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The G2 moduli space

Let M be a smooth closed 7-manifold admitting metrics with holonomy G2.
The moduli space

M := {Holonomy G2 metrics on M}/Diff(M)

is an orbifold, locally homeomorphic to finite quotients of H3
dR
(M).

So far little is known about the global properties of M.

Main results:
Exhibit examples of closed G2-manifolds with M disconnected, both
� by studying homotopies of G2-structures, and
� where the G2-structures are indistinguishable using homotopy theory

Outline:
� Background
� Examples
� Invariants
� Constructions
� Computation



The group G2

G2 := Aut O, O = octonions, normed division algebra of real dimension 8.

G2 acts on ImO ∼= R
7, preserving metric, orientation, cross product

a× b := Im(ab), and

ϕ0(a, b, c) := 〈a× b, c〉.

In terms of basis e1, . . . , e7 ∈ (R7)∗

ϕ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356 ∈ Λ3(R7)∗.

Peculiar algebra facts:

� G2 is not just contained in stabiliser of ϕ0 in GL(7,R), but equality holds.

� The GL(7,R)-orbit of ϕ0 is open in Λ3(R7)∗.



G2, spinors and SU(3)

Spin(7)

G2 SO(7)

The spin representation ∆ of Spin(7) is real of rank 8.

Spin(7) acts transitively on S7 ⊂ ∆ with stabiliser G2.

The action of SU(3) on C
3 ∼= R

6 preserves

ω0 :=
i

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3) ∈ Λ2(R6)∗

Ω0 := dz1 ∧ dz2 ∧ dz3 ∈ Λ3(R6)∗ ⊗ C

On R
7 = R⊕ C

3,

ϕ0 = e1 ∧ (e23 + e45 + e67) + e246 − e257 − e347 − e356 ∼= e1 ∧ ω0 +ReΩ0

and the stabiliser in G2 of a non-zero vector is SU(3).



G2-structures and holonomy

A 3-form ϕ ∈ Ω3(M7) such that (TxM, ϕ) ∼= (R7, ϕ0) for all x ∈ M defines
a G2-structure. (Open condition on ϕ)
Because G2 ⊂ SO(7), this induces a metric and orientation.

The holonomy group of a Riemannian manifold M

{Pγ : γ closed loop based at x ∈ M} ⊆ O(TxM)

where Pγ denotes parallel transport along γ.
Parallel tensor fields on M ↔ invariants of Hol(M).

Hol(M) ⊆ G2 ⇔ metric induced by some G2-structure ϕ such that ∇ϕ = 0.
Then call ϕ torsion-free. This is equivalent to the first-order non-linear PDE

dϕ = d∗ϕ = 0

Proposition (Joyce)

If M7 is closed and Hol(M) ⊆ G2 then

Hol(M) = G2 ⇔ π1(M) finite



Two perspectives on G2-structures

G2 =
stabiliser in GL(7,R)
of ϕ0 ∈ Λ3(R7)∗

=
stabiliser in Spin(7)
of a unit spinor s0

G2-structure on M7 ↔ positive ϕ ∈ Ω3(M) ↔
metric g

+ spin structure
+ unit spinor field s

Holonomy ⊆ G2 ⇔ dϕ = d∗ϕ = 0 ⇔ ∇s = 0

Useful for differential geometry homotopy theory



Homotopies of G2-structures

Let M be a closed 7-dimensional spin manifold.
All metrics on M are homotopic.
Two G2-structures homotopic if connected by path of non-vanishing spinors.

Homotopy classes of
G2-structures on M

↔ Homotopy classes of non-
vanishing sections of SM

The spinor bundle SM is a real rank 8 vector bundle. Easy consequences:

� There exist G2-structures on M.

� For G2-structures ϕ and ϕ′ on M, the signed count of zeros of
interpolating section of rank 8 bundle on M × [0, 1] can take any integer
value, and vanishes if and only if ϕ is homotopic to ϕ′.

∴ {G2-structures on M}/homotopy
affine∼= Z

Diff(M) can act by non-trivial translations. Each component of M maps to
a fixed class of G2-structures modulo homotopies and diffeomorphisms.



