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The p-adics

• Let Q denote the field of rational numbers

• For every prime p, ‖.‖p denotes the p-adic norm on Q defined
by ∥∥∥pm r

s

∥∥∥ =

(
1

p

)m

, p - r , p - s

• Qp denotes the completion of Q for the metric induced by
‖.‖p

• Qp is also the field of fractions of the inverse limit

Zp = lim
←m

Z/pmZ



Local fields

• Q∞, the completion of Q for the usual metric |.| is R

• The fields Qp for each prime p and Q∞ = R form a set of
overfields of Q

• Study of algebraic structures like quadratic forms or division
algebras is simple over these fields



An example

Let q =
∑

1≤i≤m aiX
2
i where ai ∈ Z with gcdi (ai ) = 1 be a

quadratic form over Q

Question
When is q isotropic ? i.e. when do there exist λ1, . . . , λm ∈ Q not
all zero with ∑

aiλ
2
i = 0 ?



A local answer

• It is easy to look for congruence solutions modulo pn because
Z/pnZ is a finite ring !

• One can pass from existence of solutions modulo pn, n ≥ 1 to
existence of solutions in Qp

(Qp is complete and solutions can be lifted)

• q is isotropic over R if and only if the ai s don’t all have the
same sign, i.e. q is indefinite
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From local to global

Theorem (Hasse-Minkowski)

If q is isotropic over R and Qp for each prime p, then q is isotropic
over Q

In geometric terms, if Xq : q = 0 in Pn−1 is the quadric associated
with q, then

Xq (Qp) 6= ∅ ∀ p ,Xq (R) 6= ∅ =⇒ Xq (Q) 6= ∅
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Hasse principle

• We may replace Q by a number field k which is any finite
extension extension of Q

• Let Ωk be the set of all places of k (which are extensions of
the places on Q associated to primes and ∞)

• For each v ∈ Ωk , let kv denote the completion of k at v

• Let X be a variety defined over k (common zeroes of
polynomials over k)

• We say that X satisfies Hasse principle if

X (kv ) 6= ∅ ∀ v ∈ Ωk =⇒ X (k) 6= ∅
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Hasse principle

Question
Which classes of varieties over number fields satisfy Hasse
principle?



Examples

• Quadrics over number fields are examples of varieties
satisfying Hasse principle

• Examples of varieties failing Hasse principle were known since
the early 40’s

• Reichardt, Lind in the 1940s gave examples of genus one
curves over Q which admit no rational point but admit
rational points locally over Qp for all p and R

• We restrict our attention to homogeneous spaces under
connected linear algebraic groups
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Groups and actions

• Let G be a connected linear algebraic group over k

(G ↪→ GLn(k) is a subgroup defined by polynomial equations)

• Examples are SLn, SOn, Sp2n etc

• Let X be a variety defined over k

• Let k be an algebraic closure of k

• Suppose there is a (polynomial) action of G on X . This yields
a group action

G
(
k
)
× X

(
k
)
→ X

(
k
)
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Homogeneous spaces

• X is a homogeneous space under G if the action of G
(
k
)

on

X
(
k
)

is transitive

• X is a principal homogeneous space under G if the action of
G
(
k
)

on X
(
k
)

is simply transitive

• X is a projective homogeneous space under G if X is a
projective variety and a homogeneous space under G



Examples

Example (Principal homogenous space)

Let λ ∈ k \ {0}. Define X by

X (k) = {z ∈ Mn(k)| det(z) = λ}

Then X is a principal homogeneous space under SLn

Example (Projective homogenous space)

Let q be a non-degenerate quadratic form over k of dim ≥ 3.
Define Xq by

Xq(k) = {z ∈ Pn−1(k)|q(z) = 0}

Then Xq is a projective homogeneous space under SO(q)



Hasse principle for principal homogeneous spaces

Theorem I
Let k be a number field and G , a semi-simple simply connected
linear algebraic group defined over k . Then Hasse principle holds
for principal homogenous spaces under G

• Examples of simple simply connected groups :

SLn,Sp2n,Spin(q) for dim(q) ≥ 3, SU(h) where h is a
hermitian form over L where [L : k] = 2 and twisted forms of
these groups.

