Local-global principles for quadratic forms

R. Parimala

Emory University

October 30, 2015 The University of British Columbia

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The *p*-adics

- Let \mathbb{Q} denote the field of rational numbers
- For every prime p, $\|.\|_p$ denotes the p-adic norm on \mathbb{Q} defined by

$$\left\|p^{m}\frac{r}{s}\right\| = \left(\frac{1}{p}\right)^{m}, \ p \nmid r, \ p \nmid s$$

- \mathbb{Q}_p denotes the completion of \mathbb{Q} for the metric induced by $\|.\|_p$
- \mathbb{Q}_p is also the field of fractions of the inverse limit

$$\mathbb{Z}_p = \lim_{\leftarrow_m} \mathbb{Z}/p^m \mathbb{Z}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Local fields

- \mathbb{Q}_{∞} , the completion of \mathbb{Q} for the usual metric |.| is \mathbb{R}
- The fields Q_p for each prime p and Q_∞ = ℝ form a set of overfields of Q
- Study of algebraic structures like *quadratic forms* or *division algebras* is simple over these fields

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An example

Let $q = \sum_{1 \le i \le m} a_i X_i^2$ where $a_i \in \mathbb{Z}$ with $\gcd_i(a_i) = 1$ be a quadratic form over \mathbb{Q}

Question

When is q isotropic ? i.e. when do there exist $\lambda_1, \ldots, \lambda_m \in \mathbb{Q}$ not all zero with

$$\sum a_i \lambda_i^2 = 0$$
 ?

A local answer

- It is easy to look for congruence solutions modulo pⁿ because Z/pⁿZ is a finite ring !
- One can pass from existence of solutions modulo pⁿ, n ≥ 1 to existence of solutions in Q_p

 $(\mathbb{Q}_p \text{ is complete and solutions can be lifted})$

A local answer

- It is easy to look for congruence solutions modulo pⁿ because Z/pⁿZ is a finite ring !
- One can pass from existence of solutions modulo pⁿ, n ≥ 1 to existence of solutions in Q_p

 $(\mathbb{Q}_p \text{ is complete and solutions can be lifted})$

q is isotropic over ℝ if and only if the *a_i* s don't all have the same sign, i.e. *q* is *indefinite*

From local to global

Theorem (Hasse-Minkowski)

If q is isotropic over $\mathbb R$ and $\mathbb Q_p$ for each prime p, then q is isotropic over $\mathbb Q$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

From local to global

Theorem (Hasse-Minkowski)

If q is isotropic over $\mathbb R$ and $\mathbb Q_p$ for each prime p, then q is isotropic over $\mathbb Q$

In geometric terms, if $X_q : q = 0$ in \mathbb{P}^{n-1} is the quadric associated with q, then

$$X_{q}\left(\mathbb{Q}_{p}
ight)
eq \emptyset \ orall \ p \ , X_{q}\left(\mathbb{R}
ight)
eq \emptyset \implies X_{q}\left(\mathbb{Q}
ight)
eq \emptyset$$

Hasse principle

- We may replace \mathbb{Q} by a *number field k* which is any finite extension extension of \mathbb{Q}
- Let Ω_k be the set of all places of k (which are extensions of the places on Q associated to primes and ∞)

• For each $v \in \Omega_k$, let k_v denote the completion of k at v

Hasse principle

- We may replace \mathbb{Q} by a *number field* k which is any finite extension extension of \mathbb{Q}
- Let Ω_k be the set of all places of k (which are extensions of the places on Q associated to primes and ∞)
- For each $v \in \Omega_k$, let k_v denote the completion of k at v
- Let X be a variety defined over k (common zeroes of polynomials over k)
- We say that X satisfies *Hasse principle* if

$$X\left(k_{v}
ight)
eq\emptyset \;orall\;v\in\Omega_{k}\implies X\left(k
ight)
eq\emptyset$$

Hasse principle

Question

Which classes of varieties over number fields satisfy Hasse principle?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Quadrics over number fields are examples of varieties satisfying Hasse principle

