Hardness of Conjugacy, Embedding and Factorization in multidimensional SFTs

Emmanuel Jeandel, Pascal Vanier

Einstein Institute of Mathematics, Hebrew University of Jerusalem LIF, Aix-Marseille Université

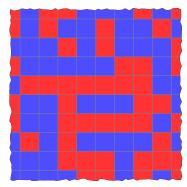
Automata theory and Symbolic Dynamics Workshop

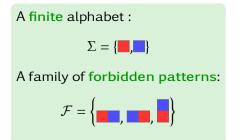
A finite alphabet :

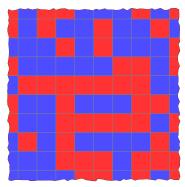
 $\Sigma = \{\blacksquare, \blacksquare\}$

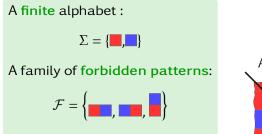
\sim	$ \rightarrow $	~		\sim	\sim	~	\sim	
/								l '
	-							-
								, I
								-(
								1
	1 1							
								<u>ر ا</u>
5								
1								1
								· ۱
1								
> +	+ +							
(
								\vdash
			-	-			_	L

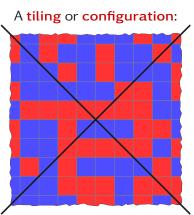
A finite alphabet :

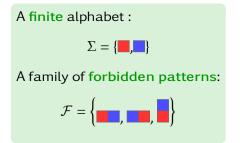


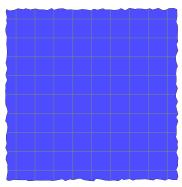


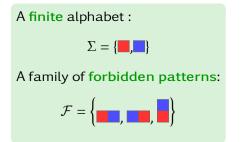


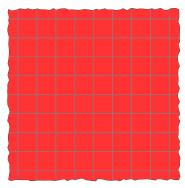


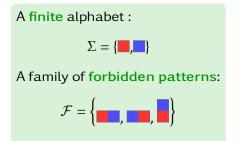


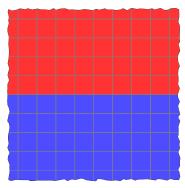


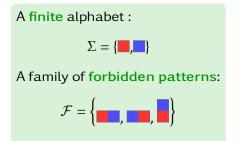


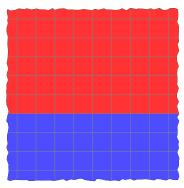


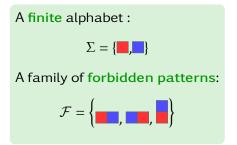






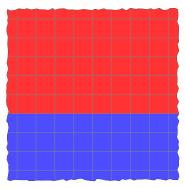


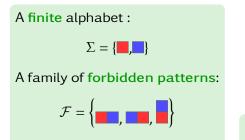




Subshift: set of all configurations avoiding \mathcal{F} , denoted $\mathcal{X}_{\mathcal{F}}$:

$$\mathcal{X}_{\mathcal{F}} = \left\{ \begin{array}{c} \\ \end{array}, \end{array}, \begin{array}{c} \\ \end{array}, \end{array}, \right\}$$





Subshift: set of all configurations avoiding \mathcal{F} , denoted $\mathcal{X}_{\mathcal{F}}$:

$$\mathcal{X}_{\mathcal{F}} = \left\{ \begin{array}{c} \\ \end{array}, \end{array}, \begin{array}{c} \\ \end{array}, \end{array}, \right\}$$

The number of forbidden patterns may be finite, the generated space is then a subshift of finite type (SFT).

A finite alphabet :

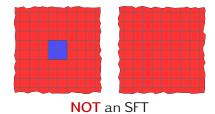
A family of forbidden patterns:

 $\mathcal{F} = \left\{ \blacksquare \blacksquare, \blacksquare \blacksquare, \blacksquare \right\}$

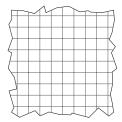
The number of forbidden patterns may be finite, the generated space is then a subshift of finite type (SFT).

Subshift: set of all configurations avoiding \mathcal{F} , denoted $\mathcal{X}_{\mathcal{F}}$:

$$\mathcal{X}_{\mathcal{F}} = \left\{ \begin{array}{c} \mathbf{m} \\ \mathbf{m} \\$$



A block code is a shift invariant map defined locally.