• Theorem is due to Kneser for classical groups, Harder for
exceptional groups except type E8 and Chernousov for type E8



Hasse principle for projective homogeneous spaces

Theorem II (Harder)

Let k be a number field and G , a connected linear algebraic group
defined over k . Then Hasse principle holds for projective
homogenous spaces under G



Brauer-Manin obstruction

• For a general connected linear algebraic group defined over a
number field, obstruction to Hasse principle is
‘well-understood ’

• Let X/k be a smooth geometrically integral variety over
number field k

• The Brauer-Manin set BM is a subset of the product of local
points defined using the Brauer group of X :

X (k) ⊆ BM ⊆

(∏
v

X (kv )

)
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Brauer-Manin obstruction

We say that Brauer-Manin obstruction is the only obstruction to
Hasse Principle for a class of varieties X , if ∀ X ∈X ,

BM of X is not empty =⇒ X (k) is not empty

Theorem (Sansuc, Voskresenskii)

Brauer-Manin obstruction is the only obstruction to Hasse principle
for principal homogeneous spaces.
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Hasse principle for PHS under k-rational groups

A k-group G is k-rational if k(G )/k is a purely transcendental
extension

Corollary (Sansuc, Voskresenskii)

Suppose G is a k-rational group. Then Hasse principle holds for
principal homogeneous spaces under G over k

Proof.

• Let X be a principal homogeneous space under G over k

• Let X be a smooth compactification

• FACT : Br(k) � Br
(
X
)

is surjective

• Thus the BM set of X is
∏

v∈Ωk
X (kv )



Discrete valuations

• To discuss Hasse principle in a more general setting of
function fields, we first define valuation rings and fields

• A discrete valuation on a field F is a homomorphism
v : F ∗ → Z such that for each a, b ∈ F ∗ with a, b, a + b
non-zero

v(a + b) ≥ min (v(a), v(b))

• One sets v(0) =∞

• Ov = {a ∈ F |v(a) ≥ 0} is the valuation ring

• Ov has a unique maximal ideal Mv = {a ∈ F |v(a) > 0}
generated by any π (parameter) with v(π) = 1

• κ(π) := Ov/ 〈π〉 is the residue field for v
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Completions

• Let v : F ∗ → Z be a discrete valuation on a field F and let π
be a parameter of F

• Let λ > 1. Then v defines a norm on F by

|a|v =

(
1

λ

)v(a)

∀a ∈ F \ {0}

• Fv is defined to be the field obtained by completing F with
respect to |.|v

• Fv is a discrete valued field with valuation ring Ôv

• π is a parameter for Fv also and the residue field remains the
same



Example I

• Let vp : Q∗ → Z with v
(
pm r

s

)
= m where p 6 |r , s

• vp defines a discrete valuation on Q

• |a|vp =
(

1
p

)v(a)
for a ∈ Q \ {0} defines the p-adic norm on Q

• The completion of Q with respect to |.|vp adic norm is the
p-adic field Qp defined earlier

• Ovp = Zp and a parameter π = p



Example II

• Let K (t) denote the rational function field in one variable over
a field K

• Let vt : K (t)∗ → Z with v
(

tm f
g

)
= m where f , g ∈ K [t] and

t 6 |f , g

• vt defines a discrete valuation on K (t)

• The completion of K (t) with respect to vt is the field of
Laurent series K ((t))

• Ovt = K [[t]], the ring of formal power series in t and a
parameter π = t



Function fields

• Let K be a number field without ordering or a p-adic field

• Let O be the ring of integers in K

• Let X/K be a smooth projective geometrically integral curve
over K

• Let F = K (X )

• One could look for Hasse principle for varieties over F with
reference to discrete valuations of F

• Let Ω0 denote the set of discrete valuations of F trivial on K
(corresponds to closed points of X )

• However Ω0 misses all discrete valuations of F restricting to a
p-adic valuation of K !
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Divisorial discrete valuations