- Quadrics over number fields are examples of varieties satisfying Hasse principle
- Examples of varieties failing Hasse principle were known since the early 40's

 Reichardt, Lind in the 1940s gave examples of genus one curves over Q which admit no rational point but admit rational points locally over Q_p for all p and ℝ

- Quadrics over number fields are examples of varieties satisfying Hasse principle
- Examples of varieties failing Hasse principle were known since the early 40's
- Reichardt, Lind in the 1940s gave examples of genus one curves over Q which admit no rational point but admit rational points locally over Q_p for all p and ℝ
- We restrict our attention to *homogeneous spaces* under connected linear algebraic groups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Groups and actions

Let G be a connected linear algebraic group over k
 (G → GL_n(k) is a subgroup defined by polynomial equations)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Examples are SL_n, SO_n, Sp_{2n} etc

Groups and actions

- Let G be a connected linear algebraic group over k
 (G → GL_n(k) is a subgroup defined by polynomial equations)
- Examples are SL_n, SO_n, Sp_{2n} etc
- Let X be a variety defined over k
- Let \overline{k} be an algebraic closure of k
- Suppose there is a (polynomial) action of G on X. This yields a group action

$$G\left(\overline{k}\right) imes X\left(\overline{k}\right) o X\left(\overline{k}\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Homogeneous spaces

- X is a homogeneous space under G if the action of G (k) on X (k) is transitive
- X is a *principal homogeneous* space under G if the action of G(k) on X(k) is *simply transitive*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• X is a *projective homogeneous* space under G if X is a projective variety and a homogeneous space under G

Example (Principal homogenous space) Let $\lambda \in k \setminus \{0\}$. Define X by

$$X(k) = \{z \in \mathsf{M}_n(k) | \det(z) = \lambda\}$$

Then X is a principal homogeneous space under SL_n

Example (Projective homogenous space)

Let q be a non-degenerate quadratic form over k of dim \geq 3. Define X_q by

$$X_q(k)=\{z\in\mathbb{P}^{n-1}(k)|q(z)=0\}$$

Then X_q is a projective homogeneous space under SO(q)

Hasse principle for principal homogeneous spaces

Theorem I

Let k be a number field and G, a semi-simple simply connected linear algebraic group defined over k. Then Hasse principle holds for principal homogenous spaces under G

• Examples of simple simply connected groups :

 SL_n , Sp_{2n} , Spin(q) for $dim(q) \ge 3$, SU(h) where h is a hermitian form over L where [L : k] = 2 and twisted forms of these groups.

 Theorem is due to Kneser for classical groups, Harder for exceptional groups except type E₈ and Chernousov for type E₈

Hasse principle for projective homogeneous spaces

Theorem II (Harder)

Let k be a number field and G, a connected linear algebraic group defined over k. Then Hasse principle holds for projective homogenous spaces under G

• For a general connected linear algebraic group defined over a number field, obstruction to Hasse principle is 'well-understood'

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For a general connected linear algebraic group defined over a number field, obstruction to Hasse principle is 'well-understood'

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Let X/k be a smooth geometrically integral variety over number field k

- For a general connected linear algebraic group defined over a number field, obstruction to Hasse principle is 'well-understood'
- Let X/k be a smooth geometrically integral variety over number field k
- The *Brauer-Manin set BM* is a subset of the product of local points defined using the Brauer group of X :

$$X(k) \subseteq BM \subseteq \left(\prod_{v} X(k_{v})\right)$$

We say that Brauer-Manin obstruction is the *only obstruction to Hasse Principle* for a class of varieties \mathscr{X} , if $\forall X \in \mathscr{X}$,

BM of X is not empty $\implies X(k)$ is not empty

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We say that Brauer-Manin obstruction is the *only obstruction to Hasse Principle* for a class of varieties \mathscr{X} , if $\forall X \in \mathscr{X}$,

BM of X is not empty $\implies X(k)$ is not empty

Theorem (Sansuc, Voskresenskii) Brauer-Manin obstruction is the only obstruction to Hasse principle for principal homogeneous spaces.

