
Hardness of Conjugacy, Embedding

and Factorization in

multidimensional SFTs

Emmanuel Jeandel, Pascal Vanier

Einstein Institute of Mathematics, Hebrew University of Jerusalem
LIF, Aix-Marseille Université

Automata theory and Symbolic Dynamics Workshop

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

A tiling or configuration:

1/20

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

A tiling or configuration:

1/20

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

A tiling or configuration:

1/20

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

A tiling or configuration:

1/20

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

A tiling or configuration:

1/20

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

A tiling or configuration:

1/20

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

A tiling or configuration:

1/20

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

A tiling or configuration:

1/20

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

A tiling or configuration:

1/20

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

The number of forbidden
patterns may be finite, the
generated space is then a
subshift of finite type (SFT).

A tiling or configuration:

1/20

Subshifts

A finite alphabet :

Σ = { , }

A family of forbidden patterns:

F =
{

, ,

}

Subshift: set of all
configurations avoiding F ,
denoted XF :

XF =
{

, , , ,. . .

}

The number of forbidden
patterns may be finite, the
generated space is then a
subshift of finite type (SFT).

A tiling or configuration:

NOT an SFT

1/20

Block codes and sofic shifts

A block code is a shift invariant map defined locally.

block code = continuous map.

The image of a subshift by a block code is called a factor.

Factors of SFTs form the class of sofic shifts.

SFTs are sofic, but sofic shifts are not necessarily SFTs.

2/20

Block codes and sofic shifts

A block code is a shift invariant map defined locally.

f

block code = continuous map.

The image of a subshift by a block code is called a factor.

Factors of SFTs form the class of sofic shifts.

SFTs are sofic, but sofic shifts are not necessarily SFTs.

2/20

Block codes and sofic shifts

A block code is a shift invariant map defined locally.

f

block code = continuous map.

The image of a subshift by a block code is called a factor.

Factors of SFTs form the class of sofic shifts.

SFTs are sofic, but sofic shifts are not necessarily SFTs.

2/20

Block codes and sofic shifts

A block code is a shift invariant map defined locally.

F

block code = continuous map.

The image of a subshift by a block code is called a factor.

Factors of SFTs form the class of sofic shifts.

SFTs are sofic, but sofic shifts are not necessarily SFTs.

2/20

Effective shifts

An effective subshift is a subshift definable by a recursively

enumerable set of forbidden patterns.

Sofic shifts are effective, but effective shifts are not
necessarily sofic.

Remember Emmanuel’s talk’s example.

Example (1d): the forbidden patterns are the words awawa for
any word w and letter a, this is the Thue-Morse shift
(aperiodic).

3/20

What I’m going to talk about

In this talk, we will investigate the difficulty of the relations
induced by several block code types:

• Conjugacy

• Factorization

• Embedding

Don’t worry, I’ll (re1)define them all!

1For most of you.
4/20

1. Conjugacy

2. Factorization

3. Embedding

Conjugacy

What is the “right notion” of isomorphism for subshifts ?

1. Conjugacy 5/20

Conjugacy

What is the “right notion” of isomorphism for subshifts ?

Take these two subshifts:

1. Conjugacy 5/20

Conjugacy

What is the “right notion” of isomorphism for subshifts ?

A conjugacy is a bijective block code whose inverse is also a

block code.

F

1. Conjugacy 5/20

Conjugacy

What is the “right notion” of isomorphism for subshifts ?

A conjugacy is a bijective block code whose inverse is also a

block code.

F

F−1

1. Conjugacy 5/20

(Un)Decidability of conjugacy

Can we decide whether two SFTs are conjugate?

• The problem is undecidable in dimension 2.

• The problem is decidable in dimension 1 onN.

• The problem is open in dimension 1 on Z.

1. Conjugacy 6/20

(Un)Decidability of conjugacy

Can we decide whether two SFTs are conjugate?

• The problem is undecidable in dimension 2.

• The problem is decidable in dimension 1 onN.

• The problem is open in dimension 1 on Z.

1. Conjugacy 6/20

But how hard?

Definition A problem P ⊆N is Π0
n if there

exists a total Turing machine M such that

n ∈ P ⇔∀m1,∃m2, . . . ,Θmn,M(n,m1, . . . ,mn)

∆0
1 = ∆0

0

∆0
2

∆0
3

Σ0
1

Σ0
2

Σ0
3

Π0
1

Π0
2

Π0
3

1. Conjugacy 7/20

But how hard?

Definition A problem P ⊆N is Σ0
n if there

exists a total Turing machine M such that

n ∈ P ⇔∃m1,∀m2, . . . ,Θmn,M(n,m1, . . . ,mn)

∆0
1 = ∆0

0

∆0
2

∆0
3

Σ0
1

Σ0
2

Σ0
3

Π0
1

Π0
2

Π0
3

1. Conjugacy 7/20

But how hard?

