"Confluence" in Ito-Sadahiro number systems

Tomáš Vávra

Joint work with D. Dombek and Z. Masáková

Department of Mathematics

FNSPE CTU in Prague

Vancouver

06/07/2013

A - A - A

Let

$$T_{eta}: [0,1)
ightarrow [0,1), \quad T_{eta}(x) = eta x - \lfloor eta x
floor$$

Then

$$x = \frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \dots, \quad \text{where } x_i = \lfloor \beta T^{i-1}(x) \rfloor$$

denote $d_\beta(x) = x_1 x_2 x_3 \dots \in \{0, 1, \dots, \lceil \beta \rceil - 1\}^{\mathbb{N}}.$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$\beta$$
-expansions

Let

$$\mathcal{T}_{eta}: [0,1)
ightarrow [0,1), \quad \mathcal{T}_{eta}(x) = eta x - \lfloor eta x
floor$$

Then

$$x = \frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \dots, \quad \text{where } x_i = \lfloor \beta T^{i-1}(x) \rfloor$$

Henote $d_{\beta}(x) = x_1 x_2 x_2 \dots \in \{0, 1, \dots, \lceil \beta \rceil - 1\}^{\mathbb{N}}.$

イロト イヨト イヨト イヨト 三日

$$\beta$$
-expansions

Let

$$\mathcal{T}_{eta}: [0,1)
ightarrow [0,1), \quad \mathcal{T}_{eta}(x) = eta x - \lfloor eta x
floor$$

Then

$$x = \frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \dots, \quad \text{where } x_i = \lfloor \beta T^{i-1}(x) \rfloor$$

We denote $d_{\beta}(x) = x_1 x_2 x_3 \cdots \in \{0, 1, \dots, \lceil \beta \rceil - 1\}^{\mathbb{N}}$.

イロト イロト イヨト イヨト 三日

$$\beta$$
-expansions

Let

$$\mathcal{T}_{eta}: [0,1)
ightarrow [0,1), \quad \mathcal{T}_{eta}(x) = eta x - \lfloor eta x
floor$$

Then

$$x = rac{x_1}{eta} + rac{x_2}{eta^2} + rac{x_3}{eta^3} + \dots, \quad ext{where } x_i = \lfloor eta \, T^{i-1}(x)
floor$$

We denote $d_{eta}(x) = x_1 x_2 x_3 \dots \in \{0, 1, \dots, \lceil eta
ceil - 1\}^{\mathbb{N}}.$

イロト イロト イヨト イヨト 三日

Theorem (W. Parry)

A sequence $x = x_1 x_2 x_3 \dots$ is β -admissible iff for each $i \ge 1$

$$0^{\omega} \preceq_{\mathrm{lex}} x_i x_{i+1} x_{i+2} \cdots \prec_{\mathrm{lex}} \lim_{\varepsilon \to 0^+} d_{\beta}(1-\varepsilon).$$

Ordering on \mathbb{R} corresponds to the lexicographic ordering of $d_{\beta}(x)$.

Expansion $d_{\beta}(x)$ is the biggest amongst all the representations in lexicographic order.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem (W. Parry)

A sequence $x = x_1 x_2 x_3 \dots$ is β -admissible iff for each $i \ge 1$

$$0^{\omega} \leq_{\mathrm{lex}} x_i x_{i+1} x_{i+2} \cdots \prec_{\mathrm{lex}} \lim_{\varepsilon \to 0^+} d_{\beta}(1-\varepsilon).$$

Ordering on \mathbb{R} corresponds to the lexicographic ordering of $d_{\beta}(x)$.

Expansion $d_{\beta}(x)$ is the biggest amongst all the representations in lexicographic order.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Theorem (W. Parry)

A sequence $x = x_1 x_2 x_3 \dots$ is β -admissible iff for each $i \ge 1$

$$0^{\omega} \preceq_{\mathrm{lex}} x_i x_{i+1} x_{i+2} \cdots \prec_{\mathrm{lex}} \lim_{\varepsilon \to 0^+} d_{\beta}(1-\varepsilon).$$

Ordering on \mathbb{R} corresponds to the lexicographic ordering of $d_{\beta}(x)$.

Expansion $d_{\beta}(x)$ is the biggest amongst all the representations in lexicographic order.

$$(-\beta)$$
-expansions

Now for $\beta > 1$ we would like to write numbers as $\sum_{i \leq N} a_i (-\beta)^i$.