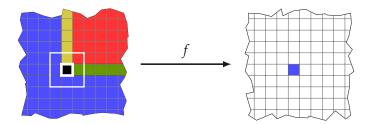


block code = continuous map.

The image of a subshift by a block code is called a factor.

Factors of SFTs form the class of sofic shifts.

A block code is a shift invariant map defined locally.

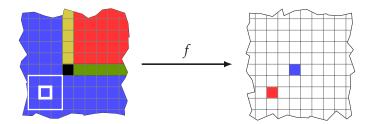


block code = continuous map.

The image of a subshift by a block code is called a factor.

Factors of SFTs form the class of sofic shifts.

A block code is a shift invariant map defined locally.

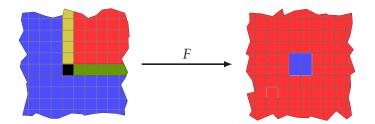


block code = continuous map.

The image of a subshift by a block code is called a factor.

Factors of SFTs form the class of sofic shifts.

A block code is a shift invariant map defined locally.



block code = continuous map.

The image of a subshift by a block code is called a factor.

Factors of SFTs form the class of sofic shifts.

An effective subshift is a subshift definable by a recursively enumerable set of forbidden patterns.

Sofic shifts are effective, but effective shifts are not necessarily sofic.

Remember Emmanuel's talk's example.

Example (1d): the forbidden patterns are the words awawa for any word w and letter a, this is the Thue-Morse shift (aperiodic).

In this talk, we will investigate the difficulty of the relations induced by several block code types:

- Conjugacy
- Factorization
- Embedding

Don't worry, I'll (re¹)define them all!

¹For most of you.

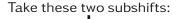
1. Conjugacy

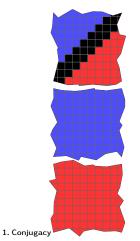
2. Factorization

3. Embedding

What is the "right notion" of isomorphism for subshifts ?

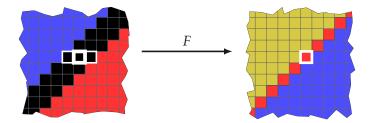
What is the "right notion" of isomorphism for subshifts ?





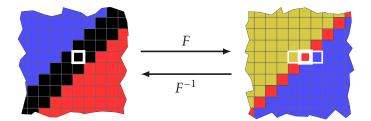
What is the "right notion" of isomorphism for subshifts ?

A conjugacy is a bijective block code whose inverse is also a block code.



What is the "right notion" of isomorphism for subshifts ?

A conjugacy is a bijective block code whose inverse is also a block code.



(Un)Decidability of conjugacy

Can we decide whether two SFTs are conjugate?

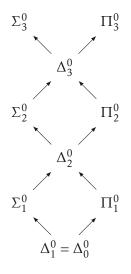
(Un)Decidability of conjugacy

Can we decide whether two SFTs are conjugate?

- The problem is **undecidable in dimension** 2.
- The problem is **decidable** in dimension 1 on \mathbb{N} .
- The problem is **open** in dimension 1 **on** \mathbb{Z} .

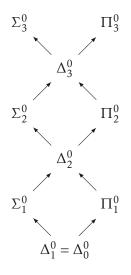
Definition A problem $P \subseteq \mathbb{N}$ is \prod_n^0 if there exists a total Turing machine *M* such that

 $n \in P \Leftrightarrow \forall m_1, \exists m_2, \dots, \Theta m_n, M(n, m_1, \dots, m_n)$

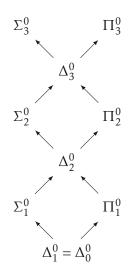


Definition A problem $P \subseteq \mathbb{N}$ is Σ_n^0 if there exists a total Turing machine *M* such that

 $n \in P \Leftrightarrow \exists m_1, \forall m_2, \dots, \Theta m_n, M(n, m_1, \dots, m_n)$



- Σ_1^0 : recursively enumerable
- Π_1^0 : **co**-recursively enumerable
- Σ_n^0 : recursively enumerable with some Π_{n-1}^0 oracle.
- Π_n^0 : co-recursively enumerable with some Σ_{n-1}^0 oracle.



But how hard?

