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Lecture 1. Introduction

Since we have a diverse audience today, including high school students from Prince Edward
Island, Nova Scotia, New Brunswick, Québec, and Ontario, we will begin these lectures with some
of the most elementary ideas from topology: spaces (especially manifolds) and the comparison of
spaces. Let us start with some examples.

Here are some spaces that are very familiar: the real line R, the circle S', the disc D?, the
2-sphere S2, the ball (or “3-disc”) D3. Explicitly, one can write (or take as models)

St =
D2 =
R
D3 =
where z,y, z run over R.
real line circle 2—disc

7

2-sphere 3-disc (solid ball)

Figure 1: Some Basic Topological Spaces

Each of the above spaces has a dimension, which one can think of as the number of degrees of
freedom of motion at a typical point in the space. For example, on a space like S?, which can be
thought of as the surface of the Earth, each point is specified by its latitude and longitude, i.e., there
are 2 degrees of freedom. So this space is 2-dimensional. Similarly, S' and R are 1-dimensional,
D? is 2-dimensional, and D? is 3-dimensional.

In topology spaces are thought of as the same if they have the same form. Thus, a circle,
an ellipse, and a triangle are all equivalent topologically. Another example would be the two
fingerprints shown in the following diagram. Clearly they have different form, so are different
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Four homeomaorphic figures

E &

Two non—homeomorphic figures (fingerprints)

Figure 2: Homeomorphic and Non-homeomorphic Figures

topologically. Mathematicians use the word “homeomorphic” (written with the symbol ) to
denote this type of equivalence, its Greek roots are:

.. c
homeo = “similar” = opoios
morph="“form” =udpen.

Topologists look for tools to decide when two spaces are homeomorphic, such as in the next
diagram, and also tools to decide when two spaces are not homeomorphic (written %). The latter
are called “invariants”. Homeomorphisms can often be found by means of explicit maps, as shown
in the next diagram.
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Figure 3: Two homeomorphisms

Figure 4: The Torus and the Solid Torus

How can we decide that two spaces are not homeomorphic? We can say that S! 2 S? because
dimension is an invariant, and they have different dimensions. We can say that S' 2 R, even
though both have dimension 1, because S' is compact and R is not, where the topological invariant
“compactness” is an elementary one but would take too long to give the full definition here. We
can say that the real line R and the disjoint union of two real lines (imagine two parallel lines) are
not homeomorphic, even though both are 1-dimensional and both are not compact, since the first
is a connected space and the second is not connected (connectivity is another topological invariant
which is easy to understand intuitively).

From given spaces it is useful to be able to construct new ones. One important way to do this
is called the “product” or “cartesian product” X x Y of the two spaces X,Y. An example of this
is the familiar euclidean plane R?, it is simply the product R x R. If X,Y have dimensions m,n
respectively, then X x Y will have dimension m + n. Another simple example is the torus ' x S!
(see Fig. 4). Be careful, this is a 2-dimensional space and is just the surface, for example the “skin”
of the donut. The solid donut (the “meat”) would be given by S x D2 also illustrated below (Fig.
4).

Now let’s try a subtler question. It “looks” intuitively that S? and the torus S' x S! are not
homeomorphic. But both are 2-dimensional, both are compact, and both are connected. How
can they be distinguished? There are several ways topologists have found to do this, and we will



mention two of these invariants here: the Euler characteristic and the fundamental group.

For the first invariant, the Euler characteristic, one simply triangulates the space (in this case
the surface S? or S! x S') and counts the number of vertices V, edges E, and faces (triangles) F.
Then the Euler characteristic  is defined to be x = V — E+ F. For example we may triangulate S?
as the surface of a tetrahedron, as shown in the next figure. Triangulations also occur in computer
applications where smooth surfaces must be approximated, such as the surface of an auto.

Figure 5: A Triangulation of S?

We clearly get x(S2) = 4—6+4 = 2, which is Euler’s famous formula for the sphere: V—E+F =
2. It is of course crucial to know that this number x is truly an invariant of the space, that is it
will be the same no matter which triangulation is chosen for the given space. This is what the next
theorem states, and a slightly unconventional proof is outlined. The theorem is for closed surfaces,
by which is meant a surface that is compact, and has no boundary (such as S2, S' x S1).

Theorem 1 For any closed surface ¥, its Euler characteristic x(X) is independent of the triangu-
lation of 3.

Proof outline. We will assume the following fact : any two triangulations can be related by some
finite sequence of the three simple “moves” depicted in Fig. 6.