Let
$$\mathcal{I} = \left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1} \right) = [\ell, \ell+1)$$
 and
 $T_{-\beta} : \mathcal{I} o \mathcal{I}, \quad T_{-\beta}(x) = -\beta x - \lfloor -\beta x - \ell \rfloor$

Then

 $\begin{aligned} x &= \frac{x_1}{-\beta} + \frac{x_2}{(-\beta)^2} + \frac{x_3}{(-\beta)^3} + \dots, \quad \text{where } x_i = \lfloor -\beta T^{i-1}(x) - \ell \rfloor. \end{aligned}$ We denote $d_{-\beta}(x) = x_1 x_2 x_3 \dots \in \{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}}. \end{aligned}$

$$(-\beta)$$
-expansions

Now for $\beta > 1$ we would like to write numbers as $\sum_{i \le N} a_i (-\beta)^i$.

Let
$$\mathcal{I} = \left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1} \right) = [\ell, \ell+1)$$
 and
 $\mathcal{T}_{-\beta} : \mathcal{I} \to \mathcal{I}, \quad \mathcal{T}_{-\beta}(x) = -\beta x - \lfloor -\beta x - \ell \rfloor$

Then

 $x = \frac{x_1}{-\beta} + \frac{x_2}{(-\beta)^2} + \frac{x_3}{(-\beta)^3} + \dots, \quad \text{where } x_i = \lfloor -\beta T^{i-1}(x) - \ell \rfloor.$ We denote $d_{-\beta}(x) = x_1 x_2 x_3 \dots \in \{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}}.$

$$(-\beta)$$
-expansions

Now for $\beta > 1$ we would like to write numbers as $\sum_{i \leq N} a_i (-\beta)^i$.

Let
$$\mathcal{I} = \left[-rac{eta}{eta+1}, rac{1}{eta+1}
ight) = [\ell, \ell+1)$$
 and
 $\mathcal{T}_{-eta}: \mathcal{I} o \mathcal{I}, \quad \mathcal{T}_{-eta}(x) = -eta x - \lfloor -eta x - \ell
floor$

Then

$$\begin{aligned} x &= \frac{x_1}{-\beta} + \frac{x_2}{(-\beta)^2} + \frac{x_3}{(-\beta)^3} + \dots, \quad \text{where } x_i = \lfloor -\beta T^{i-1}(x) - \ell \rfloor. \end{aligned}$$

We denote $d_{-\beta}(x) = x_1 x_2 x_3 \dots \in \{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}}. \end{aligned}$

$$(-\beta)$$
-expansions

Now for $\beta > 1$ we would like to write numbers as $\sum_{i \leq N} a_i (-\beta)^i$.

Let
$$\mathcal{I} = \left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1} \right) = [\ell, \ell+1)$$
 and
 $\mathcal{T}_{-\beta} : \mathcal{I} \to \mathcal{I}, \quad \mathcal{T}_{-\beta}(x) = -\beta x - \lfloor -\beta x - \ell \rfloor$

Then

$$x = \frac{x_1}{-\beta} + \frac{x_2}{(-\beta)^2} + \frac{x_3}{(-\beta)^3} + \dots, \quad \text{where } x_i = \lfloor -\beta T^{i-1}(x) - \ell \rfloor.$$

We denote $d_{-\beta}(x) = x_1 x_2 x_3 \dots \in \{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}}.$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

Admissibility

Theorem (S. Ito, T. Sadahiro)

A string $x_1x_2x_3...$ is $(-\beta)$ -admissible iff for each $n \ge 1$

$$d_{-eta}(\ell) \preceq_{\mathrm{alt}} x_i x_{i+1} x_{i+2} \cdots \prec_{\mathrm{alt}} \lim_{\varepsilon o 0^+} d_{-eta}(\ell+1-\varepsilon)$$

When $x \notin \mathcal{I}$, we divide by a suitable power of $(-\beta)$ and expand $x/(-\beta)^k$.

