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» Given a symbolic dynamical system (X, T), does there exists
a cellular automaton with a subsystem conjugate to (X, T)?

» Given a sequence on a finite alphabet, does this sequence
occur as a column of a cellular automaton spacetime diagram
with eventually periodic initial conditions?

Let F; denote the finite field with g = p" elements.
Theorem[Litow and Dumas, 1993]

Each column of a linear cellular automaton over g, begun from an
initial condition with finitely many nonzero entries, is necessarily
p-automatic.

Theorem[Rowland, Y, 2012]

If a sequence of elements in I is p-automatic, then it is a column
of a spacetime diagram of a linear cellular automaton with memory
over Fq whose initial conditions are eventually periodic in both
directions. Furthermore, our proof is constructive.



Some pictures

Figure : Spacetime diagram of a linear cellular automaton with memory
12 containing the Thue—Morse sequence as a column.
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Figure : Spacetime diagram of a linear cellular automaton with memory
20 containing the Rudin-Shapiro sequence as a column.



Some pictures

Figure : Spacetime diagram of a linear cellular automaton with memory
27 containing the Baum-Sweet sequence as a column.
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Let X4, ={0,1,...,k—1}.

A deterministic finite automaton with output is a 6-tuple

(S, Xk, 0,50, A,w), where S is a finite set of “states”, sp € S is the
initial state, A is a finite alphabet, w : S — A is the output
function, and § : S x X, — S is the transition function.

We will work only with p-automatic sequences. By injecting A into
some Fq with |A| < g = p”, we can assume A =F,.
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If n= 25:0 ajk’ is the standard base-k representation of n with
0<a <k—1and a #0, define (n), to be the word apa; - -- a.

Definition

A sequence (up)n>0 of elements in A is k-automatic if there is a
DFAO (S, %, 9, so, A,w) such that u, = w(d(so, (n)k)) for all
n>0.

Example: The Thue—Morse sequence is the 2-automatic sequence
(un)n>0=10,1,1,0,1,0,0,1,... where u, = 0 if the number of
occurrences of 1 in the binary representation of n is even and

u, = 1 otherwise.

[Cobham, 1972] A sequence is k-automatic if and only if it is the
image, under a letter-to-letter projection, of a fixed point of a
length-k substitution.
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and all m € Z,

(®(R))(m) = &(R(m — 1), R(m =1 +1),....,R(m+r)). (1)
Conversely, any local rule ¢ defines a cellular automaton ® with
memory using Identity (1).

If A=TFg, then (FZ)*1 and F, are F-vector spaces.

We say that the cellular automaton ¢ : (IFg)Z — IFZ with memory
d is linear if ¢ is an Fg-linear map.

Example

Rule 90 is an LCA, I=r=1 defined over F5; its local rule is
(A2 b ) = 3+ ¢
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Corollaries

Theorem[Rowland, Y, 2012]

If a sequence of elements in [F is p-automatic then it is a column
of a spacetime diagram of a linear cellular automaton with memory
over gy whose initial conditions are eventually periodic in both
directions. Furthermore, the proof is constructive.

Corollary 1

If (up)n>0 is @ p-automatic sequence, then the sequence (up)n>0 is
the letter-to-letter projection of a sequence (v,),>0 which occurs
as a column of a linear cellular automaton (without memory)
whose initial condition is eventually periodic in both directions.
Definition

If u e AN, define X, := {¢"(u) : n € N}. The dynamical system
(Xu, o) is called the (one-sided) subshift associated with u.
Corollary 2

Let u be p-automatic. Then (X,, o) is a factor of a subsystem of
some linear cellular automaton ((Iﬁ‘g)z, ).
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Corollary 3 If (un)n>0 is a p-automatic sequence, then for some
r > 0 the sequence (up)n>, occurs as a column of an invertible
cellular automaton with memory.

My

Figure : Spacetime diagram showing the beginning of the infinite history
of an invertible cellular automaton containing the Rudin—-Shapiro
sequence.
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Characterizations of automaticity that we use in our proof

Recall definitions of Fy[t],F,(t),Fq[[t]], and F4((t)): polynomials,
rational functions, formal power series, formal Laurent series with
coefficients in IF; respectively.

[Christol, Kamae, Mendés-France, Rauzy, 1980 | The sequence
(un)n>0 of elements in Fy is p-automatic if and only if

F(t) =3 ,>0 unt" is algebraic over Fq(t).

Example: If (up) is T-M, then x = F(t) = 3", unt" is a root of
P(t,x) = tx + (1 + t)x® + (1 + t*)x*.

Definition If F(t,x) =), , amnt™x" € Fq((t,x)), the diagonal
of F(t,x)is >, ammt™. 7

[Furstenberg, 1967] The Laurent series F(t) =3 - unt" is
algebraic over [Fq(t) if and only if it is the diagonal of a rational
Laurent series in two variables over that field.