Notice that for move (1) the net change in x is given by A(x) = 1—3+42 = 0 (similarly for move
(2), the inverse of (1)), while for move (3) A(x) =0— 0+ 0 = 0. Thus the Euler characteristic x
remains unchanged. n

With a little effort the reader can verify that x(S* x S') = 0. This proves the desired result,
S22 8! x S', since the two spaces have different Euler characteristics.

The second method involves associating an algebraic object — a group — to each space, that is
an invariant of the space. This group is called the fundamental group 71(X) of the space X, and
it has to do with the loops in the space, which start and terminate at a fixed point called the base
point of X. Two loops are considered equivalent (called homotopic) if one can be continuously
deformed into the other, and loops are “multiplied” by simply following the first by the second.
The fundamental group is also called the Poincaré group after its discoverer, the great French
mathematician Henri Poincaré. Specialists in French history will know that there was a President
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Figure 6: Basic Triangulation Moves

of France named Raymond Poincaré. Today Raymond Poincaré is probably remembered mostly
because of his cousin Henri’s mathematical fame.

For S2, it is intuitively clear that any loop can be continuously shrunk to a point, thus its
fundamental group is the trivial group of just a single element written m;(S?) = {e}. It turns out
that the fundamental group of the torus is non-trivial, in the language of group theory one writes
71 (St x S') =~ Z @ Z. So we have found a second proof that these spaces are not homeomorphic,
since they have different fundamental groups. In the following diagram some typical loops on the
torus are shown. Loop a is homotopically trivial (can be shrunk to a point), loop b (a longitude)
and loop ¢ (a meridian) are not homotopically trivial.

A useful method of constructing new spaces from old ones is cutting and pasting. The next
diagram shows how to obtain a two-handle surface (also called the “dogbone” space) by cutting
and pasting two tori together. Similarly one can create a surface ¥, with g handles, also illustrated
below. Notice that 3¢ = 52, £; = S x §'.



Figure 7: Loops on a Torus

Figure 8: Connected Sum of two Tori
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Figure 9: A Surface of Genus 4

Theorem 2 We have: ¥y = Xy, if and only if g = h.

Proof. Tt is not hard to show that x(X,) =2 —2g, and clearly 2 —2¢g =2 —2h if and only if
g=h. |

Remark: Another proof can be obtained by using the fundamental group.

So far we have mainly talked about 1-dimensional and 2-dimensional spaces. In topology one
deals with spaces of arbitrary dimension. One would expect intuitively that the subject gets more
difficult and complicated the higher the dimension is, but one amazing surprise in topology is that
this is not so. In fact the dimensions 3 and 4 are the most difficult to deal with. Somehow, in
dimensions greater than 4, there is more “room” to move things around and this makes the topology
simpler. We shall now turn to some 3-dimensional spaces, also called 3-manifolds.

The simplest example of a 3-dimensional space is probably the 3-sphere
S = {(z1, 29, x3,24) : T3+ 2%+ 25 4+ 23 = 1}.

Just like the 2-sphere S2, every loop on S? is contractible to a point, i.e., 71(S®) = {e} is trivial.
The converse of this is one of the most outstanding unsolved problems of mathematics, called the
Poincaré Conjecture. It asserts that every closed connected 3-manifold with trivial fundamental
group must be homeomorphic to §3. There is a $1,000,000 prize for the solution of the Poincaré
Conjecture, offered by the Clay Institute in Boston.

Another way to create interesting 3-dimensional spaces will be shown by first considering the
following construction of the torus. As Fig. 10 shows, we start with the disjoint union S' x D! LI
St x D! of two annuli. Now glue together the inside boundary circles as suggested in Fig. 10 (a
with a') and similarly for the outside boundary circles (b with b’). The result is clearly the torus.

Similarly we can start with two solid tori (3-dimensional annuli) S' x D? U S' x D2. The
boundary of each is a torus, and we glue these two bounding tori together. However, now there
are many possible ways of gluing since the torus has many self-homeomorphisms. In fact each
self-homeomorphism determines two relatively prime positive integers p, ¢, in such a way that the
meridian of the first torus becomes a (p,q) torus knot in the second torus. This is illustrated in
the next figure for the case (p,q) = (3,2), notice that the curve winds around the torus 3 times



Figure 10: Construction of a Torus From Two Annuli

longitudinally and 2 times around the meridian (the reader may like to try to visualize how the
knot pictured here is in fact the same as the familiar trefoil knot).

