PHASE TRANSITIONS FOR INTERACTING DIFFUSIONS

Frank den Hollander

Leiden University and EURANDOM The Netherlands

Joint work with:

Andreas Greven (Erlangen)

§ INTRODUCTION

Consider the following system of interacting diffusions:

$$dX_i(t) = \sum_{j \in \mathbb{Z}^d} a(i, j) [X_j(t) - X_i(t)] dt$$
$$+ \sqrt{bX_i(t)^2} dW_i(t), \qquad i \in \mathbb{Z}^d, t \ge 0.$$

Here,

(1) $a(\cdot, \cdot)$ is an irreducible random walk kernel on $\mathbb{Z}^d \times \mathbb{Z}^d$.

(2) $b \in (0, \infty)$ is a noise parameter.

(3) $\{W_i\}_{i \in \mathbb{Z}^d}$ is a collection of independent standard Brownian motions.

As initial condition we take

 $\{X_i(0)\}_{i\in\mathbb{Z}^d}$

to be a shift-invariant and shift-ergodic random field with mean

 $\mathbb{E}(X_0(0)) = \theta \in (0,\infty).$

The evolution preserves this mean.

The above system was studied in detail in

R.A. Carmona and S.A. Molchanov, *Parabolic Anderson Model and Intermittency*, AMS Memoirs 518, 1994.

In particular, the annealed Lyapunov exponents were analyzed as a function of $a(\cdot, \cdot)$ and b.

In the present talk we focus on the ergodic behavior.

All systems with a subquadratic diffusion function satisfy a simple dichotomy. Let $\hat{a}(i,j) = \frac{1}{2}[a(i,j) + a(j,i)], i, j \in \mathbb{Z}^d$, denote the symmetrized kernel.

(R) If $\hat{a}(\cdot, \cdot)$ is recurrent, then the system locally dies out.

(T) If $\hat{a}(\cdot, \cdot)$ is transient, then the system converges to an equilibrium with all moments finite.

In contrast, the PAM has a much richer behavior, due to the fact that the noise term is of the same order of magnitude as the interaction term, resulting in an interesting competition.

§ MOTIVATION

The Parabolic Anderson Model serves as a testing ground for developing techniques that will hopefully be applicable to a large class of systems for which the ergodic behavior remains unsolved.

Key examples are spatial branching models with various types of competition.

\S MAIN THEOREMS

Theorem 1:

(A) If $\hat{a}(\cdot, \cdot)$ is recurrent, then the system locally dies out for any b > 0.

(B) If $\hat{a}(\cdot, \cdot)$ is transient, then there exist $b_* > b_2 > 0$ such that:

(B1) If $b > b_*$, then the system locally dies out. (B2) If $0 < b < b_*$, then the system converges to an equilibrium ν_{θ} , which has mean θ , is associated and is mixing. (B3) ν_{θ} has finite 2-nd moment if and only if $0 < b < b_2$.

Theorem 2:

(C) If $a(\cdot, \cdot)$ is transient and symmetric, then there exist $b_2 \ge b_3 \ge b_4 \ge \cdots > 0$ such that:

(C1) ν_{θ} has finite *m*-th moment if and only if $0 < b < b_m$. (C2) $b_2 \leq (m-1)b_m < 2$ for all *m*. (C3) $\lim_{m\to\infty} (m-1)b_m = c$ exists.

Three regimes:

- (I) low noise
- (II) moderate noise
- (III) high noise.

Conjecture 3:

(D) The system locally dies out at $b = b_*$. (E) $b_2 > b_3 > b_4 > \dots$

We are able to prove strict inequality for special choices of $a(\cdot, \cdot)$, e.g. $b_2 > b_3 > \cdots > b_m$ when the average number of returns to the origin is $\leq 1/(m-2)$.

The latter is true for m = 3 and simple random walk in $d \ge 3$.

§ REPRESENTATION FORMULA

The starting point for the analysis is the following representation formula, which is due to Shiga (1992) and is valid when $X(0) \equiv \theta$:

$$X_i(t) = \theta e^{-\frac{1}{2}bt} \mathbb{E}_i^{\xi} \Big(\exp\left[\sqrt{b} \int_0^t \sum_{j \in \mathbb{Z}^d} \mathbf{1}_{\{\xi(t-s)=j\}} dW_j(s) \right] \Big),$$

Here, $\xi = (\xi(t))_{t \ge 0}$ is the random walk with kernel $a(\cdot, \cdot)$ and jump rate 1, and the expectation is over ξ conditioned on $\xi(0) = i$ (ξ and W are independent). The representation formula leads to the relation, valid for $m \ge 2$,

$$\mathbb{E}^{W}([X_{0}(t)]^{m} \mid X(0) \equiv \theta) = \theta^{m} \mathbb{E}^{\xi^{(m)}}(\exp\left[bT^{(m)}(t)\right]),$$

where $\xi^{(m)} = (\xi_1, \dots, \xi_m)$ are *m* independent copies of ξ , all starting from 0, and

$$T^{(m)}(t) = \sum_{1 \le k < l \le m} T_{kl}(t),$$
$$T_{kl}(t) = \int_0^t \mathbf{1}_{\{\xi_k(s) = \xi_l(s)\}} ds,$$

is their intersection local time (in pairs) up to time t.

The above observations, together with several comparison, duality and large deviation techniques, lead to:

(1) For $m \ge 2$, $b_m = \sup \left\{ b \colon \mathbb{E}^{\xi^{(m)}} \left(\exp[bT^{(m)}(\infty)] \right) < \infty \right\}.$

(2) $b_* \ge b_{**}$ with $b_{**} = \sup \left\{ b \colon \mathbb{E}^{\xi_1} \left(\exp[bT^{(2)}(\infty)] \mid \xi_2 \right) < \infty \ \xi_2 - a.s. \right\}.$

Ad (1):

With the help of spectral theory, a variational expression can be derived for b_m , $m \ge 2$, which yields sharp bounds.

The theory of quasi-stationary distributions can be invoked to show that explosion occurs also at b_m .

Ad (2):

With the help of Palm theory, a representation can be derived for b_* in terms of a system that is linearly biased through an auxiliary random walk.

The proof that $b_{**} > b_2$ is rather delicate, since it relies on a new large deviation principle for the empirical process of words read off from a random sequence of letters by a renewal process with polynomial tails.