Local-global principles for quadratic forms

R. Parimala

Emory University

October 30, 2015
The University of British Columbia



The p-adics
e Let Q denote the field of rational numbers

e For every prime p, ||.||, denotes the p-adic norm on Q defined

by
ml "
HP 5H_<p> , ptr, pis

e (Qp denotes the completion of QQ for the metric induced by

111,

e (Qp is also the field of fractions of the inverse limit

Zp = I(l_r?1 Z/p"7Z



Local fields

¢ Qu, the completion of Q for the usual metric |.| is R

e The fields Q, for each prime p and Q = R form a set of
overfields of Q

e Study of algebraic structures like quadratic forms or division
algebras is simple over these fields



An example

Let =2 1cicm a;X? where a; € Z with gecd;(a;) = 1 be a
quadratic form over Q

Question
When is q isotropic 7 i.e. when do there exist A1,...,Am € Q not

all zero with
D axt=07?



A local answer

e |t is easy to look for congruence solutions modulo p” because
Z/p"Z is a finite ring !

e One can pass from existence of solutions modulo p”, n > 1 to
existence of solutions in Q,

(Qp is complete and solutions can be lifted)



A local answer

e |t is easy to look for congruence solutions modulo p” because
Z/p"Z is a finite ring !

e One can pass from existence of solutions modulo p”, n > 1 to
existence of solutions in Q,
(Qp is complete and solutions can be lifted)

e q is isotropic over R if and only if the a; s don’t all have the
same sign, i.e. q is indefinite



From local to global

Theorem (Hasse-Minkowski)

If q is isotropic over R and Q) for each prime p, then q is isotropic
over Q



From local to global

Theorem (Hasse-Minkowski)

If q is isotropic over R and Q) for each prime p, then q is isotropic
over Q

In geometric terms, if X, : g =0 in P"~1 is the quadric associated
with g, then

Xq(@Qp) #0Vp , XgR) #0D = X, (Q) #0



Hasse principle

o We may replace Q by a number field k which is any finite
extension extension of QQ

o Let Q4 be the set of all places of k (which are extensions of
the places on QQ associated to primes and co)

e For each v € Qy, let k, denote the completion of k at v



Hasse principle

We may replace Q by a number field k which is any finite
extension extension of QQ

Let Q4 be the set of all places of k (which are extensions of
the places on QQ associated to primes and co)

For each v € Q, let k, denote the completion of k at v

Let X be a variety defined over k (common zeroes of
polynomials over k)

We say that X satisfies Hasse principle if

X (k) #DVveQ = X(k)#0



Hasse principle

Question
Which classes of varieties over number fields satisfy Hasse
principle?
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e Quadrics over number fields are examples of varieties
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Examples

Quadrics over number fields are examples of varieties
satisfying Hasse principle

Examples of varieties failing Hasse principle were known since
the early 40's

Reichardt, Lind in the 1940s gave examples of genus one
curves over QQ which admit no rational point but admit
rational points locally over Q, for all p and R

We restrict our attention to homogeneous spaces under
connected linear algebraic groups
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(G — GL,(k) is a subgroup defined by polynomial equations)
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Groups and actions

e Let G be a connected linear algebraic group over k

(G — GL,(k) is a subgroup defined by polynomial equations)

Examples are SL,,, SO,, Sp,, etc

Let X be a variety defined over k

Let k be an algebraic closure of k

Suppose there is a (polynomial) action of G on X. This yields
a group action

G (k) x X (k) — X (k)



Homogeneous Spaces

e X is a homogeneous space under G if the action of G (E) on
X (k) is transitive

e X is a principal homogeneous space under G if the action of
G (k) on X (k) is simply transitive

e X is a projective homogeneous space under G if X is a
projective variety and a homogeneous space under G



Examples
Example (Principal homogenous space)
Let A € k\ {0}. Define X by
X(k) = {z € Mp(k)|det(z) = A}
Then X is a principal homogeneous space under SL,

Example (Projective homogenous space)

Let q be a non-degenerate quadratic form over k of dim > 3.
Define X4 by

Xq(k) = {z € P (k)|q(z) = 0}

Then Xq is a projective homogeneous space under SO(q)



Hasse principle for principal homogeneous spaces

Theorem |

Let k be a number field and G, a semi-simple simply connected
linear algebraic group defined over k. Then Hasse principle holds
for principal homogenous spaces under G

e Examples of simple simply connected groups :

SLn, Spa,, Spin(q) for dim(q) > 3, SU(h) where his a
hermitian form over L where [L : k] = 2 and twisted forms of
these groups.