• Let X → O be a regular proper model of X/K

• Let ΩX be the set of all discrete valuations of F centered on
codimension one points of X

• Let Ω =
⋃

X ΩX consist of divisorial discrete valuations of F

• One could look for Hasse principle for varieties over F with
reference to Ω

• For v ∈ Ω, Fv denotes the completion of F at v with residue
field κ(v) which is either a p-adic field or a global field of
positive characteristic

• One understands the arithmetic of κ(v) from class field theory
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Isotropy over Fv

• Let q be a quadratic form over F

• Over Fv , q ' u1x2
1 + . . .+ urx2

r +πv1y 2
1 + . . .+πvsy 2

s with π a
parameter at v and ui , vi units in Ov (i.e v(ui ) = v(vj) = 0)

• q is isotropic over Fv if and only if u1x2
1 + . . .+ urx2

r or
v1y 2

1 + . . .+ vsy 2
s is isotropic over Fv

• This happens if and only if u1x2
1 + . . .+ urx2

r or
v1y 2

1 + . . .+ vsy 2
s is isotropic over κ(v)

• Thus if r ≥ 5 or s ≥ 5, then q is isotropic over Fv

• Hence if dim q ≥ 9, then q is isotropic over Fv
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Hasse principle for quadrics

• Suppose that Hasse principle holds for the quadrics with
respect to Ω

• Then every 9-dimensional quadratic form over F has a
non-trivial zero

Open question

Let k be a number field without ordering and let F = k(X ) where
X is a curve over k. Does there exist N > 0 such that every
quadratic form in more than N variables over F has a non-trivial
zero ? (i.e is u(F ) <∞ ? )
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Failure of Hasse principle

• Caution : Hasse principle fails for quadratic forms of
dimension 3 or 4 over k(X ) where k is a number field

• Non-trivial elements α ∈ 2X (J(X )) for an elliptic curve X
yield quaternion division algebras over F = k(X ) which are
locally split for all v . Thus, their norm forms are rank 4
anisotropic quadratic forms which are locally split

• However the question whether Hasse principle holds for
quadratic forms over k(X ) of dimension at least 5 is open
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Finiteness of the u-invariant

• If k is a p-adic field, indeed every 9 dimensional quadratic
form over F = k(X ) has a non-trivial zero

• Parimala-Suresh for p 6= 2

• Heath-Brown/Leep for all p



Hasse principle for quadrics over function fields

Theorem (Colliot-Thélène–Parimala–Suresh)

Let k be a p-adic field where p 6= 2 and let F = k(X ) for a curve
X/k . Then Hasse principle holds for quadrics over F with respect
to Ω

Proof relies on patching techniques developed by
Harbater-Hartmann-Krashen



HHK patching

• Let K be a p-adic field

• Let O be the valuation ring of K and κ its residue field

• Let X be a smooth projective geometrically integral curve
over K

• Let F = K (X )

• X
η→ Spec (O) be a regular proper model of X/K

• Let X0 → Spec(κ) be the reduced special fiber of X

• Assume that X0 is a union of regular curves with normal
crossings



HHK patching

• For each x ∈X0, let Fx = ff (ÔX ,x)

• If x is codimension one on X , Fx is the complete discretely
valued field with respect to νx

• If x is codimension two on X , Fx is the field of fractions of
the completion of the two-dimensional regular local ring at x



HHK patching

Theorem (HHK)

Let G be a connected linear algebraic group over F which is
F -rational. Then Hasse principle holds with reference to
{Fx |x ∈X0} for

1. Principal homogeneous spaces under G

2. Projective homogeneous space under G

Remark

If Z is an F -variety, then Z (Fx) 6= ∅ ∀ x ∈X0 implies
Z (Fv ) 6= ∅ ∀ v ∈ Ω

Proof of CT-P-S relies on showing the converse, namely that
Z (Fv ) 6= ∅ ∀ v ∈ Ω implies Z (Fx) 6= ∅ ∀ x ∈X0 for quadrics Z
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Conjectures for Hasse principle over function fields

Conjecture I (Colliot-Thélène–Parimala–Suresh)