When $d_{-\beta}(x/(-\beta)^k) = x_1x_2...$, we denote

$$\langle x \rangle_{-\beta} = x_1 \dots x_k \bullet x_{k+1} \dots \approx x_1 (-\beta)^{k-1} + \dots + x_k (-\beta)^0 + \dots$$

イロト 不得 トイヨト イヨト 二日

Theorem (S. Ito, T. Sadahiro)

A string $x_1x_2x_3...$ is $(-\beta)$ -admissible iff for each $n \ge 1$

$$d_{-eta}(\ell) \preceq_{\mathrm{alt}} x_i x_{i+1} x_{i+2} \cdots \prec_{\mathrm{alt}} \lim_{\varepsilon o 0^+} d_{-eta}(\ell+1-arepsilon)$$

When $x \notin \mathcal{I}$, we divide by a suitable power of $(-\beta)$ and expand $x/(-\beta)^k$.

When $d_{-\beta}(x/(-\beta)^k) = x_1 x_2 \dots$, we denote

$$\langle x \rangle_{-\beta} = x_1 \dots x_k \bullet x_{k+1} \dots \approx x_1 (-\beta)^{k-1} + \dots + x_k (-\beta)^0 + \dots$$

$$(-\beta)$$
-integers

We define $(\pm\beta)$ -integers as

$$\mathbb{Z}_{\beta} = \{ x \in \mathbb{R} \mid \langle |x| \rangle = x_1 \dots x_k \bullet 0^{\omega} \} = \bigcup_{n \ge 0} \beta^n T_{\beta}^{-n}(0)$$
$$\mathbb{Z}_{-\beta} = \{ x \in \mathbb{R} \mid \langle x \rangle = x_1 \dots x_k \bullet 0^{\omega} \} = \bigcup_{n \ge 0} (-\beta)^n T_{-\beta}^{-n}(0)$$

By coding gaps in $\mathbb{Z}_{-\beta}$ by letters of an alphabet, one gets a bidirectional infinite word u_{β} , resp. $u_{-\beta}$.

The words u_{β} and $u_{-\beta}$ are invariant under substitution.

Substitutions are over a finite alphabet for $d_{\beta}(1)$, resp $d_{-\beta}(\ell)$ eventually periodic

Confluence

$$(-\beta)$$
-integers

We define $(\pm\beta)$ -integers as

$$\mathbb{Z}_{\beta} = \{ x \in \mathbb{R} \mid \langle |x| \rangle = x_1 \dots x_k \bullet 0^{\omega} \} = \bigcup_{n \ge 0} \beta^n T_{\beta}^{-n}(0)$$
$$\mathbb{Z}_{-\beta} = \{ x \in \mathbb{R} \mid \langle x \rangle = x_1 \dots x_k \bullet 0^{\omega} \} = \bigcup_{n \ge 0} (-\beta)^n T_{-\beta}^{-n}(0)$$

By coding gaps in $\mathbb{Z}_{-\beta}$ by letters of an alphabet, one gets a bidirectional infinite word u_{β} , resp. $u_{-\beta}$.

The words u_{β} and $u_{-\beta}$ are invariant under substitution.

Substitutions are over a finite alphabet for $d_{\beta}(1)$, resp $d_{-\beta}(\ell)$ eventually periodic

$$(-\beta)$$
-integers

We define $(\pm\beta)$ -integers as

$$\mathbb{Z}_{\beta} = \{ x \in \mathbb{R} \mid \langle |x| \rangle = x_1 \dots x_k \bullet 0^{\omega} \} = \bigcup_{n \ge 0} \beta^n T_{\beta}^{-n}(0)$$
$$\mathbb{Z}_{-\beta} = \{ x \in \mathbb{R} \mid \langle x \rangle = x_1 \dots x_k \bullet 0^{\omega} \} = \bigcup_{n \ge 0} (-\beta)^n T_{-\beta}^{-n}(0)$$

By coding gaps in $\mathbb{Z}_{-\beta}$ by letters of an alphabet, one gets a bidirectional infinite word u_{β} , resp. $u_{-\beta}$.

The words u_{β} and $u_{-\beta}$ are invariant under substitution.

Substitutions are over a finite alphabet for $d_{\beta}(1)$, resp $d_{-\beta}(\ell)$ eventually periodic

 $\mathbb{Z}_{-\beta} = \{0\}$ iff $\beta < \frac{1+\sqrt{5}}{2}$. This never happens for \mathbb{Z}_{β} .

 \mathbb{Z}_{β} is relatively dense, i.e. lengths of gaps are < K.