Christol's theorem combined with Furstenberg's theorem imply that
if (up) is p-automatic, then (u,) can be realized as the diagonal of
a quarter-lattice array of elements in g which is the formal power

series expansion of E(t,x) = g((i))g where P, Q € Fq[t, x].
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up as a column in this diagram, and, under suitable choice of the
polynomials, show that you end up with space-time diagram of a
linear cellular automaton with memory.



Heuristic: Rotate this quarter array clockwise so that (u,) shows
up as a column in this diagram, and, under suitable choice of the
polynomials, show that you end up with space-time diagram of a
linear cellular automaton with memory.

In particular the proof of Furstenberg's theorem implies that if (up)
is automatic, ugp = 0, P(t, F(t))=0 and

P«(0,0) = Ll tX)| (0,0) 7 0, then F(t) is the '-2 column’ of of
Py (t, x)
P(t,x)

Example: If P(t,x) = (£2+ t) + x + (t + t2)x% + (£° + t°)x*, and
(un)n>0 is T-M, then P(t, Zn23 unt"_2) —0 and an?’ Uyt is
the -2 column of

P.(t,x) 1 1 x—P(t,x)\" .,
P(t,x)  x—(x— P(t,x)) _XZ( tx > t

n>0

1 1 )
=ttt GHlx )2+
X X
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Sketch of proof of main result

We shall show that for some r, the shifted sequence u,41, Ury2, ...
can be found as a column of a spacetime diagram of a linear
cellular automaton with memory.

Suppose that G(t) = >, <1 Unt,t" is a root of

P(t,x) = 3T, Ai(t)xP + B(t) = ax + tQ(t, x) where a # 0.
We can use Furstenberg’s proof to show that G(t) is Column —2

f Py (t,x)
O Bl x) -
Now expand to get a series in t:

Pe(t,x) Px(t,x) 1
P(t,x) ax 1+ fQ(fX)
Px(t,X) Q
= = - Ra(
O (U) =X

As ax is a monomial, each R,(x) is a Laurent polynomial.
It remains to show that this 2-d array is the spacetime diagram o
a cellular automaton with memory.



Multiplying both sides by P(t, x) gives

d
=D G R =D D GRi(x) | t7
i=0 j>0 n>0 \i+j=n
d n
:Z(ZC >t+z (ZC )
n=0 = n>d+1

and since Py(t, x) is a polynomial with deg, Px(t,x) < d, we have
S o Ci(x)Ra—i(x) = 0 for all n > d + 1. Solving for R,(x) gives

i=0
d
G
Sy g
ax

i=1

Ra(x) =

||MCL

o(X

for all n > d + 1, where each % is a Laurent polynomial in x.



Technical lemma Suppose that F(t) = >, 5o unt" € Fg((t)) is
algebraic over Fq(t). Then G(t) € Fq((t)) and P(t,x) € Fq[t, x]
of the form

d
P(t,x) = B(t)+ > Ai(t)x" =>_ G(x)t’

can be computed such that

F(t) = R(t) + t"G(t) for some r > 0 and R(t) € Fg[t],
P(t, G(t)) = 0.

G(0) =0,

Co(x) = Ao(0)x is nonzero, A;j(0) = B(0) =0, 1 <i<m,

C4(x) is a nonzero monomial,

oA~ b

so that (u,) can be realized as a column of an invertible linear
cellular automaton with memory.



Technical lemma Suppose that F(t) = >, 5o unt" € Fg((t)) is
algebraic over Fq(t). Then G(t) € Fq((t)) and P(t,x) € Fq[t, x]
of the form

d
P(t,x) = B(t)+ > Ai(t)x" =>_ G(x)t’

can be computed such that

F(t) = R(t) + t"G(t) for some r > 0 and R(t) € Fg[t],
P(t, G(t)) = 0.

G(0) =0,

Co(x) = Ao(0)x is nonzero, A;j(0) = B(0) =0, 1 <i<m,

C4(x) is a nonzero monomial,

oA~ b

so that (u,) can be realized as a column of an invertible linear
cellular automaton with memory. If in addition, A,,(t) and B(t)
are monomials of degree d, then (X,,0) can be realized as a
subsystem of a linear cellular automaton.
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Some questions

» Each automatic sequence can be realised as a (one sided)
column in an invertible cellular automaton with memory. Does
every letter-to-letter projection of a bi-infinite fixed point of a
length p substitution occur as a column of a bi-infinite
spacetime diagram?

» Which k-automatic sequences (if k is not a prime power)
occur as columns of cellular automaton spacetime diagrams?

» Does there exist a (non-eventually-periodic) 3-automatic
sequence (up)n>0 on F2 such that (u,) occurs as a column of
a 2-state spacetime diagram? The CA rule cannot be linear
over Fy, since a sequence which is both 2-automatic and
3-automatic is eventually periodic by Cobham’s theorem.