Figure 11: A (3,2) Torus Knot

If we glue the two solid tori together along their torus boundary via the (p,q) homeomorphism,
the result is a 3-dimensional space that is a closed 3-manifold called the lens space L(p,q). Now let
us ask whether we can tell apart these lens spaces, up to homeomorphism. The Euler characteristic
will give us no information at all, since it equals 0 for any closed 3-manifold. But the fundamental
group does help, indeed it can be shown that m1(L(p,q)) =~ Z/pZ, the integers modulo p. Thus
the lens space determines p uniquely, but what about ¢? In 1935 the German mathematician Kurt
Reidemeister proved the following theorem, which completely answers this question.
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Theorem 3 Two lens spaces L(p,q), L(p',q') are homeomorphic if and only if p = p' and
either pl(¢g+4q’) or pllgd £1).

Examples: (a) L(7,1) 2 L(7,2) since noneof 1£2, 1-2+1 are not divisible by 7.
(b) L(7,2) 2 L(7,3), since T7|(2-3+1).

The new invariant Reidemeister discovered in 1935 (cf.[14]) to prove this theorem is called
Reidemeister torsion. He defined this by topological means using triangulations, the incidence
matrix for the odd dimensional simplexes (the columns) versus the even dimensional simplexes
(the rows), and the determinant of this (square) matrix. W. Franz [1], also in 1935, generalized
this to higher dimensions, and further important work was done by J.H.C. Whitehead [22]. For
expositions, see [10] and [21] where the reader will find the proofs of many theorems stated in these
lectures.

This concludes our first lecture. In the next lecture the algebraic machinery involved in the
Reidemeister torsion will be presented.

11



Lecture 2. Torsion of Chain Complexes

Let IF be a field of arbitrary characteristic and consider the chain complex (which is referred to
simply as a complex)
Om— Om—
C= (Cm 2 Oy 2% . 25 ),
where each Cj is a finite dimensional vector space over F, and 0; is a vector space morphism
satisfying §;_100; =0, foralli =1,...,m — 1.

A somewhat more general definition is often given, where the sequence is allowed to extend
arbitrarily in both directions. The chain complex C defined above can also be viewed in this way,
by simply specifying that C,,+1 = Cpyo = ... = 0 = C_1 = C_y = ..., and consequently
On = Opy1 = ... =0=0_1 = 0_2 = .... The definition implies that Kerd; O Im0;;1, and this
leads to the definition of the homology of a complex.

Definition 2.1. The i-th homology of the complex C is H;(C) = Ker 9;_1/Im ;.

As a subquotient of vector spaces, H;(C) is a vector space over F. In particular, Hy(C) =
Ker 0_1/Im 9y = Cy/Im 9y = Coker dy and H,,(C) = Ker 0p,—1/Im 0,, = Ker 0p,_1.
Definition 2.2. The complex C is said to be acyclic if H;(C) = 0 for all s.

The acyclic property is equivalent to the relation Ker 0,1 = Img; for each ¢, which means
that the sequence is exact.

Definition 2.3. The chain complex C is said to be based if each vector space C; is equipped with
a distinguished (ordered) basis, which will be denoted by ¢;.

The first step will be to define the torsion 7(C) € F* = F\ {0} of a based acyclic chain complex
C. In order to do this, some notation will first be given. Let V be a finite dimensional vector space,
of dimension k, over F. Choose two (ordered) bases v = (v1,...,v;) and u = (uy,...,u) of V. Let
(asj), where 0 <4, j < k, denote the transition matrix from the basis u to the basis v. Furthermore
let
[v/u] = det (a;;) € F* =F\ 0.

It is clear that
(i) [v/v] =1, and
(ii) if w is a third basis of V', then [v/w] = [v/u] - [u/w].

Two bases u and v of V are called equivalent (written u =2 v) if [v/u] = 1.

Let C be an acyclic complex. Let B; = Im 9; C C;. Since C is acyclic, B; = Ker 9;_;. It follows
that C;/B; = Im 0;—1 = B;_1. This is equivalent to the statement that the following sequence is
exact:

0— B; —~C; » B;_1 —0.

12



For each 7 = 0,1,...,m — 1, choose a basis b; for B;, and let gi—l C C; be a lift of b;_1 to C;
(of course many choices will be possible for i)i_l). From the above short exact sequence it is clear
that b; U b;_; forms a basis for C;. Denote this basis by b;b;_1 and as above let [bigi,l /¢;] denote
the determinant of the transition matrix for the change of basis from ¢; to bibi_1.

pemma 1 The element [bii)i_l/ci] is non-zero in F and does not depend on the choice of the lift
bi—1 of bi_1.