e Theorem is due to Kneser for classical groups, Harder for
exceptional groups except type Eg and Chernousov for type Eg



Hasse principle for projective homogeneous spaces

Theorem Il (Harder)

Let k be a number field and G, a connected linear algebraic group
defined over k. Then Hasse principle holds for projective
homogenous spaces under G



Brauer-Manin obstruction

e For a general connected linear algebraic group defined over a
number field, obstruction to Hasse principle is
‘well-understood’
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Brauer-Manin obstruction

e For a general connected linear algebraic group defined over a
number field, obstruction to Hasse principle is
‘well-understood’

e Let X/k be a smooth geometrically integral variety over
number field k

e The Brauer-Manin set BM is a subset of the product of local
points defined using the Brauer group of X :

X(k) € BM C <HX(/<V)>



Brauer-Manin obstruction

We say that Brauer-Manin obstruction is the only obstruction to
Hasse Principle for a class of varieties 2", if V X € 27,

BM of X is not empty = X(k) is not empty



Brauer-Manin obstruction

We say that Brauer-Manin obstruction is the only obstruction to
Hasse Principle for a class of varieties 2", if V X € 27,

BM of X is not empty = X(k) is not empty

Theorem (Sansuc, Voskresenskii)

Brauer-Manin obstruction is the only obstruction to Hasse principle
for principal homogeneous spaces.



Hasse principle for PHS under k-rational groups

A k-group G is k-rational if k(G)/k is a purely transcendental
extension

Corollary (Sansuc, Voskresenskii)
Suppose G is a k-rational group. Then Hasse principle holds for
principal homogeneous spaces under G over k

Proof.

e Let X be a principal homogeneous space under G over k
e Let X be a smooth compactification

e FACT : Br(k) — Br (X) is surjective

e Thus the BM set of X is [[,cq, X (kv)



Discrete valuations

e To discuss Hasse principle in a more general setting of
function fields, we first define valuation rings and fields

e A discrete valuation on a field F is a homomorphism
v : F* — Z such that for each a,b € F* with a,b,a+ b
non-zero
v(a+ b) > min(v(a), v(b))

e One sets v(0) = oo



Discrete valuations

To discuss Hasse principle in a more general setting of
function fields, we first define valuation rings and fields

A discrete valuation on a field F is a homomorphism
v : F* — Z such that for each a,b € F* with a,b,a+ b
non-zero

v(a+ b) > min(v(a), v(b))

One sets v(0) = oo
O, ={a € Flv(a) > 0} is the valuation ring

O, has a unique maximal ideal M, = {a € F|v(a) > 0}
generated by any 7w (parameter) with v(7) =1

k() := O,/ (m) is the residue field for v



Completions

Let v : F* — Z be a discrete valuation on a field F and let 7
be a parameter of F

Let A > 1. Then v defines a norm on F by

al, = (i)v(a)\fa e\ {0}

F, is defined to be the field obtained by completing F with
respect to |.|,

F, is a discrete valued field with valuation ring OAV

7 is a parameter for F, also and the residue field remains the
same



Example |

Let v, : Q* — Z with v (pmg) = m where p fr,s

v, defines a discrete valuation on Q

v(a)
laly, = (%) for a € Q\ {0} defines the p-adic norm on Q

The completion of Q with respect to |.|,, adic norm is the
p-adic field Q, defined earlier

O, = Zp and a parameter ™ = p



Example I

Let K(t) denote the rational function field in one variable over
a field K

Let v¢ : K(t)* — Z with v <t’"§) = m where f, g € K[t] and
t ff.g

v¢ defines a discrete valuation on K(t)

The completion of K(t) with respect to v; is the field of
Laurent series K((t))

O, = K{[t]], the ring of formal power series in t and a
parameter m =t



Function fields

Let K be a number field without ordering or a p-adic field
Let O be the ring of integers in K

Let X/K be a smooth projective geometrically integral curve
over K

Let F = K(X)
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Function fields

Let K be a number field without ordering or a p-adic field
Let O be the ring of integers in K

Let X/K be a smooth projective geometrically integral curve
over K

Let F = K(X)

One could look for Hasse principle for varieties over F with
reference to discrete valuations of F

Let Qg denote the set of discrete valuations of F trivial on K
(corresponds to closed points of X)

However o misses all discrete valuations of F restricting to a
p-adic valuation of K !



