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Topics for 2 sessions this morning

• interacting particle system models–what they are and
some basic examples

• comparisons with ODE and PDE

• hydrodynamic limits: connecting IPS and PDE

• adding complexity to basic models

• two applications in microbial population biology
(phage and plasmids) with even more complexity; the
importance of spatial structure in ecological and
evolutionary dynamics
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Interacting Particle Systems

a.k.a. “stochastic cellular automata” and “individual-based
stochastic spatial models”

• Explicitly model

1. discrete spatial structure: Zd (for example)

2. Each site can be in several different states
(“particles”)

3. randomness

4. local interactions between individuals

5. sometimes particles move (“exchange”
dynamics), sometimes not (“flip” dynamics)
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Interaction neighborhoods

4 nearest neighbors

8 nearest neighbors

General: Nr(x) = {y ∈ Zd : 0 < ‖y − x‖ ≤ r} . . . lattice
sites within distance r of x.

vr = #Nr(x)

4



Population dynamics

Before we explore IPS models, let’s first think about ODE
and PDE models of population dynamics.
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Well-mixed populations: ODE’s

Good model if pop sizes are large and everything is well
mixed (e.g., chemostat). No spatial structure and
randomness averages out.

• Ex) Single-species density: x(t)

dx

dt
= rx

(
1− x

K

)
(logistic growth)

• r = intrinsic growth rate; K = carrying capacity

• x(t) → K, as t→∞

6



• Multi-species densities: xi(t), i = 1, 2, . . . , n

dxi

dt
= xi

(
ri +

∑
j

aijxj

)
(Lotka-Volterra models)

aij aji

− − competitive

+ − predator − prey

+ + mutualistic
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Spatial dependence / local mixing: PDE’s

• Intra- and inter-species interactions (as before)

• Fast local movement, but not global mixing

(Ex: random motion of cells; diffusion of individuals
in population)

... some spatial structure (smoothed out and nonrandom)
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Single species example:

u(x, t) = density at position x at time t

∂u

∂t
= ∆u+ ru

(
1− u

K

)
(diffusion + logistic growth)

“Fisher’s equation”

• spatial spread of advantageous allele

• traveling wave front
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traveling wave
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Back to particle systems

-Individual-based dynamics

-All interactions, dispersal, etc. are localized/discrete

-Stochasticity not averaged out

Approximations:

• Mean-field ODE: infinite interaction range (all sites
neighbors)

• Fast-stirring PDE: fast local stirring added to particle
interactions
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Particle flip dynamics

No particle motion. Sites change types via local
interactions.
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Ex. 1. Contact process

• 2 states: vacant = 0, occupied = 1

• ξt(x) ∈ {0, 1} . . . ξt ∈ {0, 1}Zd

• transition rates at site x:
0 → 1 . . . rate β · n1(x)/vr

1 → 0 . . . rate δ

• ni(x) denotes number of type i in neighborhood of x

• Special case: no deaths (δ = 0) =⇒ Richardson’s
growth model

* * * * simulation * * * *
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Behavior of contact process

Critical value C (depending on dimension of lattice Zd)

β/δ < C ⇒ process dies (probability 1)

β/δ > C ⇒ process survives (probability > 0)

C ≈ 1.649 when d = 1; C ≈ 1.412 when d = 2

(Note: branching process has critical value 1.)

14



Comparison with mean-field behavior

• mean-field ODE when δ = 1:

du

dt
= −u+ βu(1− u)

= (β − 1)u (1− β

β − 1
u)

• logistic growth with K = β−1
β = 1− 1

β

• positive equilibrium only when β > 1; suggests
critical growth rate for contact process
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Comparison with reaction-diffusion equation

• fast-stirring limit PDE when δ = 1:

∂u

∂t
= ∆u+ (β − 1)u (1− β

β − 1
u)

• Fisher’s equation: traveling wave solutions

• Suggests shape theorem for contact process
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Where does the RDE come from?

• Interacting Particle Systems. Stochastic with discrete
space, continuous time; characterized by local
interactions.