Proof. The first assertion is clear. Let 5;_1 be another choice of lift of b;_1. Then 5;'—1 —bi_1 C

ker &; 1 = B;. Hence [b;b,_,/b;b; 1] = 1 (the transition matrix is triangular with 1’s on the diago-
nal). Use property (ii) to conclude that [b;b]_,/c;] = [bibi—1/ci). [ ]

Definition 2.4. The torsion of a based acyclic complex C is defined to be:

H[b b 1/Cz Dl

Lemma 2 The torsion 7(C) of the complex C is independent of the choice of the bases b;.

In order to prove this lemma, it is sufficient to show that
~ _1yi+1 ~ _1)i+2
[bibi—1/ci] V" [bigabi/cisa) Y

is independent of the choice of b;. To see this, choose another basis b, of B; and use property (ii).

Remark. The torsion 7(C) does depend on the distinguished basis ¢; of C;. For, if C’ is the same

acyclic chain complex based by ¢’ = (¢, ...,c,), then
m -
7(C") = 7( H [e;/ ] -0
1=0

Example. Let m = 1. Then
C=(0—>C1 &)CO—)O).

By acyclicity 0y is an isomorphism. As above, let ¢g,c; be the distinguished bases, which in this
case have the same number (say n) of elements. Then 0y is given by an n X n matrix, say A, with
respect to these bases, and 7(C) = (det A) ™!

Proof. Take by = c¢g, by = 0. Tt follows that [by/co] = [co/co] = 1, and [bibo/c1] = [bo/c1] =
det (A™1) = (det A)~!. Thus

T(C) == [bo/CO]_l . [blgo/cl] = [50/61] = (det A)_l

13



as asserted. [ |

Since the torsion is defined using determinants, it is not too surprising that it enjoys some
properties similar to those of determinants. For example the next theorem has some analogy to

the property
Ay B
0 A,

where A; and As are square matrices.

det [ ] = det(Ay) - det(Ay),

Theorem 4 (Multiplication of torsions) For any short ezact sequence
0—-C —=C—-C"—=0,
of acyclic based chain complezes satisfying [c;/c; &/] =1, for all i =0,...,m,
7(C) = £7(C") - 7(C").
Note that the condition [¢;/c, ] =1 is independent of the choice of the lifts &'. The proof of
the theorem consists first in observing that the following diagram
0 B B; By 0

L

0 G Ci Ci 0

is commutative; the result follows by comparing two different bases of Cj: one is obtained from

bases of C] and C!' respectively, another one from bases of Bl, B/, B._,, Bl | respectively. [ |

To compute the torsion, it is convenient to introduce the following definition. Let C denote a
fixed acyclic and based chain complex. The map 0;: C; 1 — C; is then given by a matrix 4; = (a;- k)5
j=1,...,dim Ci11, k=1,...,dim C;.

Definition 2.5. Consider a collection of sets & = {ag, a1, ..., @y} where o; C {1,2,3,...,dim C;}.
Define S; = S;(«) to be the submatrix of A; formed by the entries a;-k of A; such that j € a1
(0<i<m-—1)and k ¢ a;. The collection of sets « is called a 7-chain if

(1) ap = ¢a
(ii) each S;(a) is a square matrix.
The 7-chain « is said to be non-degenerate if det S; # 0 for all even 1.

Example. For dimC;y1 = 3, dimC; = 5, o; = {1, 3,5}, aj+1 = {1,3}. The submatrix S; = S;(«)
is the 2 x 2 submatrix below

a1 |012| ais ais

a21 a2 Qa23 Q24 G25

a3r |432| as3 ass

14



Theorem 5 If a is a non-degenerate T-chain then det S; # 0 for all i and
m—1

7€) = £ [ (det SV
1=0

Remark. The sign + referred to in the previous theorem is equal to (—1)" where

m

N = Z#{(az,y):x <y,r € aj,y €{1,2,...,dim C;} \ oy}
1=0

Theorem 6 A based chain complex is acyclic if and only if it has a non-degenerate 7-chain.

In particular, the torsion of acyclic complexes can always be computed using non-degenerate
7-chains.

More generally, chain complexes can be defined over any associative ring with unit. Let C be a
chain complex over a commutative, Noetherian, unique factorization domain R. Assume that C is
based and that rank H,(C) = 0. Let R denote the field of quotients of R. (Observe that for any
R-module M, rank (M) = dimz(R®g M). ) Then the chain complex R ®r C over R is based and
acyclic and we can consider ist torsion 7(R®rC) € R. We now compute this torsion in homological
terms, at least up to multiplication by invertible elements of R.