• Σ0
1: recursively enumerable

• Π0
1: co-recursively enumerable

• Σ0
n: recursively enumerable with some

Π0
n−1 oracle.

• Π0
n: co-recursively enumerable with

some Σ0
n−1 oracle.

∆0
1 = ∆0

0

∆0
2

∆0
3

Σ0
1

Σ0
2

Σ0
3

Π0
1

Π0
2

Π0
3

1. Conjugacy 7/20

But how hard?

Reduction: A ≤ B iff there exists a total
computable function f such that:

∀x, x ∈ B⇔ f (x) ∈ A

Definition A problem is complete if it can
solve all problems of the class.

Some complete problems:

• Σ0
1 : knowing if a Turing machine halts

(HP)

• Π0
2 : knowing if a Turing machine halts

on all inputs (TOT)

• Σ0
3 : knowing if the number of inputs on

which a Turing machine does not halt is
finite (COFIN)

∆0
1 = ∆0

0

∆0
2

∆0
3

Σ0
1

Σ0
2

Σ0
3

Π0
1

Π0
2

Π0
3

1. Conjugacy 7/20

Complexity of conjugacy

Theorem For any fixed SFT X, given an SFT Y deciding
whether X is conjugate to Y is Σ0

1-complete.

Remark SFTs are represented by integers

Remark Block codes are represented by integers

The inputs are these integers.

1. Conjugacy 8/20

Complexity of conjugacy

Theorem For any fixed SFT X, given an SFT Y deciding
whether X is conjugate to Y is Σ0

1-complete.

Idea of the proof :

Conjugacy is Σ0
1 :

∃F,G, (F(X) ⊆ Y)︸ ︷︷ ︸
Σ0
1

∧ (G(Y) ⊆ X)︸ ︷︷ ︸
Σ0
1

∧ (F ◦G = idX)︸ ︷︷ ︸
Σ0
1

∧ (G ◦F = idY)︸ ︷︷ ︸
Σ0
1︸ ︷︷ ︸

Σ0
1

• Guess two block codes F and G.

• Check if they form a conjugacy function.

1. Conjugacy 8/20

Complexity of conjugacy

Theorem For any fixed SFT X, given an SFT Y deciding
whether X is conjugate to Y is Σ0

1-complete.

Idea of the proof :

Conjugacy is Σ0
1-hard, reduction from the halting problem :

• RM an SFT which is empty iffM halts.

• n greater than the size of the alphabet of X.

X
?
� X tRM × {0, ...,n}Z

2

• If RM is empty, then X and X tRM × {0, . . . ,n}Z
2

are equal.

• Otherwise X and X tRM × {0, . . . ,n}Z
2

are not conjugate.

1. Conjugacy 8/20

Complexity of conjugacy (sofic & effective)
Theorem Given X,Y two effective (resp. sofic of dimension
d ≥ 2) subshifts, deciding whether X is conjugate to Y is
Σ0
3-complete.

Deciding if F(X) ⊆ Y is now Π0
2.

F

�

�

G

1. Conjugacy 9/20

Complexity of conjugacy (sofic & effective)
Theorem Given X,Y two effective (resp. sofic of dimension
d ≥ 2) subshifts, deciding whether X is conjugate to Y is
Σ0
3-complete.

Deciding if F(X) ⊆ Y is now Π0
2.

F

�

�

G

1. Conjugacy 9/20

Complexity of conjugacy (sofic & effective)
Theorem Given X,Y two effective (resp. sofic of dimension
d ≥ 2) subshifts, deciding whether X is conjugate to Y is
Σ0
3-complete.

Deciding if F(X) ⊆ Y is now Π0
2.

F

�

�

G

1. Conjugacy 9/20

1. Conjugacy

2. Factorization

3. Embedding

Factorization

F

Definition A subshift Y is a factor of a subshift X, if there
exists a surjective block code F : X→ Y .

i.e. F(X) = Y

Remark Factorization can be seen as a sort of simulation.

2. Factorization 10/20

Complexity of factorization

How hard is factorization?

• At least Σ0
1-hard:

Factorization to the empty subshift.

• At least Π0
1-hard:

Factorization to the single configuration subshift.

Theorem Given two SFTs X,Y (resp. effective, sofic), deciding
whether X factorizes onto Y is Σ0

3-complete.

2. Factorization 11/20

Upper-Bound

Theorem Factorization is Σ0
3.

Proof scheme :

∃F,F(X) ⊆ Y︸ ︷︷ ︸
Σ0
1

∧Y ⊆ F(X)︸ ︷︷ ︸
Π0

2

Manipulation of logical formulae using compactness of shift
spaces.

2. Factorization 12/20

Lower-Bound

Theorem Factorization is Σ0
3-hard.

Proof by reduction from COFIN : the set of Turing machines
that run infinitely on a finite number of inputs only.