2-connected 7-manifolds

Let M be a closed smooth 7-manifold with π1(M) = π2(M) = 0 and H4(M)
torsion-free. Remaining algebraic topology captured by b3(M).
Let d(M) := greatest integer dividing the Pontrjagin class p1(M) ∈ H4(M)
(d(M) := 0 if p1(M) = 0).

Theorem (Wall-Wilkens)

Such M are classified up to homeomorphism by (b3(M), d(M)) ∈ N× 4N.
The number of inequivalent smooth structures on the topological manifold
underlying M is

GCD

(
28, Numerator

(
d(M)

8

))
.

Theorem (C-N)

The number of G2-structures on M modulo homotopy and diffeomorphism is

24Numerator

(
d(M)

224

)
.



Examples

Example A (C-G-N) b3 = 97, d = 4

There are G2 metrics on M whose associated G2-structures are not
equivalent under homotopies and diffeomorphisms. Thus M is disconnected.

Example B (C-G-N) b3 = 109, d = 4

There are G2 metrics on M that lie in different components of M, but
whose associated G2-structures are homotopic.

Side remark:
Example B shows that there is no h-principle for torsion-free G2-structures
(would have been surprising for an essentially elliptic equation).
However, the h-principle holds for coclosed G2-structures (C-N).



Ingredients

Invariants

A The G2-structures are distinguished by a homotopy invariant
ν(ϕ) ∈ Z/48Z.

B An analytic refinement ν̂(ϕ) ∈ Z of ν(ϕ) is invariant under deformations
through torsion-free G2-structures, and can distinguish components of M
even when the G2-structures are homotopic.

Twisted connected sums

The “twisted connected sum construction” of Kovalev and Corti-Haskins-
N-Pacini produces large numbers of 2-connected G2-manifolds for which
these invariants can be evaluated. However, ν̂ is always −24.

A more complicated version produces some 2-connected examples where ν̂
takes different values.



Homotopy invariant of G2-structures

Let X closed spin 8-manifold. Euler class of positive spinor bundle satisfies

e+(X ) = 24Â(X ) +
χ(X )− 3σ(X )

2
, (∗)

where χ is the Euler characteristic and σ the signature.

Let W be a compact spin 8-manifold with boundary M, s a transverse
positive spinor field on W , and ϕ the G2-structure on M induced by s|M .
Let n(W , ϕ) be the signed count of zeros of s. (∗) implies

ν(ϕ) := χ(W )− 3σ(W )− 2n(W , ϕ) mod 48

is independent of choice of coboundary W .
On a fixed M, ν takes 24 values allowed by ν(ϕ) =

∑3

i=0bi (M) mod 2.

Corollary (C-N)

Let M closed 2-connected with H4(M) torsion-free. If d(M) | 224 then ν
classifies G2-structures on M modulo homotopies and diffeomorphisms.



Analytic invariant of G2-structures

Given metric, define

D = Dirac operator
B : Ωev → Ωev = odd signature operator, (−1)k(∗d − d∗) Ω2k

h(D) = dim ker(D) ∈ Z

η(D) := η(D, 0) ∈ R measures “spectral asymmetry” of D, defined by
analytic continuation from

η(D, s) :=
∑

λ∈SpecD\{0}

(signλ)|λ|−s for Re s >> 0

For a G2-structure ϕ on closed M7, define MQ(ϕ) ∈ R in terms of
“Mathai-Quillen current”.

Definition

ν̂0(ϕ) := −24η(D) + 3η(B) + 2MQ(ϕ) ∈ R

ν̂(ϕ) := ν̂0(ϕ)− 24h(D) ∈ R



Analytic invariant as refinement

ν̂0(ϕ) := −24η(D) + 3η(B) + 2MQ(ϕ) ∈ R

Reversing orientation changes the sign of ν̂0.

All terms are continuous in ϕ, except that the first jumps by 24 when an
eigenvalue of D changes between zero and non-zero.

ν̂(ϕ) := ν̂0(ϕ)− 24h(D) ∈ R

ν̂ is continuous in ϕ except for jumps by 48.

Theorem (C-G-N)

Let ϕ G2-structure on closed M7. Then

ν(ϕ) = ν̂(ϕ) mod 48.

(In particular ν̂, ν̂0 ∈ Z.)