W. Steiner: $\mathbb{Z}_{-\beta}$ does not have to be uniformly discrete nor relatively dense.

イロト 不得 トイヨト イヨト

 $\mathbb{Z}_{-\beta} = \{0\}$ iff $\beta < \frac{1+\sqrt{5}}{2}$. This never happens for \mathbb{Z}_{β} .

 \mathbb{Z}_{β} is relatively dense, i.e. lengths of gaps are < K.

W. Steiner: $\mathbb{Z}_{-\beta}$ does not have to be uniformly discrete nor relatively dense.

 $\mathbb{Z}_{-\beta} = \{0\}$ iff $\beta < \frac{1+\sqrt{5}}{2}$. This never happens for \mathbb{Z}_{β} .

 \mathbb{Z}_{β} is relatively dense, i.e. lengths of gaps are < K.

W. Steiner: $\mathbb{Z}_{-\beta}$ does not have to be uniformly discrete nor relatively dense.

 $\mathbb{Z}_{-\beta} = \{0\}$ iff $\beta < \frac{1+\sqrt{5}}{2}$. This never happens for \mathbb{Z}_{β} .

 \mathbb{Z}_{β} is relatively dense, i.e. lengths of gaps are < K.

W. Steiner: $\mathbb{Z}_{-\beta}$ does not have to be uniformly discrete nor relatively dense.

Motivation

Lemma

Let $\beta > 1$ be root of $x^2 - mx - m$, $m \ge 1$. Then

$$\mathbb{Z}_{-eta} = ig\{ \sum_{i \geq \mathbf{0}} \mathsf{a}_i (-eta)^i \mid \mathsf{a}_i \in \mathcal{A}_{-eta} ig\}$$

For β -numeration, we have the following theorem

Theorem (Ch. Frougny)

Let $\beta > 1$ then the following conditions are equivalent:

•
$$\beta$$
 is root of $x^k - mx^{k-1} - \cdots - mx - n$ for $m \ge n \ge 1$.

< 日 > < 同 > < 三 > < 三 >

Motivation

Lemma

Let $\beta > 1$ be root of $x^2 - mx - m$, $m \ge 1$. Then

$$\mathbb{Z}_{-eta} = ig\{ \sum_{i \geq 0} \mathsf{a}_i (-eta)^i \mid \mathsf{a}_i \in \mathcal{A}_{-eta} ig\}$$

For $\beta\text{-numeration},$ we have the following theorem

Theorem (Ch. Frougny)

Let $\beta > 1$ then the following conditions are equivalent:

9
$$\beta$$
 is root of $x^k - mx^{k-1} - \cdots - mx - n$ for $m \ge n \ge 1$.

2
$$\mathbb{Z}_{\beta} = \left\{ \sum_{i \geq 0} a_i \beta^i \mid a_i \in \{0, 1, \dots \lfloor \beta \rfloor \} \right\}.$$

イロト イポト イヨト イヨト

э

Theorem (D. Dombek, Z. Masáková, V.)

Let $\beta > 1$. Then three following conditions are equivalent:

• β is root of $x^k - mx^{k-1} - \dots - mx - n$, where $m \ge n \ge 1$ and m = n for k even.

$$\mathbb{Z}_{-\beta} = \left\{ \sum_{i \geq 0} a_i (-\beta)^i \mid a_i \in \mathcal{A}_{-\beta} \right\}.$$

Substitutions fixing u_{β}^+ and $u_{-\beta}$ are conjugate.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQの

You will see $1) \Rightarrow 2$ and consequently $1) \Rightarrow 3$ on the blackboard.

・ロト ・ 一 ト ・ ヨト ・ ヨト

Confluence property implies spaces in $\mathbb{Z}_{-\beta}$ are ≤ 1 .

It follows that $d_{-\beta}(\ell) = m 0 m 0 \dots m 0 a b \dots$, $ab \neq m 0$.

We take the shortest forbidden string 1m0m0...0m where m is the maximal digit.

イロン 不同 とくほう イロン

Confluence property implies spaces in $\mathbb{Z}_{-\beta}$ are ≤ 1 .

It follows that $d_{-\beta}(\ell) = m 0 m 0 \dots m 0 a b \dots$, $ab \neq m 0$.

We take the shortest forbidden string 1m0m0...0m where m is the maximal digit.