From any Turing machine M, we construct two SFTs XM ,YM
such that XM factors on YM iffM ∈ COFIN

• We need to be able to embed some computation in XM ,YM
• We need some control on the structure

2. Factorization 13/20

Lower-Bound : the Construction

2. Factorization 14/20

Lower-Bound : the Construction

α-configuration

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y ZZ Z ai bi ci

dk,i ek fk,j gi hi lk,i

mi,j ni,j oi pi qk rk,i,j

si ti,j ui vi wi xi,j

2. Factorization 14/20

Why is such a construction interesting?

Definition A subshift has T-structure if it is formed of this SFT
with something on the grid only.

Let X,Y be two subshifts with T-structure with F(X) = Y , then

α-configuration
F−→ α-configuration.

Shifted at most by the radius of F.

2. Factorization 15/20

Why is such a construction interesting?

Definition A subshift has T-structure if it is formed of this SFT
with something on the grid only.

Let X,Y be two subshifts with T-structure with F(X) = Y , then

α-configuration
F−→ α-configuration.

Shifted at most by the radius of F.

2. Factorization 15/20

Lower Bound: the reduction

2. Factorization 16/20

Lower Bound: the reduction

1 2

3 4

1 2

3 4

2. Factorization 16/20

Lower Bound: the reduction

n+1 cells

n

M(n)

n+1 cells

n

2. Factorization 16/20

Lower Bound: the reduction

n+1 cells

n

M(n)

n+1 cells

n

2. Factorization 16/20

Lower Bound: the reduction

n+1 cells

n

M(n)

n+1 cells

n

2. Factorization 16/20

Lower Bound: the reduction

When {n |M(n)↑} is infinite,
there are points with
computation starting
arbitrarily far from the start.

When {n |M(n)↑} is finite,
there is an N such that no
computation starts after N .

2. Factorization 16/20

Lower Bound: the reduction

When {n |M(n)↑} is infinite,
there are points with
computation starting
arbitrarily far from the start.

When {n |M(n)↑} is finite,
there is an N such that no
computation starts after N .

2. Factorization 16/20

Lower Bound: the reduction

When {n |M(n)↑} is infinite,
there are points with
computation starting
arbitrarily far from the start.

When {n |M(n)↑} is finite,
there is an N such that no
computation starts after N .

2. Factorization 16/20

Lower Bound: the reduction

When {n |M(n)↑} is infinite,
there are points with
computation starting
arbitrarily far from the start.

When {n |M(n)↑} is finite,
there is an N such that no
computation starts after N .

2. Factorization 16/20

Lower Bound: the reduction

XM YM

2. Factorization 16/20

Lower Bound: the reduction

XM YM

{
,

}
2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

Suppose {n |M(n)↑} is infinite and that there exists a factor

map F : X→ Y of radius r.

2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

An infinity of in YM don’t have a preimage.

2. Factorization 16/20

Lower Bound: the reduction

XM

F

YM

When it is finite, just take the radius so that it covers the
largest element.

2. Factorization 16/20

1. Conjugacy

2. Factorization

3. Embedding

Embedding

Definition A subshift X embeds into a subshift Y if there
exists an injective block code F : X→ Y .

Theorem Given two SFTs X,Y , deciding whether X embeds
into Y is Σ0

1.

Again, the proof is a mix of compactness and formula
manipulations.

3. Embedding 17/20

Embedding

Theorem Given two SFTs X,Y , deciding whether X embeds
into Y is Σ0

1-hard.

Let X,Y be two subshifts with T-structure with X{ Y , then

α-configuration
F−→ α-configuration.

Shifted at most by the radius of F.

3. Embedding 18/20

Embedding: the reduction

XM YM

M halts on no input.

3. Embedding 19/20

Embedding: the reduction

XM YM

M does not halt with no input.

3. Embedding 19/20

Embedding: the reduction

XM

F

YM

3. Embedding 19/20

Embedding: the reduction

XM

F

YM

{
,

}
3. Embedding 19/20

Embedding: the reduction

XM

F

YM

When the machine halts take F to have as radius the time

that the machine takes to halt.

3. Embedding 19/20

Embedding: the reduction

XM

F

YM

When the machine halts take F to have as radius the time

that the machine takes to halt.

3. Embedding 19/20

Embedding: the reduction

XM

F

YM

When the machine does not halt, the two grids have the same
image.

3. Embedding 19/20

Embedding: the reduction

XM

F

YM

When the machine does not halt, the two grids have the same
image.

3. Embedding 19/20

Conclusion

Conjugacy Factorization Embedding

SFTs Σ0
1-complete Σ0

3-complete Σ0
1-complete

Sofic Σ0
3-complete Σ0

3-complete ?
Effective Σ0

3-complete Σ0
3-complete ?

3. Embedding 20/20

	Conjugacy
	Factorization
	Embedding