• Reaction-Diffusion Equations. Deterministic with
continuous space, continuous time.

• A connection: hydrodynamic limits. RDE as scaling
limit of IPS.

• Traveling wave speeds. Dependence on growth rate.
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Generator for flip dynamics

Ex) The flip rates for Richardson’s model (contact process
with no deaths) can be expressed in a generator:

Gf(ξ) = β
∑

ξ(x)=0

n1(x, ξ)
vr

(
f(ξ + δx)− f(ξ)

)
,

where δx is point mass at x.
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Particle exchange dynamics

• Introduce local stirring. (Later combine with flip
dynamics.)

• p(x, y), x, y ∈ Zd . . . transition probability function
that governs local stirring.

• Symmetric nearest-neighbor stirring: p(x, y) = 1/2d
for nearest neighbor x, y (otherwise 0).

• At rate p(x, y), exchange the contents of sites x and
y.

• Generator: Lf(ξ) =
∑

x,y p(x, y)
(
f(ξx,y)− f(ξ)

)
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Properties of exchange dynamics

• particle densities conserved

• Invariant measures given by product measures
(independent sites) with constant density:

να(ξ : ξ(x) = i) = αi,

α = (α1, . . . , αK)

• Scaled limits: scale down spatial scale (factor 1/N)
and speed up time (factor N2). Let N →∞ to get
diffusion (deterministic).
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Hydrodynamic limits

View the particle systems on “squeezed lattice”

Zd
N = {x/N : x ∈ Zd}

with lattice spacing 1/N . As N →∞, Zd
N will become the

continuum Rd.

For particle flip dynamics on Zd
N , use neighborhoods

NN (x) = {y ∈ Zd
N : 0 < ‖y − x‖ ≤ r/N}.

Number of neighbors of a site, v
(N)
r = vr, is independent of

N .
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• Generator for flip dynamics: GN

• Generator for exchange dynamics on Zd
N : LN

• Combine flip dynamics with fast stirring:
LN = GN +N2LN

• ξN
t . . . particle system on Zd

N with generator LN

• empirical measure process:
πN

t = N−d
∑

x∈Zd
N
ξN
t (x)δx converges to solution

u(x, t) of RDE
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• weak formulation: integrate against test functions
φ ∈ C∞c (Rd) to get “density field”

πN
t (φ) = N−d

∑
x∈Zd

N

ξN
t (x)φ(x)

• For multiple particle types, use

πN,i
t (φ) = N−d

∑
x∈Zd

N

φ(x)1(ξN
t (x) = i).

• πN,i
t (φ) →

∫
φ(y)ui(y, t)dy, as N →∞
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Theorem. (Durrett-Neuhauser) Under symmetric
nearest-neighbor stirring, the scaled process ξN

t with
generator LN and initial configuration distributed according
to product measure with P(ξN

0 (x) = i) = gi(x),
i = 0, . . . ,K, has hydrodynamic limit
u(x, t) = (u0(x, t), . . . , uK(x, t)), where ui(x, t) is the
bounded solution of

∂ui

∂t
= ∆ui + fi(u),

ui(x, 0) = gi(x).
(1)
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The reaction term is given by

fi(u) =
∑
j 6=i

〈cji(0, ξ)1(ξ(0) = j)〉u

−
∑
j 6=i

〈cij(0, ξ)1(ξ(0) = i)〉u .

Here, u = (u0, . . . , uK) and 〈· · · 〉u denotes expected value
under product measure (i.e., independent sites) in which
state j has density uj .
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Ex. Richardson’s model with fast stirring

∂u

∂t
= ∆u+ βu(1− u).

Fisher’s equation . . . traveling wave behavior

How does this compare to traveling waves (shape theorem)
for original particle system (Richardson’s model)?
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Traveling wave speeds and growth rates

• Fisher’s equation (hydrodynamic limit of Richardson’s
growth model):

∂u

∂t
= D∆u+ βu(1− u).