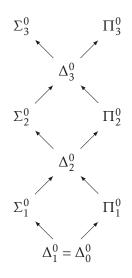
Reduction: $A \le B$ iff there exists a total computable function f such that:

$$\forall x, \qquad x \in B \Leftrightarrow f(x) \in A$$

Definition A problem is complete if it can solve all problems of the class.

Some complete problems:

- Σ_1^0 : knowing if a Turing machine halts (HP)
- Π_2^0 : knowing if a Turing machine halts on all inputs (TOT)
- Σ_3^0 : knowing if the number of inputs on which a Turing machine does not halt is finite (COFIN)



Complexity of conjugacy

Theorem For any fixed SFT *X*, given an SFT *Y* deciding whether *X* is **conjugate** to *Y* is \sum_{1}^{0} -complete.

Remark SFTs are represented by integers

Remark Block codes are represented by integers

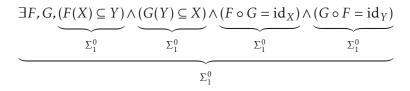
The inputs are these integers.

Complexity of conjugacy

Theorem For any fixed SFT *X*, given an SFT *Y* deciding whether *X* is **conjugate** to *Y* is \sum_{1}^{0} -complete.

Idea of the proof :

Conjugacy is Σ_1^0 :



- Guess two block codes *F* and *G*.
- Check if they form a conjugacy function.

Complexity of conjugacy

Theorem For any fixed SFT *X*, given an SFT *Y* deciding whether *X* is **conjugate** to *Y* is \sum_{1}^{0} -complete.

Idea of the proof :

Conjugacy is Σ_1^0 -hard, reduction from the halting problem :

- R_M an SFT which is empty iff M halts.
- *n* greater than the size of the alphabet of *X*.

 $X \stackrel{?}{\cong} X \sqcup R_M \times \{0, ..., n\}^{\mathbb{Z}^2}$

- If R_M is empty, then X and $X \sqcup R_M \times \{0, \dots, n\}^{\mathbb{Z}^2}$ are equal.
- Otherwise *X* and $X \sqcup R_M \times \{0, ..., n\}^{\mathbb{Z}^2}$ are not conjugate.

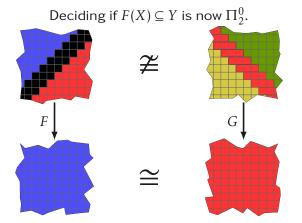
Complexity of conjugacy (sofic & effective)

Theorem Given *X*, *Y* two **effective** (resp. **sofic** of dimension $d \ge 2$) subshifts, deciding whether *X* is **conjugate** to *Y* is \sum_{3}^{0} -complete.

Deciding if $F(X) \subseteq Y$ is now Π_2^0 .

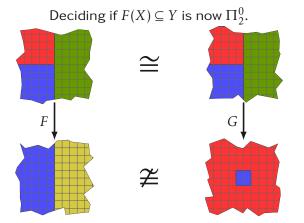
Complexity of conjugacy (sofic & effective)

Theorem Given *X*, *Y* two **effective** (resp. **sofic** of dimension $d \ge 2$) subshifts, deciding whether *X* is **conjugate** to *Y* is \sum_{3}^{0} -complete.



Complexity of conjugacy (sofic & effective)

Theorem Given *X*, *Y* two **effective** (resp. **sofic** of dimension $d \ge 2$) subshifts, deciding whether *X* is **conjugate** to *Y* is \sum_{3}^{0} -complete.

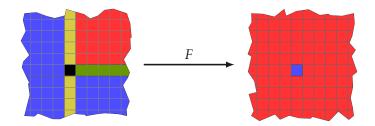


1. Conjugacy

2. Factorization

3. Embedding

Factorization



Definition A subshift *Y* is a factor of a subshift *X*, if there exists a surjective block code $F : X \rightarrow Y$.

i.e. F(X) = Y

Remark Factorization can be seen as a sort of simulation.

2. Factorization

Complexity of factorization

How hard is factorization?

• At least Σ_1^0 -hard:

Factorization to the empty subshift.

• At least Π_1^0 -hard:

Factorization to the single configuration subshift.

Theorem Given two SFTs *X*, *Y* (resp. effective, sofic), deciding whether *X* factorizes onto *Y* is \sum_{3}^{0} -complete.

Theorem Factorization is Σ_3^0 .