Confluence property implies spaces in $\mathbb{Z}_{-\beta}$ are ≤ 1 .

It follows that $d_{-\beta}(\ell) = m 0 m 0 \dots m 0 a b \dots$, $ab \neq m 0$.

We take the shortest forbidden string 1m0m0...0m where m is the maximal digit.

One can show that admissible transcription is of the form

From $d_{-\beta}(\ell)$ we can derive constraints for $a_1a_2...a_k$ which lead to our polynomials.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

One can show that admissible transcription is of the form

$$1 m 0 m 0 \dots m \bullet = 0 0 a_1 a_2 a_3 \dots a_k \bullet$$

From $d_{-\beta}(\ell)$ we can derive constraints for $a_1a_2...a_k$ which lead to our polynomials.

In $\beta\text{-systems, rewriting system associated to }\beta$ was confluent.

The $(-\beta)$ -rewriting system is not confluent, e.g. for $\beta = \frac{1+\sqrt{5}}{2}$ we have

 $1\bullet = 110\bullet = 11010\bullet = \dots$

Arithmetics of confluent $\pm\beta$?

- If β is +confluent then the set of numbers with finite expansion forms a ring.
- If β is -confluent then m + 1 has infinite expansion.

イロト 不得 トイヨト イヨト

In $\beta\text{-systems, rewriting system associated to }\beta$ was confluent.

The $(-\beta)$ -rewriting system is not confluent, e.g. for $\beta = \frac{1+\sqrt{5}}{2}$ we have

 $1\bullet = 110\bullet = 11010\bullet = \dots$

Arithmetics of confluent $\pm\beta$?

- If β is +confluent then the set of numbers with finite expansion forms a ring.
- If β is -confluent then m + 1 has infinite expansion.

In $\beta\text{-systems, rewriting system associated to }\beta$ was confluent.

The $(-\beta)$ -rewriting system is not confluent, e.g. for $\beta = \frac{1+\sqrt{5}}{2}$ we have

$$1 \bullet = 110 \bullet = 11010 \bullet = \dots$$

Arithmetics of confluent $\pm\beta$?

- If β is +confluent then the set of numbers with finite expansion forms a ring.
- If β is -confluent then m+1 has infinite expansion.

- Study of optimal representations (K. Dajani et al.)
- Study of Rauzy fractals and reversal invariant language of u_{eta} (J. Bernat)
- Description of spectra of numbers (D. Garth & K. Hare)
 Study of the set

$$X^{(m)}(\beta) := \big\{ \sum_{i \ge 0} a_i \beta^i \mid a_i \in \{0, 1, \dots, m\} \big\}.$$

- Study of optimal representations (K. Dajani et al.)
- Study of Rauzy fractals and reversal invariant language of u_{eta} (J. Bernat)
- Description of spectra of numbers (D. Garth & K. Hare)
 Study of the set

$$X^{(m)}(\beta) := \big\{ \sum_{i \ge 0} a_i \beta^i \mid a_i \in \{0, 1, \dots, m\} \big\}.$$

Ch. Kalle: Let $\beta \in (1,2)$ then T_{β} and $T_{-\beta}$ are measurably isomorphic iff β is root of $x^{k} - x^{k-1} - \cdots - x - 1$.

Conjecture: This holds also for roots of

$$x^k - mx^{k-1} - \dots - mx - n, \quad m \ge n \ge 1.$$

This property is not exactly our confluence.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Ch. Kalle: Let $\beta \in (1,2)$ then T_{β} and $T_{-\beta}$ are measurably isomorphic iff β is root of $x^{k} - x^{k-1} - \cdots - x - 1$.

Conjecture: This holds also for roots of

$$x^k - mx^{k-1} - \cdots - mx - n, \quad m \ge n \ge 1.$$

This property is not exactly our confluence.

イロン 不同 とくほう イロン

Ch. Kalle: Let $\beta \in (1,2)$ then T_{β} and $T_{-\beta}$ are measurably isomorphic iff β is root of $x^{k} - x^{k-1} - \cdots - x - 1$.

Conjecture: This holds also for roots of

$$x^k - mx^{k-1} - \cdots - mx - n, \quad m \ge n \ge 1.$$

This property is not exactly our confluence.

イロト 不得 トイヨト イヨト 二日

Thank you for your attention!

Confluence

伺 ト く ヨ ト く ヨ ト