=⇒ cmin = 2
√
βD . . . square root dependence on β

• IPS (Richardson’s growth model):

=⇒ cmin ∼ β . . . linear dependence on β

• Caution: RDE provides qualitative info about IPS,
but parameters do not translate exactly.
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Origin of square-root dependence in RDE

∂u

∂t
= D∆u+ βu(1− u)

u(x, t) = U(x− ct). At wavefront, u ≈ 0 so ignore u2 term
(linear approx.):

∂u

∂t
= D∆u+ βu

Linearity =⇒ U(z) ∼ e−sz. Linear diff eqn yields:

c =
β

s
+Ds

cmin = min
s>0

(
β

s
+Ds

)
. Min at s =

√
β
D gives

cmin = 2
√
βD.
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Ex 2. Voter model

• 2 states: “against” = 0, “for” = 1

• ξt(x) ∈ {0, 1}

• transition rates at site x:

0 → 1 . . . rate β · n1(x)

1 → 0 . . . rate β · n0(x)

Voter models used to model “peer pressure,” “competition”
and “population genetics.”

* * * * simulation * * * *
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“biased” and “threshold” voter models

• Biased voter model:

-one type has (selective) advantage: β1 > β0 . . .
“species 1 wins”

• Threshold voter model:

-only make change if there are at least T neighbors of
the opposite type

-enhances clustering

-good model for random environments with varying
degrees of clustering

* * * * simulation * * * *
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Percolation diagram for voter model

Forward time

Construct voter model by randomly placing possible events
along each time line according to the prescribed rates.
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Dual percolation diagram

Backward time / reverse direction of arrows.

Ancestry: coalescing random walk. Voter model clusters in
d = 1, 2; stays well mixed in d ≥ 3
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Ex 3: Spatial epidemic model

• 3 states: Susceptible = S, Infective = I,
Removed = R

• ξt(x) ∈ {S, I,R}

• transition rates at site x:
S → I . . . rate β · n

I
(x)

I → R . . . rate δ

R→ S . . . rate γ (if added, get SIRS model)

If infection spreads fast enough relative to death rate, then
epidemic spreads.

* * * * simulation * * * *
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Comparison with mean-field behavior

• mean-field ODE for SIR (γ = 0):

dS

dt
= −βSI

dI

dt
= βSI − δI

• equilibrium S = δ
β

• Need β > δ for epidemic spread (i.e., R0 = β
δ > 1)
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Ex 4: Spatial epidemic model with mutation

• 4 states: Susceptible = S, wild-type Infective = I1,
mutant Infective = I2, Removed = R

• ξt(x) ∈ {S, I1, I2, R}

• transition rates at site x:
S → I1 . . . rate β1 · nI1

(x)

S → I2 . . . rate β2 · nI2
(x)

Ij → R . . . rate δj , j = 1, 2

• What determines a successful mutant strategy?

* * * * simulation * * * *

35



Comparison with mean-field behavior

• mean-field ODE suggests pathogen with largest βi

δi

will win.

• With spatial structure, β3
i ·

βi

δi
is the critical ratio.

• Spatial structure matters!
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Ex 5. Rock-Scissors-Paper

• 3 states: representing 3 species “nontransitive
predator-prey cycle”

• ξt(x) ∈ {0, 1, 2}

• transition rates at site x:
0 → 1 . . . rate λ1 · n1(x)

1 → 2 . . . rate λ2 · n2(x)

2 → 0 . . . rate λ0 · n0(x)

all contact interactions

* * * * simulation * * * *
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• mean-field ODE:

du0

dt
= λ0u2u0 − λ1u0u1

du1

dt
= λ1u0u1 − λ2u1u2

du2

dt
= λ2u1u2 − λ0u2u0

• Can turn to two equations since u0 = 1− u1 − u2.

• ODE behavior: no coexistence

• Particle system behavior: coexistence! Space matters.
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Ex 6. Virus-host interactions

ssDNA viruses (“phage”)

infect bacterial cells (host)

role of spatial structure and host quality in coexistence of
competing phages
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Phage life cycle

attachment to bacterial host cell→ injection of phage DNA→ reproduction of phage DNA→ packaging and
assembly of phage progeny→ cell lysis and release of phage to environment→ ...
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Phage competition and evolution on plates

Experimental System:

• φX174 and α3 . . . competing lytic phages infecting
host E. coli C on agar plates.