Definition 2.6. Let M be a finitely generated R-module. A presentation of M is an exact sequence
R" L Rn 5 M 0.

Let A = (ajx)1<j<m denote the matrix of the homomorphism f: R™ — R"™ with respect to the
1<k<n

standard bases in R™ and R™. The j-th row corresponds to the image of the j-th element of the
basis of R™. Therefore the columns correspond to the generators of R and the rows correspond to
the relations between the generators. Conversely, each such m x n matrix describes a presentation
of a finitely generated R-module.

If A is a presentation matrix of the finitely generated R-module M, then for & > 0, the k-th
elementary ideal of M is the ideal Ex(M) = Ey(A) C R generated by the (n — k) x (n — k) minors
of A. If n — k < 0 then by definition Ex(M) = R. If n — k > m, then Ex(M) = 0. Note that
Ep(M) C Ejpy1(M) for k=0,1,2,....

Lemma 3 The ideals Ex(M) do not depend on the choice of A.

Define Ag(M) = ged (Ex(M)) € R. Thus, Ag(M) is a generator of the smallest principal ideal
containing Ex(M) and A1 (M)|Ag(M) for all k = 0,1,.... The element A¢(M) is called the
order of M, also denoted ord(M).

15



Theorem 7 Consider the chain complez R Qg C. Then

T(R®pC) = ﬁ (ord ()"
1=0

Suppose now that C is a not necessarily acyclic based chain complex over F and that H;(C) =
Ker 0;_1/Im 0; is also based. Set Z; = Ker (0;_1:C; — C;_1). Then 0 C B; C Z; C C; and

Let ¢; and h; be the distinguished bases of C; and H; (62’ respectively. Choose any basis b; of B;.
Then bi, hz' and bi—l (lift of bi—l in CZ) form a basis bihibi_l of C,

Definition 2.7. The torsion of a chain complex C, with based homology, is defined by

_1y)it?

7(C) = H[bz'hii)i,l/ci]( e
=0

This generalizes the original definition of 7(C) in the acyclic case. Once again the torsion does
not depend on the choice of the b;’s. However, it does depend on the choice of ¢; and h;.

16



Lecture 3. The Torsion of CW-Complexes

In this third lecture, we turn to topology and define the torsion of a CW-complex.

Definition 3.1. A finite CW-complex X is a Hausdorff space which is the union of a finite number
of disjoint subspaces e, called cells satisfying the following conditions:

(1) To each cell is associated an integer k > 0 (the dimension of the cell). The union X" of all
k-cells for k < n is called the n-skeleton. We have X = U,>oX".

(2) If e£ is a k-cell, there is a characteristic map xo : (B¥,S* 1) — (X,X*!) such that
Xa|pgk_gk-1 is a homeomorphism from B* — $¥~! onto ef.

The smallest integer n such that X™ = X is called the dimension of X and is denoted dim X.

Remark. Note that a finite CW-complex is compact since it is covered by a finite number of com-
pact sets {xq(B™)}.

Ezample. See Figure 12. The circle S! is a finite CW-complex with two cells €, e! = S — €°.

el

Figure 12: A cell decomposition of the unit circle.

Let X be a finite connected CW-complex with a fixed base point z (a 0-cell). Let 7 = 7 (X, z)
be the fundamental group. Set H = H;(X;Z) = «w/[n,n]. Let Z[H] be the group ring of H, that
is the set of formal linear combinations of elements of H with coefficients in Z (it has a natural
commutative ring structure with unit). Fix a ring homomorphism ¢ : Z[H] — F, where F is a field.
We shall present below the construction of Reidemeister and Franz (1935) of the torsion associated
to ¢ and X.

Consider the maximal abelian covering X of X. It is the regular covering of X associated to
the kernel of the homomorphism 7 — H, i.e., to the subgroup [m, 7] < w. The group H = «/[n, 7]
acts freely on X and X/H = X. Note that the CW-structure in X lifts to X: each cell can be
lifted (in many different ways, according to the action of H) to X. The free action of H on X
gives rise to an action of Z[H] on the cellular chain complex C,(X). Thus C,(X) becomes a (free)
Z[H]-module.