Hasse principle for PHS under k-rational groups

A k-group G is k-rational if k(G)/k is a purely transcendental extension

Corollary (Sansuc, Voskresenskii)

Suppose G is a k-rational group. Then Hasse principle holds for principal homogeneous spaces under G over k

Proof.

• Let X be a principal homogeneous space under G over k

- Let \overline{X} be a smooth compactification
- FACT : $Br(k) \twoheadrightarrow Br(\overline{X})$ is surjective
- Thus the BM set of X is $\prod_{v \in \Omega_k} X(k_v)$

Discrete valuations

- To discuss Hasse principle in a more general setting of function fields, we first define *valuation* rings and fields
- A discrete valuation on a field F is a homomorphism
 v: F* → Z such that for each a, b ∈ F* with a, b, a + b non-zero

$$v(a+b) \geq \min(v(a), v(b))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• One sets
$$v(0) = \infty$$

Discrete valuations

- To discuss Hasse principle in a more general setting of function fields, we first define *valuation* rings and fields
- A discrete valuation on a field F is a homomorphism
 v: F* → Z such that for each a, b ∈ F* with a, b, a + b non-zero

$$v(a+b) \geq \min(v(a), v(b))$$

• One sets
$$v(0) = \infty$$

- $\mathcal{O}_v = \{a \in F | v(a) \ge 0\}$ is the *valuation ring*
- O_ν has a unique maximal ideal M_ν = {a ∈ F | v(a) > 0} generated by any π (parameter) with v(π) = 1
- $\kappa(\pi) := \mathcal{O}_{\mathbf{v}}/\langle \pi \rangle$ is the *residue field* for \mathbf{v}

Completions

- Let $v: F^* \to \mathbb{Z}$ be a discrete valuation on a field F and let π be a parameter of F
- Let $\lambda > 1$. Then v defines a norm on F by

$$|a|_{v} = \left(rac{1}{\lambda}
ight)^{v(a)} orall a \in \mathbb{F} \setminus \{0\}$$

- F_v is defined to be the field obtained by completing F with respect to $|.|_v$
- F_v is a discrete valued field with valuation ring $\hat{\mathcal{O}}_v$
- π is a parameter for $F_{\rm v}$ also and the residue field remains the same

Example I

- Let $v_p : \mathbb{Q}^* \to \mathbb{Z}$ with $v\left(p^m \frac{r}{s}\right) = m$ where $p \not| r, s$
- v_p defines a discrete valuation on \mathbb{Q}

•
$$|a|_{v_p} = \left(rac{1}{p}
ight)^{v(a)}$$
 for $a \in \mathbb{Q} \setminus \{0\}$ defines the *p-adic* norm on \mathbb{Q}

The completion of Q with respect to |.|_{vp} adic norm is the p-adic field Q_p defined earlier

•
$$\mathcal{O}_{v_p} = \mathbb{Z}_p$$
 and a parameter $\pi = p$

Example II

• Let *K*(*t*) denote the rational function field in one variable over a field *K*

• Let
$$v_t : K(t)^* \to \mathbb{Z}$$
 with $v\left(t^m \frac{f}{g}\right) = m$ where $f, g \in K[t]$ and $t \not| f, g$

- v_t defines a discrete valuation on K(t)
- The completion of K(t) with respect to v_t is the field of Laurent series K((t))
- *O*_{νt} = *K*[[t]], the ring of *formal power series* in t and a parameter π = t

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Function fields

- Let K be a number field without ordering or a p-adic field
- Let \mathcal{O} be the ring of integers in K
- Let X/K be a smooth projective geometrically integral curve over K

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Let F = K(X)

Function fields

- Let *K* be a number field without ordering or a *p*-adic field
- Let \mathcal{O} be the ring of integers in K
- Let X/K be a smooth projective geometrically integral curve over K
- Let F = K(X)
- One could look for Hasse principle for varieties over *F* with reference to discrete valuations of *F*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Function fields

- Let *K* be a number field without ordering or a *p*-adic field
- Let \mathcal{O} be the ring of integers in K
- Let X/K be a smooth projective geometrically integral curve over K
- Let F = K(X)
- One could look for Hasse principle for varieties over *F* with reference to discrete valuations of *F*
- Let Ω₀ denote the set of discrete valuations of F trivial on K (corresponds to closed points of X)
- However Ω_0 misses all discrete valuations of F restricting to a p-adic valuation of K !