Proof scheme :

Manipulation of logical formulae using compactness of shift spaces.

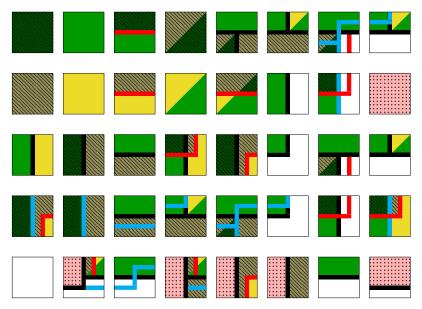
Theorem Factorization is Σ_3^0 -hard.

Proof by reduction from COFIN : the set of Turing machines that run infinitely on a finite number of inputs only.

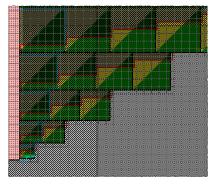
From any Turing machine M, we construct two SFTs X_M , Y_M such that X_M factors on Y_M iff $M \in \text{COFIN}$

- We need to be able to embed some computation in X_M , Y_M
- We need some control on the structure

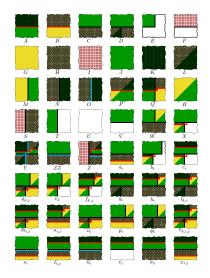
Lower-Bound : the Construction



Lower-Bound : the Construction



 α -configuration



Why is such a construction interesting?

Definition A subshift has T-structure if it is formed of this SFT with something on the grid only.

Let *X*, *Y* be **two subshifts with T-structure** with F(X) = Y, then

$$\alpha$$
-configuration $\xrightarrow{F} \alpha$ -configuration.

Shifted at most by the radius of *F*.

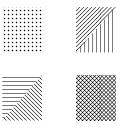
Why is such a construction interesting?

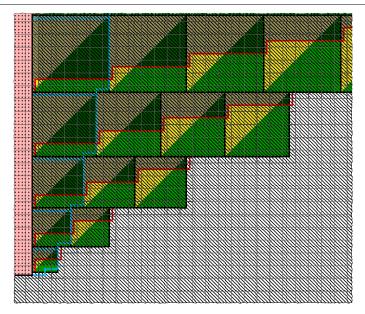
Definition A subshift has T-structure if it is formed of this SFT with something on the grid only.

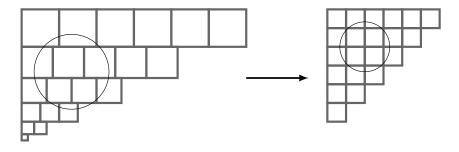
Let *X*, *Y* be **two subshifts with T-structure** with F(X) = Y, then

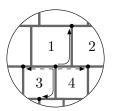
$$\alpha$$
-configuration $\xrightarrow{F} \alpha$ -configuration.

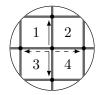
Shifted at most by the radius of *F*.

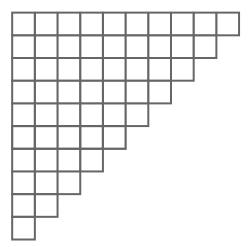


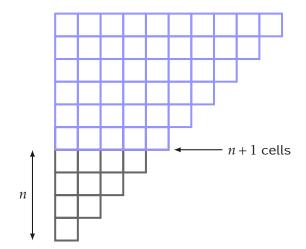


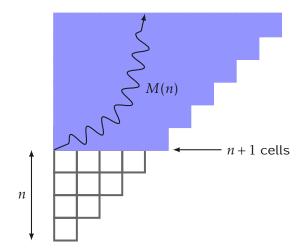




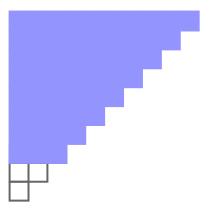




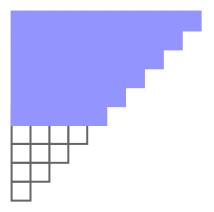




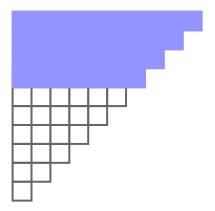
When $\{n \mid M(n)\uparrow\}$ is infinite, there are points with computation starting arbitrarily far from the start.



