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Block codes and sofic shifts

Ab iant map defined/locally
e A I
{ J
\ /
[ N
] \
{ p)
\ |
. [
\ \

block code = continuous map.
The image of a subshift by a block code is called a factor.
Factors of SFTs form the class of sofic shifts.

SFTs are sofic, but sofic shifts are not necessarily SFTs.
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Effective shifts

An effective subshift is a subshift definable by a recursively
enumerable set of forbidden patterns.

Sofic shifts are effective, but effective shifts are not
necessarily sofic.

Remember Emmanuel’s talk’s example.
Example (1d): the forbidden patterns are the words awawa for

any word w and letter g, this is the Thue-Morse shift
(aperiodic).
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What I'm going to talk about

In this talk, we will investigate the difficulty of the relations
induced by several block code types:

e Conjugacy
e Factorization
e Embedding

Don't worry, I'll (re!)define them all!

L For most of you.
420
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(Un)Decidability of conjugacy
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(Un)Decidability of conjugacy

Can we decide whether two SFTs are conjugate?
e The problem is undecidable in dimension 2.
e The problem is decidable in dimension 1 on IN.

e The problem is open in dimension 1 on Z.
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But how hard?
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But how hard?

):(1): recursively enumerable

1_[(1): co-recursively enumerable ):(2)

1_[2_1 oracle.

I19: co-recursively enumerable with
some 2271 oracle.
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But how hard?

Reduction: A < B iff there exists a total
computable function f such that: Y I}

Vx, xeBe f(x)eA

Definition A problem is complete if it can
solve all problems of the class. Eg

° E? : knowing if a Turing machine halts
(HP)

° Hg : knowing if a Turing machine halts ):(1)
on all inputs (TOT)

° Zg : knowing if the number of inputs on
which a Turing machine does not halt is
finite (COFIN)

1. Conjugacy 7/20
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Complexity of conjugacy

Theorem For any fixed SFT X, given an SFT Y deciding
whether X is conjugate to Y is E?—complete.

Remark SFTs are represented by integers

Remark Block codes are represented by integers

The inputs are these integers.
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Complexity of conjugacy

Theorem For any fixed SFT X, given an SFT Y deciding
whether X is conjugate to Y is Zg—complete.

Idea of the proof :
Conjugacy is 2(1) :

IF, G, (F(X) S Y)A(G(Y) S X)A(F oG = idx) A(Go F = idy)

b2 b b b

b

e Guess two block codes F and G.

e Check if they form a conjugacy function.
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Complexity of conjugacy

Theorem For any fixed SFT X, given an SFT Y deciding
whether X is conjugate to Y is Zg—complete.

Idea of the proof :

Conjugacy is E(l)—hard, reduction from the halting problem :
e R); an SFT which is empty iff M halts.
e n greater than the size of the alphabet of X.
X ’; X LRy % {0,...,14}Zz
e If Ry is empty, then X and X LI Ry X {0,...,11}Zz are equal.
e Otherwise X and X LI Ry X {0,...,n}Zz are not conjugate.
O
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Complexity of conjugacy (sofic & effective)

Theorem Given X, Y two effective (resp. sofic of dimension
d > 2) subshifts, deciding whether X is conjugate to Y is
Zg—complete.

Deciding if F(X) C Y is now Hg.
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(X)CVYis

> b
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Theorem Given X, Y two effective (resp. sofic of dimension
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Definition A subshift Y is a factor of a subshift X, if there
exists a surjective block code F: X —> Y.

ie. F(X)=Y

Remark Factorization can be seen as a sort of simulation.
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Complexity of factorization

How hard is factorization?

e At least Z?—hard:
Factorization to the empty subshift.
e At least H(l)—hard:

Factorization to the single configuration subshift.

Theorem Given two SFTs X, Y (resp. effective, sofic), deciding
whether X factorizes onto Y is Zg—complete.
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Upper-Bound

Theorem Factorization is Zg.

Proof scheme :

3F,F(X)CYAY CF(X)
—_—— —
b2 I3

Manipulation of logical formulae using compactness of shift
spaces.
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Lower-Bound

Theorem Factorization is ):g—hard.

Proof by reduction from COFIN : the set of Turing machines
that run infinitely on a finite number of inputs only.

From any Turing machine M, we construct two SFTs X, Y
such that X, factors on Y, iff M € COFIN

e We need to be able to embed some computation in X,,, Yy,

e We need some control on the structure

2. Factorization 13/20



Lower-Bound : the Construction
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Why is such a construction interesting?

Definition A subshift has T-structure if it is formed of this SFT
with something on the grid only.

Let X, Y be two subshifts with T-structure with F(X) =Y, then

. . F . .
a-configuration — a-configuration.

Shifted at most by the radius of F.
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Lower Bound: the reduction
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Lower Bound: the reduction

When {n | M(n) T} is infinite,
there are points with
computation starting
arbitrarily far from the start.

When {n | M(n) T} is finite,
there is an N such that no
computation starts after N.
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Lower Bound: the reduction

When {n | M(n)1} is infinite,
there are points with
computation starting
arbitrarily far from the start.

When {n| M(n)1} is finite,
there is an N such that no
computation starts after N.
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Lower Bound: the reduction

XM

Suppose {n | M(n) T} is infinite and that there exists a factor

map F: X — Y of radius r.

2. Factorization
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Lower Bound: the reduction

An infinity of Q) in Y); don't have a preimage.
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Lower Bound: the reduction

XM

When it is finite, just take the radius so that it covers the

largest element.
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Embedding

Definition A subshift X embeds into a subshift Y if there
exists an injective block code F: X —> Y.

Theorem Given two SFTs X, Y, deciding whether X embeds
into Y is 2?.

Again, the proof is a mix of compactness and formula
manipulations.
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Embedding

Theorem Given two SFTs X, Y, deciding whether X embeds
into Y is Z?—hard.

Let X,Y be two subshifts with T-structure with X ~ Y, then

. . F . .
a-configuration — a-configuration.

Shifted at most by the radius of F.
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Embedding: the reduction

XM YM

M halts on no input.
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Embedding: the reduction

XM Ym

When the machine halts take F to have as radius the time
that the machine takes to halt.
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When the machine does not halt, the two grids have the same
image.
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Conclusion

Factorization

Conjugacy
SFTs E(l)—complete Eg—complete
Sofic Eg—com plete Eg—com plete

Effective Eg-com plete Eg-com plete

3. Embedding

Embedding
E(l)—complete
?
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