Divisorial discrete valuations

- Let $\mathscr{X} \to \mathcal{O}$ be a regular proper model of X/K
- Let $\Omega_{\mathscr{X}}$ be the set of all discrete valuations of F centered on codimension one points of \mathscr{X}
- Let $\Omega = \bigcup_{\mathscr{X}} \Omega_{\mathscr{X}}$ consist of *divisorial discrete valuations* of *F*

Divisorial discrete valuations

- Let $\mathscr{X} \to \mathcal{O}$ be a regular proper model of X/K
- Let $\Omega_{\mathscr{X}}$ be the set of all discrete valuations of F centered on codimension one points of \mathscr{X}
- Let $\Omega = \bigcup_{\mathscr{X}} \Omega_{\mathscr{X}}$ consist of *divisorial discrete valuations* of *F*
- One could look for Hasse principle for varieties over ${\it F}$ with reference to Ω
- For v ∈ Ω, F_v denotes the completion of F at v with residue field κ(v) which is either a p-adic field or a global field of positive characteristic
- One understands the arithmetic of $\kappa(v)$ from class field theory

- Let q be a quadratic form over F
- Over F_v , $q \simeq u_1 x_1^2 + \ldots + u_r x_r^2 + \pi v_1 y_1^2 + \ldots + \pi v_s y_s^2$ with π a parameter at v and u_i , v_i units in \mathcal{O}_v (i.e $v(u_i) = v(v_i) = 0$)

- Let q be a quadratic form over F
- Over F_v , $q \simeq u_1 x_1^2 + \ldots + u_r x_r^2 + \pi v_1 y_1^2 + \ldots + \pi v_s y_s^2$ with π a parameter at v and u_i , v_i units in \mathcal{O}_v (i.e $v(u_i) = v(v_i) = 0$)

• q is isotropic over F_v if and only if $u_1 x_1^2 + \ldots + u_r x_r^2$ or $v_1 y_1^2 + \ldots + v_s y_s^2$ is isotropic over F_v

- Let q be a quadratic form over F
- Over F_v , $q \simeq u_1 x_1^2 + \ldots + u_r x_r^2 + \pi v_1 y_1^2 + \ldots + \pi v_s y_s^2$ with π a parameter at v and u_i , v_i units in \mathcal{O}_v (i.e $v(u_i) = v(v_i) = 0$)

- q is isotropic over F_v if and only if $u_1 x_1^2 + \ldots + u_r x_r^2$ or $v_1 y_1^2 + \ldots + v_s y_s^2$ is isotropic over F_v
- This happens if and only if $\overline{u_1}x_1^2 + \ldots + \overline{u_r}x_r^2$ or $\overline{v_1}y_1^2 + \ldots + \overline{v_s}y_s^2$ is isotropic over $\kappa(v)$

- Let q be a quadratic form over F
- Over F_v , $q \simeq u_1 x_1^2 + \ldots + u_r x_r^2 + \pi v_1 y_1^2 + \ldots + \pi v_s y_s^2$ with π a parameter at v and u_i , v_i units in \mathcal{O}_v (i.e $v(u_i) = v(v_i) = 0$)

- q is isotropic over F_v if and only if $u_1 x_1^2 + \ldots + u_r x_r^2$ or $v_1 y_1^2 + \ldots + v_s y_s^2$ is isotropic over F_v
- This happens if and only if $\overline{u_1}x_1^2 + \ldots + \overline{u_r}x_r^2$ or $\overline{v_1}y_1^2 + \ldots + \overline{v_s}y_s^2$ is isotropic over $\kappa(v)$
- Thus if $r \ge 5$ or $s \ge 5$, then q is isotropic over F_v