Divisorial discrete valuations

o Let 27 — O be a regular proper model of X/K

e Let Q4 be the set of all discrete valuations of F centered on
codimension one points of 2

o Let Q =J, Qg consist of divisorial discrete valuations of F



Divisorial discrete valuations

Let 2~ — O be a regular proper model of X/K

Let Q4 be the set of all discrete valuations of F centered on
codimension one points of 2

Let Q = (J 4 Qg consist of divisorial discrete valuations of F

One could look for Hasse principle for varieties over F with
reference to Q

For v € Q, F, denotes the completion of F at v with residue
field k(v) which is either a p-adic field or a global field of
positive characteristic

One understands the arithmetic of x(v) from class field theory



Isotropy over F,

e Let g be a quadratic form over F

e Over F,, g >~ u1x12+. o+ urxr2 +7rv1y12+.. .—|—7TVsy52 with 7 a
parameter at v and u;, v; units in O, (i.e v(u;) = v(vj) =0)
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Isotropy over F,

Let g be a quadratic form over F

Over F,, g ~ u1x12+. o+ urxr2 +7rv1y12+.. .—|—7TVsy52 with 7 a
parameter at v and u;, v; units in O, (i.e v(u;) = v(vj) =0)

q is isotropic over F, if and only if uix? + ... + u,x?

< or
viy? 4 ...+ vsy?2 is isotropi F,
1yi + ...+ vsy< is isotropic over F,

This happens if and only if uTxf + ...+ ux? or
Vlyf +...+ 75y52 is isotropic over x(v)

Thus if r > 5 or s > 5, then q is isotropic over F,

Hence if dim g > 9, then q is isotropic over F,



Hasse principle for quadrics

e Suppose that Hasse principle holds for the quadrics with
respect to 2

e Then every 9-dimensional quadratic form over F has a
non-trivial zero



Hasse principle for quadrics

e Suppose that Hasse principle holds for the quadrics with
respect to Q2

e Then every 9-dimensional quadratic form over F has a
non-trivial zero

Open question

Let k be a number field without ordering and let F = k(X) where
X is a curve over k. Does there exist N > 0 such that every
quadratic form in more than N variables over F has a non-trivial
zero ? (i.eis u(F) < oo 7))



Failure of Hasse principle

e Caution : Hasse principle fails for quadratic forms of
dimension 3 or 4 over k(X) where k is a number field
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e Non-trivial elements @ € 1T (J(X)) for an elliptic curve X
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locally split for all v. Thus, their norm forms are rank 4
anisotropic quadratic forms which are locally split



Failure of Hasse principle

e Caution : Hasse principle fails for quadratic forms of
dimension 3 or 4 over k(X) where k is a number field

e Non-trivial elements @ € 1T (J(X)) for an elliptic curve X
yield quaternion division algebras over F = k(X) which are
locally split for all v. Thus, their norm forms are rank 4
anisotropic quadratic forms which are locally split

e However the question whether Hasse principle holds for
quadratic forms over k(X) of dimension at least 5 is open



Finiteness of the u-invariant

e If k is a p-adic field, indeed every 9 dimensional quadratic
form over F = k(X) has a non-trivial zero

e Parimala-Suresh for p # 2

e Heath-Brown/Leep for all p



Hasse principle for quadrics over function fields

Theorem (Colliot-Thélene—Parimala—Suresh)

Let k be a p-adic field where p # 2 and let F = k(X) for a curve

X /k. Then Hasse principle holds for quadrics over F with respect
to Q

Proof relies on patching techniques developed by
Harbater-Hartmann-Krashen



HHK patching

Let K be a p-adic field
Let O be the valuation ring of K and « its residue field

Let X be a smooth projective geometrically integral curve
over K

Let F = K(X)
2 2 Spec (O) be a regular proper model of X/K
Let 2o — Spec(k) be the reduced special fiber of 2~

Assume that 29 is a union of regular curves with normal
crossings



HHK patching

e For each x € 2y, let F, = ff(@)gg,x)

e If x is codimension one on £, Fx is the complete discretely
valued field with respect to vy

e |If x is codimension two on 2", F, is the field of fractions of
the completion of the two-dimensional regular local ring at x



HHK patching

Theorem (HHK)

Let G be a connected linear algebraic group over F which is
F-rational. Then Hasse principle holds with reference to
{F«|x € Zo} for

1. Principal homogeneous spaces under G

2. Projective homogeneous space under G
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If Z is an F-variety, then Z (F) # 0 V x € Zy implies
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HHK patching

Theorem (HHK)

Let G be a connected linear algebraic group over F which is
F-rational. Then Hasse principle holds with reference to