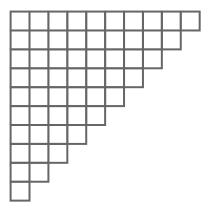
When $\{n \mid M(n)\uparrow\}$ is infinite, there are points with computation starting arbitrarily far from the start.

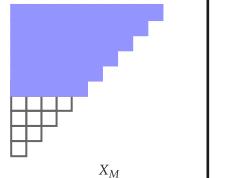


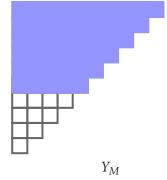
When $\{n \mid M(n)\uparrow\}$ is infinite, there are points with computation starting arbitrarily far from the start.

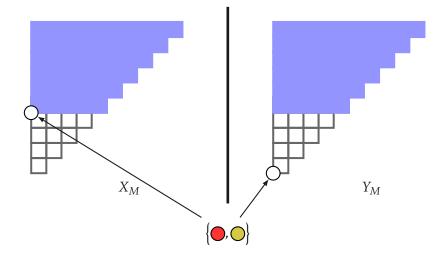


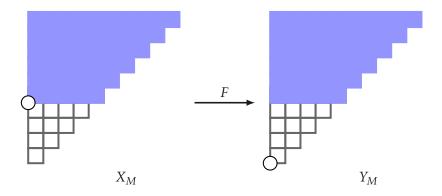
When $\{n \mid M(n)\uparrow\}$ is infinite, there are points with computation starting arbitrarily far from the start.



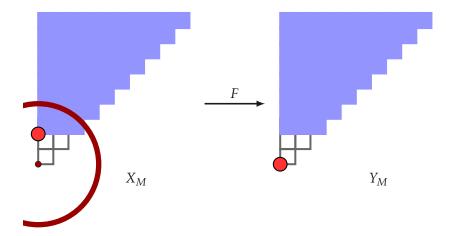


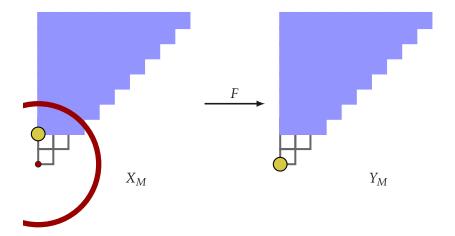


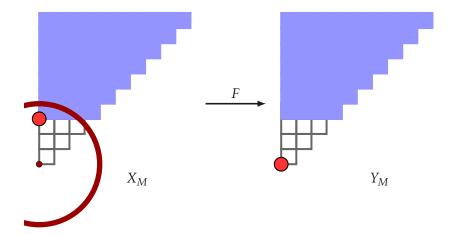


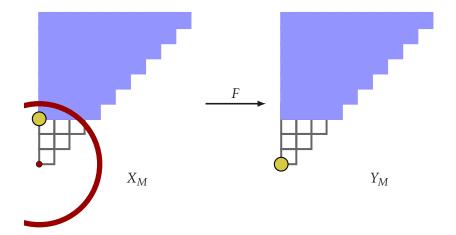


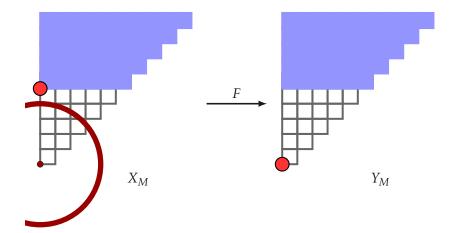
Suppose $\{n \mid M(n) \uparrow\}$ is **infinite** and that there exists a **factor** map $F : X \to Y$ of **radius** *r*.