- Let q be a quadratic form over F
- Over F_v , $q \simeq u_1 x_1^2 + \ldots + u_r x_r^2 + \pi v_1 y_1^2 + \ldots + \pi v_s y_s^2$ with π a parameter at v and u_i , v_i units in \mathcal{O}_v (i.e $v(u_i) = v(v_i) = 0$)

- q is isotropic over F_v if and only if $u_1 x_1^2 + \ldots + u_r x_r^2$ or $v_1 y_1^2 + \ldots + v_s y_s^2$ is isotropic over F_v
- This happens if and only if $\overline{u_1}x_1^2 + \ldots + \overline{u_r}x_r^2$ or $\overline{v_1}y_1^2 + \ldots + \overline{v_s}y_s^2$ is isotropic over $\kappa(v)$
- Thus if $r \ge 5$ or $s \ge 5$, then q is isotropic over F_v
- Hence if dim $q \ge 9$, then q is isotropic over F_v

Hasse principle for quadrics

- Suppose that Hasse principle holds for the quadrics with respect to $\boldsymbol{\Omega}$
- Then every 9-dimensional quadratic form over *F* has a non-trivial zero

Hasse principle for quadrics

- Suppose that Hasse principle holds for the quadrics with respect to $\boldsymbol{\Omega}$
- Then every 9-dimensional quadratic form over *F* has a non-trivial zero

Open question

Let k be a number field without ordering and let F = k(X) where X is a curve over k. Does there exist N > 0 such that every quadratic form in more than N variables over F has a non-trivial zero ? (i.e is $u(F) < \infty$?)

Failure of Hasse principle

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Caution : Hasse principle fails for quadratic forms of dimension 3 or 4 over k(X) where k is a number field

Failure of Hasse principle

- Caution : Hasse principle fails for quadratic forms of dimension 3 or 4 over k(X) where k is a number field
- Non-trivial elements α ∈ 2^{III} (J(X)) for an elliptic curve X yield quaternion *division* algebras over F = k(X) which are locally split for all ν. Thus, their norm forms are rank 4 anisotropic quadratic forms which are locally split

Failure of Hasse principle

- Caution : Hasse principle fails for quadratic forms of dimension 3 or 4 over k(X) where k is a number field
- Non-trivial elements α ∈ 2^{III} (J(X)) for an elliptic curve X yield quaternion *division* algebras over F = k(X) which are locally split for all v. Thus, their norm forms are rank 4 anisotropic quadratic forms which are locally split
- However the question whether Hasse principle holds for quadratic forms over k(X) of dimension at least 5 is open

Finiteness of the *u*-invariant

 If k is a p-adic field, indeed every 9 dimensional quadratic form over F = k(X) has a non-trivial zero

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Parimala-Suresh for $p \neq 2$
- Heath-Brown/Leep for all p

Hasse principle for quadrics over function fields

Theorem (Colliot-Thélène-Parimala-Suresh)

Let k be a p-adic field where $p \neq 2$ and let F = k(X) for a curve X/k. Then Hasse principle holds for quadrics over F with respect to Ω

Proof relies on *patching techniques* developed by Harbater-Hartmann-Krashen

- Let K be a p-adic field
- Let $\mathcal O$ be the valuation ring of K and κ its residue field
- Let X be a smooth projective geometrically integral curve over K
- Let F = K(X)
- $\mathscr{X} \xrightarrow{\eta} Spec(\mathcal{O})$ be a regular proper model of X/K
- Let $\mathscr{X}_0 \to Spec(\kappa)$ be the reduced special fiber of \mathscr{X}
- Assume that \mathscr{X}_0 is a union of regular curves with normal crossings

- For each $x \in \mathscr{X}_0$, let $F_x = ff(\hat{\mathbb{O}}_{\mathscr{X},x})$
- If x is codimension one on \mathscr{X} , F_x is the complete discretely valued field with respect to ν_x
- If x is codimension two on \mathscr{X} , F_x is the field of fractions of the completion of the two-dimensional regular local ring at x