Let K be a p-adic field and F = K (X ), a function field in one
variable over K . Let G be a semi-simple simply connected linear
algebraic group over F . Then Hasse principle holds for principal
homogeneous spaces under G over F

Conjecture II (Colliot-Thélène–Parimala–Suresh)

Let K and F be as in Conjecture I. Let G be a connected linear
algebraic group over F . Then Hasse principle holds for projective
homogeneous spaces under G over F

These conjectures run parallel to the theorems in the number field
case



Conjecture II

• (Grothendieck) : Conjecture II holds for Severi-Brauer
varieties

If X = SB(A) is the Severi-Brauer variety defined by A, then
X (L) 6= ∅ ⇐⇒ A⊗F L ' Mn(L)

Grothendieck shows AFv is split for all v ∈ Ω implies A is split

• (S.Reddy and V.Suresh) : Conjecture II holds for Generalized
Severi-Brauer varieties. They show

index(A) = lcmv∈Ω index (Av )

• (Z.Wu) : Conjecture II holds for projective homogeneous
spaces under unitary groups with some restrictions for groups
of type 2An. Method of proof is via reducing to HHK patches
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Conjecture I

Theorem (Preeti, Y.Hu)

Conjecture I holds for principal homogenous spaces under groups
G of type Bn, Cn, Dn or 2An with constraints, namely

G = SU(A, σ) where A is a central simple algebra with unitary L/F
involution and index(A) is square-free



Conjecture I for 1An

• Let A/F is a central simple algebra – A is a form for the
matrix algebra

• The determinant on matrices yields a function Nrd : A→ F

• Let G = SL1(A) denote the group of reduced norm one
elements in A

• Principal homogeneous spaces under G upto isomorphism are
given by F ∗/Nrd (A∗).

• That is for λ ∈ F ∗, Nrd(z) = λ is the associated PHS

• Conjecture I for SL1(A) asserts that local reduced norms are
reduced norms



Invariants for SL1(A)

• For a field F with characteristic not dividing n, H3
(
F , µ⊗2

n

)
denotes the Galois cohomology group of F with values in µ⊗2

n

• There are invariants for principal homogeneous spaces under
simple simply connected linear algebraic groups with values in
Galois cohomology, due to Rost

• The invariant for SL1(A) with index A = n

F ∗/Nrd (A∗)→ H3
(
F , µ⊗2

n

)
, [λ] ; (λ) • [A]

goes back to Suslin.



Conjecture I for 1An for index(A) square-free

For G = SL1(A) with index(A) square-free, Conjecture I follows
from the following theorems of Merkurjev-Suslin and Kato

Theorem (Merkurjev-Suslin)

Let A be a central simple algebra of square-free index n. Then the
following map has trivial kernel

F ∗/Nrd (A∗)→ H3
(
F , µ⊗2

n

)
, [λ] ; (λ) • [A]

Theorem (Kato)

The following map has trivial kernel

H3
(
F , µ⊗2

n

)
→

∏
v∈ΩX

H3
(
Fv , µ

⊗2
n

)
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Conjecture I for 1An

Theorem (Parimala-Preeti-Suresh)

Conjecture I holds for G = SL1(A) where A is a central simple
algebra with (index(A), p) = 1



Obstructions

• One would like to understand the failure of Hasse principle in
general via obstructions similar to the Brauer-Manin
obstructions

• Indeed such reciprocity obstructions were constructed using
the Brauer group in this setting

• Using these obstructions, examples of principal homogeneous
spaces under non-rational tori were constructed by
Colliot-Thélène–Parimala–Suresh which fail Hasse principle



A question

The following question remains open :

Let K be a p-adic field and F = K (X ), a function field in one
variable over K . Let G be a connected F -rational linear algebraic
group under F . Does Hasse principle hold for principal
homogeneous spaces under G with respect to Ω ?



Hasse principle for rational tori

Theorem (Harari, Szamuely)

Let K be a p-adic field and F = K (X ), a function field in one
variable over K . Let T be a connected F -rational torus. Then
Hasse principle holds for principal homogeneous spaces under T
with respect to Ω0