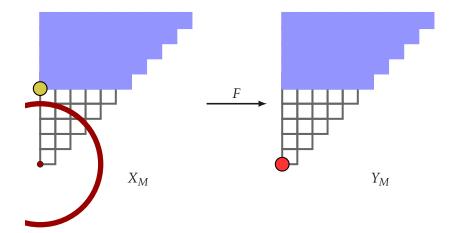


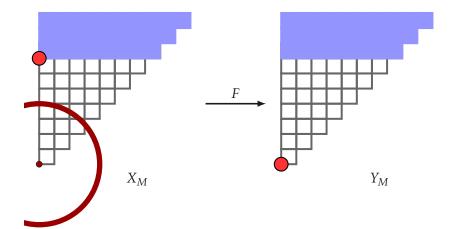


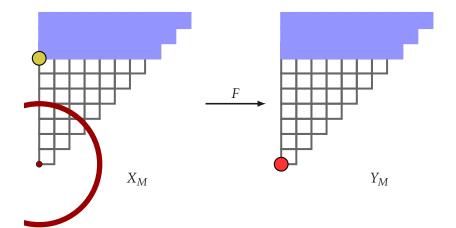


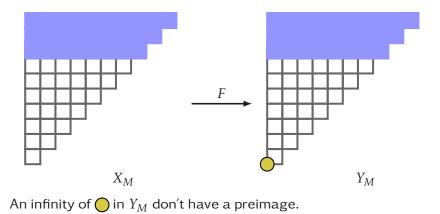


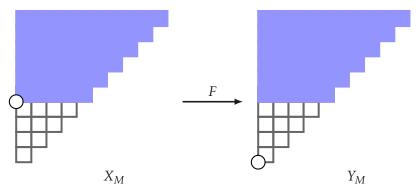












When it is **finite**, just take the radius so that it covers the **largest element**.

1. Conjugacy

2. Factorization

3. Embedding

Definition A subshift *X* embeds into a subshift *Y* if there exists an injective block code $F : X \rightarrow Y$.

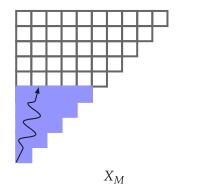
Theorem Given two SFTs *X*, *Y*, deciding whether *X* embeds into *Y* is Σ_1^0 .

Again, the proof is a mix of compactness and formula manipulations.

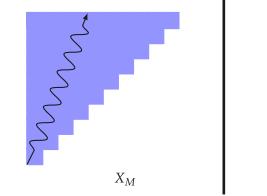
Theorem Given two SFTs X, Y, deciding whether X embeds into Y is Σ_1^0 -hard.

Let *X*, *Y* be **two subshifts with T-structure** with *X* \rightsquigarrow *Y*, then α -configuration $\xrightarrow{F} \alpha$ -configuration.

Shifted at most by the radius of *F*.

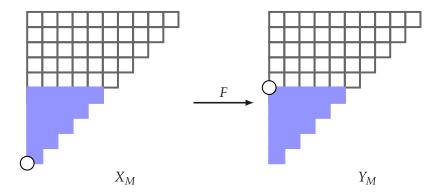


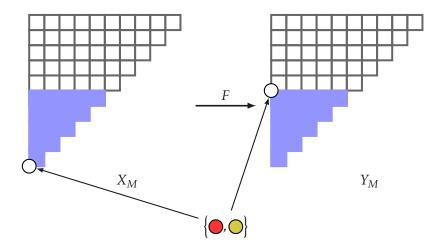
 Y_M

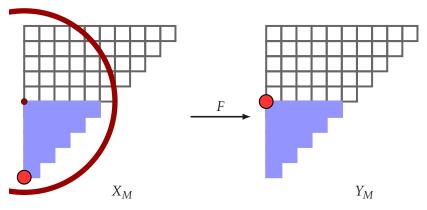


M does not halt with no input.

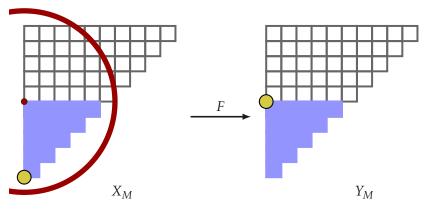
 Y_M



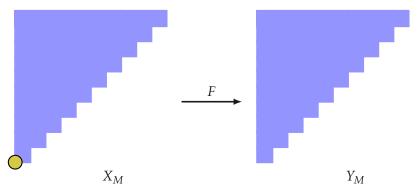




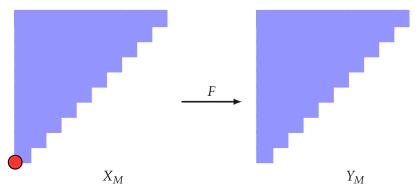
When the **machine halts** take *F* to have as **radius** the **time** that the machine takes **to halt**.



When the **machine halts** take *F* to have as **radius** the **time** that the machine takes **to halt**.



When the **machine does not halt**, the two grids have the same image.



When the **machine does not halt**, the two grids have the same image.