Theorem (HHK)

Let G be a connected linear algebraic group over F which is F-rational. Then Hasse principle holds with reference to $\{F_x | x \in \mathscr{X}_0\}$ for

- 1. Principal homogeneous spaces under G
- 2. Projective homogeneous space under G

Theorem (HHK)

Let G be a connected linear algebraic group over F which is F-rational. Then Hasse principle holds with reference to $\{F_x | x \in \mathscr{X}_0\}$ for

- 1. Principal homogeneous spaces under G
- 2. Projective homogeneous space under G

Remark

If Z is an F-variety, then $Z(F_x) \neq \emptyset \ \forall \ x \in \mathscr{X}_0$ implies $Z(F_v) \neq \emptyset \ \forall \ v \in \Omega$

Theorem (HHK)

Let G be a connected linear algebraic group over F which is F-rational. Then Hasse principle holds with reference to $\{F_x | x \in \mathscr{X}_0\}$ for

- 1. Principal homogeneous spaces under G
- 2. Projective homogeneous space under G

Remark

If Z is an F-variety, then $Z(F_x) \neq \emptyset \ \forall \ x \in \mathscr{X}_0$ implies $Z(F_v) \neq \emptyset \ \forall \ v \in \Omega$

Proof of CT-P-S relies on showing the converse, namely that $Z(F_v) \neq \emptyset \ \forall \ v \in \Omega$ implies $Z(F_x) \neq \emptyset \ \forall \ x \in \mathscr{X}_0$ for quadrics Z

Conjectures for Hasse principle over function fields

Conjecture I (Colliot-Thélène-Parimala-Suresh)

Let K be a p-adic field and F = K(X), a function field in one variable over K. Let G be a semi-simple simply connected linear algebraic group over F. Then Hasse principle holds for principal homogeneous spaces under G over F

Conjecture II (Colliot-Thélène-Parimala-Suresh)

Let K and F be as in Conjecture I. Let G be a connected linear algebraic group over F. Then Hasse principle holds for projective homogeneous spaces under G over F

These conjectures run parallel to the theorems in the number field case

Conjecture II

• (Grothendieck) : Conjecture II holds for Severi-Brauer varieties

If X = SB(A) is the Severi-Brauer variety defined by A, then $X(L) \neq \emptyset \iff A \otimes_F L \simeq M_n(L)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture II

• (Grothendieck) : Conjecture II holds for Severi-Brauer varieties

If X = SB(A) is the Severi-Brauer variety defined by A, then $X(L) \neq \emptyset \iff A \otimes_F L \simeq M_n(L)$

Grothendieck shows A_{F_v} is split for all $v \in \Omega$ implies A is split

• (S.Reddy and V.Suresh) : Conjecture II holds for Generalized Severi-Brauer varieties. They show

 $\operatorname{index}(A) = \operatorname{lcm}_{v \in \Omega} \operatorname{index}(A_v)$

Conjecture II

• (Grothendieck) : Conjecture II holds for Severi-Brauer varieties

If X = SB(A) is the Severi-Brauer variety defined by A, then $X(L) \neq \emptyset \iff A \otimes_F L \simeq M_n(L)$

Grothendieck shows A_{F_v} is split for all $v \in \Omega$ implies A is split

• (S.Reddy and V.Suresh) : Conjecture II holds for Generalized Severi-Brauer varieties. They show

$$index(A) = lcm_{v \in \Omega} index(A_v)$$

• (Z.Wu) : Conjecture II holds for projective homogeneous spaces under unitary groups with some restrictions for groups of type ${}^{2}A_{n}$. Method of proof is via reducing to HHK patches

Conjecture I

Theorem (Preeti, Y.Hu)

Conjecture I holds for principal homogenous spaces under groups G of type B_n , C_n , D_n or 2A_n with constraints, namely