• φX dominates in spatial setting

• burst size vs. latent period

• after “incubation period” (5h or 18h), host cells killed
and some of phage are transferred to fresh hosts
using a replicate picker (“bed of nails”)

• effects of spatial structure, different passage times,
host evolution, phage evolution
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Passaging in experiments

2 phage (viral pathogens), 1 host (but host can develop
resistance)

different levels of spatial structure

2 different incubation times (short and long)
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Structured transfer results

1st row: short incubation (Expt – Sim)
2nd row: long incubation (Expt – Sim)

Surprising experimental result: If incubation time is long enough, weak competitor is able to coexist with
dominant competitor! Only happens when spatial structure maintained. Host quality important.
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Start of first passage

yellow = φX, blue = α3, green = nutrient, red = host cells

Key idea: Resistant (to dominant phage) host cells arise
regularly. Given enough time to spread, they provide
advantageous environment for weak phage inside “enemy
territory.” * * * * simulation * * * *
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Ex 7. Antibiotic resistance and plasmids

Plasmids: circular, extra-chromosomal genetic elements
common in bacteria

• rapid spread of multi-drug resistance in bacteria

• horizontal gene transfer
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Plasmids

plasmid transfer from donor to recipient cell . . . Donor, Recipient, Transconjugant
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Plasmid features

• Horizontal Gene Transfer (bacterial sex)

• rapid non-chromosomal spread of genes for
simultaneous resistance to multiple antibiotics

* accumulation of resistance genes (antibiotics, heavy
metals, ...)

* co-selection (crisis of AB resistance getting out of
hand)
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• contact required for plasmid transfer

– liquid: diffusion + attachment/detachment
dynamics (mating aggregates)

– spatial: attachment more stable =⇒ rapid
transfer possible in certain spatial configurations;
otherwise, wait for contact at “interfaces”

– different dynamics (e.g., density dependence)
*** IPS Simulation ***
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Spatial heterogeneity in bacterial colonies

Fractal-like; peaks and valleys due to differential nutrient
consumption/access
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Limited plasmid transfer on agar plates

No infectious wave of transfer!
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Limited plasmid transfer in biofilms

Very little plasmid transfer inside biofilm.
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2D model features

*interaction ranges for growth, death,
plasmid transfer, nutrient diffusion, antibiotic diffusion ...

*nutrient-dependent plasmid transfer and growth rates
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adding some 3D structure

Over 2D lattice, add several layers: M cells per site allowed with m1 in 1st layer, m2 in 2nd layer, ...

Each layer has its own nutrient-dependent growth rates

Growth in lower layers can push up into next layer

“coupled map lattice” with coupling parameter for amount of interaction/spread between neighboring sites
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local rates

pg ... coupling parameter for growth (prob that offspring is
sent to neighboring site)

pc ... coupling parameter for plasmid transfer

nw
R,i ... number of R’s within focal site at level i

nnbr
R,i ... number of R’s at 8 neighboring sites at level i

fw
V = (M − nw

R − nw
D − nw

T )/M ... fraction of vacant
“space” at focal site

fnbr
V = (8M − nnbr

R − nnbr
D − nnbr

T )/8M ... fraction of
vacant “space” at neighboring sites
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rate at which focal site produces new R:

ψR[(1− pg)fw
V + pgf

nbr
V ] nw

R

rate of production of new T’s by focal site:

ψT [(1− pg)fw
V + pgf

nbr
V ] nw

T

+(γ
T
nw

T + γ
D
nw

D)[(1− pc)fw
R + pcf

nbr
R ]
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plasmid-free sectors
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IPS model used to predict/explain

• factors influencing plasmid invasion (when initially
rare)

• segregation and clonal sectors

• lack of invasive waves of plasmid transfer

• density dependent plasmid transfer that is only
present in spatial cultures
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