Analytic invariant as refinement

ν̂(ϕ) := −24(η + h)(D) + 3η(B) + 2MQ(ϕ) ∈ R

ν(ϕ) := χ(W )− 3σ(W )− 2n(W , ϕ) ∈ Z/48Z.

Proof.
For ∂W = M with metric that is product on collar of M

σ(W ) =
∫
W

L(∇) − η(B)

indD+
W

=
∫
W

Â(∇) − 1
2
(η + h)(D)

n(W , ϕ) =
∫
W

e+(∇) − MQ(ϕ)

Chern-Weil term boundary correction

Chern-Weil terms add up to χ(W ) (essentially by characteristic class
formula (∗) used to show that ν is well-defined), so

ν̂(ϕ) = χ(W )− 3σ(W )− 2n(W , ϕ) + 48 indD+
W

∈ Z .



Analytic invariant of torsion-free G2-structures

ν̂0(ϕ) := −24η(D) + 3η(B) + 2MQ(ϕ) ∈ Z

ν̂(ϕ) := ν̂0(ϕ)− 24h(D) ∈ Z

For torsion-free ϕ

� MQ(ϕ) = 0

� h(D) = 1 + b1(M) (so 1 when Hol = G2)

� η(D) does not jump

Therefore ν̂0 and ν̂ are constant on connected components of M, and can
distinguish components even when the associated G2-structures are
homotopic.

Even if we are only interested in ν (like in Example A), it may be easier to
evaluate the intrinsic formula for ν̂ than to find a spin coboundary to
compute ν.



Twisted connected sums

Donaldson, Kovalev, Corti-Haskins-N-Pacini

� Construct simply-connected, complete, Ricci-flat Kähler 3-folds V , with
“asymptotically cylindrical end” R× S1 × K3.

� Hol(S1 × V ) = SU(3) ⊂ G2, so S1 × V has torsion-free G2-structure
� Find pairs of such V±, with a diffeomorphism F of the cylindrical ends of

S1 × V+ and S1 × V− ensuring
� M = S

1
× V+ ∪F S

1
× V

−
is simply-connected (F is “twisted”)

� Gluing G2-structures on the halves with “neck length” T >> 0 defines ϕT

on M with ∇ϕT exponentially small in T .

S1 × V+
 S1 × V−

M

� Perturb to ϕT so that dϕT = d∗ϕT = 0. Then Hol(M) = G2.



Matching

The ACyl end of S1 × V± is R× S1 × S1 × K3+ ∼= R× T 2
± × K3±.

Glue the cylindrical ends using a product isometry

F := (−1)×m × r : R× T 2
− × K3+ → R× T 2

− × K3−,

where m : T 2
+ → T 2

− is the reflection S1 × S1 → S1 × S1, (u, v) 7→ (v , u).

m swaps “internal” and “external” circles ⇒ π1M = 0 by van Kampen.

Matching problem: Find pairs V+ and V− such that there is an isometry
r : K3+ → K3− making F an isomorphism of the ACyl G2-structures.

Kovalev:
Use Fano 3-folds to produce examples of pairs V+, V− with solution to the
matching problem.

Corti-Haskins-N-Pacini:
Millions of examples from weak Fano 3-folds.
Topological type determined in many cases.
Many gluings give same smooth manifold.



Invariants of twisted connected sums

Theorem (C-N)

Any twisted connected sum has ν = 24 ∈ Z/48Z.

Theorem (C-G-N)

Any twisted connected sum has ν̂ = −24 ∈ Z.

Related geometric feature:
m : T 2

+ → T 2
− aligns “external” circle tangents ∂v at right angle.
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Inevitable, because m is an isometry of rectangular tori, and is not allowed
to align the external circles: otherwise M would have an S1 factor.



Tori with symmetries

Let a : S1 → S1 be the antipodal map z 7→ −z .
Let T 2 := S1 × S1 / a× a where the S1 factors have circumference 1 and x .
For how many different x does T 2 have rotation symmetries other than ±1?

x = 1,
√
3, or

1√
3
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Extra-twisted connected sums

Suppose V is an ACyl Calabi-Yau with an involution τ , that acts on the
asymptotic cross-section S1 × K3 by a× IdK3

Then S1 × V / a× τ is an ACyl G2-manifold with cross-section

(S1 × S1 / a× a)× K3 = T 2 × K3.