 $G = SU(A, \sigma)$ where A is a central simple algebra with unitary L/F involution and index(A) is square-free

Conjecture I for ${}^{1}A_{n}$

- Let A/F is a central simple algebra A is a form for the matrix algebra
- The determinant on matrices yields a function $Nrd: A \rightarrow F$
- Let *G* = SL₁(*A*) denote the group of reduced norm one elements in *A*
- Principal homogeneous spaces under G upto isomorphism are given by F* / Nrd (A*).
- That is for $\lambda \in F^*$, $Nrd(z) = \lambda$ is the associated PHS
- Conjecture I for SL₁(A) asserts that local reduced norms are reduced norms

Invariants for $SL_1(A)$

- For a field F with characteristic not dividing n, H³ (F, μ_n^{⊗2}) denotes the Galois cohomology group of F with values in μ_n^{⊗2}
- There are invariants for principal homogeneous spaces under simple simply connected linear algebraic groups with values in Galois cohomology, due to Rost
- The invariant for $SL_1(A)$ with index A = n

$$F^*/\operatorname{Nrd}(A^*) \to \operatorname{H}^3(F, \mu_n^{\otimes 2}), \ [\lambda] \rightsquigarrow (\lambda) \bullet [A]$$

goes back to Suslin.

Conjecture I for ${}^{1}A_{n}$ for index(A) square-free

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For $G = SL_1(A)$ with index(A) square-free, Conjecture I follows from the following theorems of Merkurjev-Suslin and Kato

Conjecture I for ${}^{1}A_{n}$ for index(A) square-free

For $G = SL_1(A)$ with index(A) square-free, Conjecture I follows from the following theorems of Merkurjev-Suslin and Kato

Theorem (Merkurjev-Suslin)

Let A be a central simple algebra of square-free index n. Then the following map has trivial kernel

$$F^*/\operatorname{Nrd}(A^*) \to \operatorname{H}^3(F, \mu_n^{\otimes 2}), \ [\lambda] \rightsquigarrow (\lambda) \bullet [A]$$

Conjecture I for ${}^{1}A_{n}$ for index(A) square-free

For $G = SL_1(A)$ with index(A) square-free, Conjecture I follows from the following theorems of Merkurjev-Suslin and Kato

Theorem (Merkurjev-Suslin)

Let A be a central simple algebra of square-free index n. Then the following map has trivial kernel

$$F^*/\operatorname{Nrd}(A^*) \to \operatorname{H}^3(F, \mu_n^{\otimes 2}), \ [\lambda] \rightsquigarrow (\lambda) \bullet [A]$$

Theorem (Kato)

The following map has trivial kernel

$$\mathsf{H}^{3}\left(\mathsf{F},\mu_{n}^{\otimes2}\right)\rightarrow\prod_{\mathsf{v}\in\Omega_{\mathscr{X}}}\mathsf{H}^{3}\left(\mathsf{F}_{\mathsf{v}},\mu_{n}^{\otimes2}\right)$$

Conjecture I for ${}^{1}A_{n}$

Theorem (Parimala-Preeti-Suresh)

Conjecture I holds for $G = SL_1(A)$ where A is a central simple algebra with (index(A), p) = 1

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Obstructions

- One would like to understand the failure of Hasse principle in general via obstructions similar to the Brauer-Manin obstructions
- Indeed such *reciprocity* obstructions were constructed using the Brauer group in this setting
- Using these obstructions, examples of principal homogeneous spaces under non-rational tori were constructed by Colliot-Thélène–Parimala–Suresh which fail Hasse principle

A question

The following question remains open :

Let K be a p-adic field and F = K(X), a function field in one variable over K. Let G be a connected F-rational linear algebraic group under F. Does Hasse principle hold for principal homogeneous spaces under G with respect to Ω ?

Hasse principle for rational tori

Theorem (Harari, Szamuely)

Let K be a p-adic field and F = K(X), a function field in one variable over K. Let T be a connected F-rational torus. Then Hasse principle holds for principal homogeneous spaces under T with respect to Ω_0