unitary map $U: H^2(K3; \mathbb{C}) \to H^2(K3; \mathbb{C})$ by $e^{\pm i\rho}R_{N_+}R_{N_-}$ on $H^{2,\pm}(K3; \mathbb{C})$. Then

$$\eta(B) o rac{1}{\pi} \sum_{\substack{\lambda \in \operatorname{Spec} U \\ \lambda
eq -1}} \arg \lambda$$

as $T \to \infty$, where the branch of arg takes values in $(-\pi, \pi)$.

Evaluating $\hat{\nu}$

 $U := e^{\pm i
ho} R_{N_+} R_{N_-}$ on $H^{2,\pm}(K3;\mathbb{C})$. The theorems imply

$$\widehat{
u}_0 = -24\eta(D) + 3\eta(B) = -24rac{
ho}{\pi} + rac{3}{\pi}\sum_{\substack{\lambda\in \operatorname{Spec}U\\lambda
eq -1}} rg \lambda.$$

If $\theta = \frac{\pi}{2}$ then $\rho = \pi - 2\theta = 0$, and U is the real orthogonal map $R_{N_+}R_{N_-}$. Hence eigenvalues are ± 1 or occur in conjugate pairs, so $\sum \arg \lambda = 0$, and

$$\widehat{\nu}_0 = 0.$$

In general

$$\sum_{\substack{\lambda \in \operatorname{Spec} U\\ \lambda \neq -1}} \arg \lambda = \sum \pm i\rho + \sum_{\substack{\lambda \in \operatorname{Spec} R_{N_+} R_{N_-}\\ \lambda \neq -1}} \arg \lambda + b = -16\rho + \pi b,$$

where $b \in \mathbb{Z}$ counts "half branch jumps" between λ and $e^{\pm i\rho}\lambda$. Then

$$\widehat{
u}_0 = -72rac{
ho}{\pi} + 3b.$$

Sketch proof of theorem for $\eta(B)$

Kirk-Lesch gluing formula:

$$\eta(B) \rightarrow \eta(B_+) + \eta(B_-) + \text{Maslov index}$$

as $T \to \infty$, for B_{\pm} the odd signature operators on manifolds with boundary.

Because M_{\pm} have an S^1 -factor they have an orientation-reversing isometry. Therefore B_{\pm} has spectral symmetry, so $\eta(B_{\pm}) = 0!$

Consider $H^3(T^2 \times K3)$ as a complex vector space, with complex structure *. The Maslov index is computed in terms of the spectrum of $-R_+R_-$, where R_{\pm} is reflection of $H^3(T^2 \times K3)$ in the image of $H^3(M_+)$. $H^3(T^2 \times K3) \cong H^1(T^2) \otimes H^2(K3) \cong \mathbb{C} \otimes H^{2,+}(K3) \oplus \overline{\mathbb{C}} \otimes H^{2,-}(K3)$. $R_{\pm} \cong R_{\partial_{u_{\pm}}} \otimes R_{N_{\pm}}$. $-R_{\partial_{u_{+}}}R_{\partial_{u_{-}}}$ is rotation by $\rho = \pi - 2\theta \rightsquigarrow$ $-R_+R_- \cong e^{\pm i\rho}R_{N_+}R_{N_-}$ on $H^{2,\pm}(K3;\mathbb{C})$.