Let M± be a pair of ACyl G2-manifolds of this form, or of the form S1 × V .

Let m : T 2
+ → T 2

− be a reflection. Depending on the circumferences of the

circles, the external circle directions can be aligned at angle θ =
π

3
,
π

4
or

π

6
.

θ-matching problem: Find pairs V+ and V− with involution, and with an
isometry r : K3+ → K3− such that (−1)×m × r an isomorphism of the
ACyl G2-structures of M+ and M−.

Some examples can be found from branched double covers of Fano 3-folds.



Extra-twisted connected sums

Can achieve θ =
π

4
with an involution on one side.
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Example A:

Use classification of 2-connected 7-manifolds to identify a certain π
4
-TCS

that has ν = 36 ∈ Z/48Z with an ordinary TCS.
The latter has ν = 24 ∈ Z/48Z, so the G2-structures are not homotopic.



Extra-twisted connected sums

With involutions on both sides, one can achieve θ =
π

3
.
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These examples have 3-torsion in H4(M), making it harder to apply
classification results to find different examples realising the same smooth
manifold.



Extra-twisted connected sums

With involutions on both sides, one can achieve θ =
π

6
.
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Example B:

Use classification of 2-connected 7-manifolds to identify a certain π
6
-TCS

with ν̂ = −72 with an ordinary TCS.

Both G2-structures have ν = 24 ∈ Z/48Z, and on this manifold ν classifies
G2-structures up to homotopy.



Computing the eta invariants

M± := S1 × V± or S1 × V±/a× τ , with asymptotic limit R× T 2
± × K3.

m : T 2
+ → T 2

− reflection, aligning external circle factors at angle θ ∈ (0, π
2
].

Construct family of torsion-free G2-structures ϕT with “neck length” T on
M the result of gluing by (−1)×m × r .

Theorem
Let ρ := π − 2θ. Then η(D) → ρ

π
as T → ∞.

Let N± := Im(H2(V±) → H2(K3)), and RN±
: H2(K3;R) → H2(K3;R) the

reflection in N± (using L2-metric or intersection form gives same result!)

Theorem
Define a unitary map U : H2(K3;C) → H2(K3;C) by e±iρRN+

RN−
on

H2,±(K3;C). Then

η(B) → 1

π

∑

λ∈SpecU
λ 6=−1

arg λ

as T → ∞, where the branch of arg takes values in (−π, π).



Evaluating ν̂

U := e±iρRN+
RN−

on H2,±(K3;C). The theorems imply

ν̂0 = −24η(D) + 3η(B) = −24
ρ

π
+

3

π

∑

λ∈SpecU
λ 6=−1

arg λ.

If θ = π
2
then ρ = π−2θ = 0, and U is the real orthogonal map RN+

RN−
.

Hence eigenvalues are ±1 or occur in conjugate pairs, so
∑

arg λ = 0, and

ν̂0 = 0.

In general
∑

λ∈SpecU
λ 6=−1

arg λ =
∑

±iρ +
∑

λ∈SpecRN+
RN−

λ 6=−1

arg λ + b = −16ρ+ π b,

where b ∈ Z counts “half branch jumps” between λ and e±iρλ. Then

ν̂0 = −72
ρ

π
+ 3b.



Sketch proof of theorem for η(B)

Kirk-Lesch gluing formula:

η(B) → η(B+) + η(B−) + Maslov index

as T → ∞, for B± the odd signature operators on manifolds with boundary.

Because M± have an S1-factor they have an orientation-reversing isometry.
Therefore B± has spectral symmetry, so η(B±) = 0!

Consider H3(T 2 ×K3) as a complex vector space, with complex structure ∗.
The Maslov index is computed in terms of the spectrum of −R+R−, where
R± is reflection of H3(T 2 × K3) in the image of H3(M+).

H3(T 2 × K3) ∼= H1(T 2)⊗ H2(K3) ∼= C⊗ H2,+(K3) ⊕ C⊗ H2,−(K3).

R±
∼= R∂u±

⊗ RN±
.

−R∂u+
R∂u−

is rotation by ρ = π − 2θ  

−R+R−
∼= e±iρRN+

RN−
on H2,±(K3;C).