{Fx|x € Zo} for
1. Principal homogeneous spaces under G

2. Projective homogeneous space under G

Remark

If Z is an F-variety, then Z (F) # 0 V x € Zy implies
Z(F,)#0VveQ

Proof of CT-P-S relies on showing the converse, namely that
Z(F,)#0V veQimplies Z(Fy)# 0V x € 2y for quadrics Z



Conjectures for Hasse principle over function fields

Conjecture | (Colliot-Thélene—Parimala—Suresh)

Let K be a p-adic field and F = K(X), a function field in one
variable over K. Let G be a semi-simple simply connected linear
algebraic group over F. Then Hasse principle holds for principal
homogeneous spaces under G over F

Conjecture Il (Colliot-Thélene—Parimala—Suresh)

Let K and F be as in Conjecture I. Let G be a connected linear
algebraic group over F. Then Hasse principle holds for projective
homogeneous spaces under G over F

These conjectures run parallel to the theorems in the number field
case



Conjecture |l

¢ (Grothendieck) : Conjecture Il holds for Severi-Brauer
varieties

If X = SB(A) is the Severi-Brauer variety defined by A, then
X(L)#0 <= A®rL~M,(L)
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Conjecture |l

¢ (Grothendieck) : Conjecture Il holds for Severi-Brauer
varieties

If X = SB(A) is the Severi-Brauer variety defined by A, then
X(L)#0 <= A®rL~M,(L)

Grothendieck shows Ag, is split for all v € Q implies A is split

e (S.Reddy and V.Suresh) : Conjecture Il holds for Generalized
Severi-Brauer varieties. They show

index(A) = lecm,cq index (A,)

e (Z.Wu) : Conjecture Il holds for projective homogeneous
spaces under unitary groups with some restrictions for groups
of type 2A,. Method of proof is via reducing to HHK patches



Conjecture |

Theorem (Preeti, Y.Hu)

Conjecture | holds for principal homogenous spaces under groups
G of type B,, Cn, D, or 2A, with constraints, namely

G = SU(A, o) where A is a central simple algebra with unitary L/F
involution and index(A) is square-free



Conjecture | for A,

Let A/F is a central simple algebra — A is a form for the
matrix algebra

The determinant on matrices yields a function Nrd : A — F

Let G = SL;1(A) denote the group of reduced norm one
elements in A

Principal homogeneous spaces under G upto isomorphism are
given by F*/Nrd (A*).

That is for A € F*, Nrd(z) = A is the associated PHS

Conjecture | for SL1(A) asserts that local reduced norms are
reduced norms



Invariants for SL;(A)

For a field F with characteristic not dividing n, H3 (F,u‘?z)
denotes the Galois cohomology group of F with values in &2

There are invariants for principal homogeneous spaces under
simple simply connected linear algebraic groups with values in
Galois cohomology, due to Rost

The invariant for SL;(A) with index A= n

F*/Nrd (A*) = H? (F,1&?), [N~ (\) o [A]

goes back to Suslin.



Conjecture | for A, for index(A) square-free

For G = SL1(A) with index(A) square-free, Conjecture | follows
from the following theorems of Merkurjev-Suslin and Kato
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Conjecture | for A, for index(A) square-free

For G = SL1(A) with index(A) square-free, Conjecture | follows
from the following theorems of Merkurjev-Suslin and Kato

Theorem (Merkurjev-Suslin)

Let A be a central simple algebra of square-free index n. Then the
following map has trivial kernel

F*/Nrd (A*) = H? (F, u&?), [\~ (\) e [A]

Theorem (Kato)
The following map has trivial kernel

2 (Foi?) =TT W2 (R ui?)
VEQ‘%



Conjecture | for A,

Theorem (Parimala-Preeti-Suresh)

Conjecture | holds for G = SL1(A) where A is a central simple
algebra with (index(A),p) =1



Obstructions

e One would like to understand the failure of Hasse principle in
general via obstructions similar to the Brauer-Manin
obstructions

e Indeed such reciprocity obstructions were constructed using
the Brauer group in this setting

e Using these obstructions, examples of principal homogeneous
spaces under non-rational tori were constructed by
Colliot-Thélene—Parimala—Suresh which fail Hasse principle



A question

The following question remains open :

Let K be a p-adic field and F = K(X), a function field in one
variable over K. Let G be a connected F-rational linear algebraic
group under F. Does Hasse principle hold for principal
homogeneous spaces under G with respect to 0 7



Hasse principle for rational tori

Theorem (Harari, Szamuely)

Let K be a p-adic field and F = K(X), a function field in one
variable over K. Let T be a connected F-rational torus. Then

Hasse principle holds for principal homogeneous spaces under T
with respect to €