17



Ezample. X = S§', X = R and the covering map is the exponential map R — S',z — exp(2wiz),
H = Z acts by translations on R. Let ¢ denote a generator of H. Then Z[H] = Z[t,t ']. Ac-
cording to the choice (see Fig. 13) of lifts ¥ and &' of cells, we have: Cy(R) = Z[t,t !]e’ and
C1(R) = Z[t,t7]é'. For an appropriate choice of orientation of €', the boundary map is given by
oel = (t —1)el.

FUFD

e0

Figure 13: The maximal abelian covering of S with lift of the cellular decomposition.
Note that Z[H] acts both on F and on C,(X):

e Z[H] acts on F via the homomorphism ¢ : Z[H| - F: z- f = p(z)f, x € Z[H], f € F.

e Z[H] acts on C,(X) via covering transformations.

Hence one can define CY(X) = F @5 Cs (X). Let i € N. Define the i-dimensional twisted
homology of X by HY(X) = H;(C{(X)). It is a vector space over F and is a homotopy invariant
of X. Torsion appears as a “secondary” invariant of X, namely when H,(C{(X)) = 0. From now
on, we assume that H,(CY (X)) =0, i.e., CY(X) is acyclic.

Definition 3.2. A fundamental family of cells in X is a family F of cells of X such that over each
cell of X lies exactly one cell of this family.

Ezample. The previous example yields a fundamental family of cells: F = (&°, &').

If each cell is oriented and the cells in each dimension are ordered, then a fundamental family
F yields a basis for Cf(X). Consider the element

°(X) =7(Cf(X),F) e FF =F — {0}

Let us see how a different choice of a fundamental family of cells affects 7¢(X). Any two lifts
of a cell e; to a cell in X are related by an element h € H. If a cell €; over e; in the fundamental
family is replaced by another one, say hé;, the torsion changes by a factor <,0(h)(_1)dlm “ . If the

18



orientation of a cell is inverted or if the order of cells is changed, then the torsion is multiplied by
+1. As a conclusion,

T9(X) € F'/ £ o(H). (1)

In other words, the torsion is well-defined as an element in F* / + ¢(H). Note that ¢(H) C F* since
H lies in the group of invertible elements of Z[H].

Theorem 8 1). 7%9(X) is invariant under cell subdvisions. 2). 7°(X) is invariant under homeo-
morphisms.

Remark. 1) allows to define torsions for PL-manifolds (any two PL-triangulations of a PL-manifold
have a common subdivision) and for smooth manifolds (using C!-triangulations). 2) implies that
the torsion is not sensitive to non-equivalent PL or smooth structures on manifolds.

Ezamples. 1) X = S', F = Q(t) (field of rational fractions). Let ¢ : Z[H] = Z[tT'] — Q(¢)

be the natural inclusion. Let us compute 7%(X). Using the fundamental family &°, &' described

in Fig. 13, we have Cy(R) = Z[tT!]e?, C1(R) = z[t*1]é® and 9¢' = (t — 1)&°. The resulting

twisted chain complex C{(R) over Q(t) is Q(t)é! LA Q(t)é° with the boundary map 0 defined by

el = ¢t —1)é® = (¢t — 1)&éY. Since 0 is an isomorphism, the complex C{(R) is acyclic. The
1

determinant of & (with respect to the bases é® and &') is ¢ — 1. Hence 7%(R) = 5.

2) Lens spaces. Let p > 2 and let q,..., g, be integers coprime to p. The group C, = {£ €
C, €P = 1} of complex p-th roots of unity acts freely on the oriented sphere $2"~1 = {(z1,...,2,) €
C*, a1|* + -+ |z|* = 1} by

6' (Zl, s ,Zn) = (§QIzla§q2225 .. aéqnzn)'

Consider the orbit space L(p;qi,...,qn) = S~ 1/Cp. It is a closed oriented (2n — 1)-manifold,
called a lens space. Note that it does not depend on the particular order of the g;’s. Since $?*1 is
simply-connected, the fundamental group of L(p;qi,...,qy) is Cp (in particular it is abelian). The
full classification of lens spaces is due to Reidemeister for n = 2 and to Franz for n > 3. It is given
in the following theorem.

Theorem 9 L(p;qi,...qn) = L(p;q,...q,) if and only if there exists r € Z such that (r,p) = 1
and {rg; (mod p)} = {*¢; (mod p)}.

Reidemeister’s and Franz’s proof are based on torsion. Set H = H(L(p; q1,--.,qn)) = Cp. For
¢ € Cp, denote by ¢ the homomorphism Z[H| = Z[tT/{tP = 1) — C,t + &. The torsion of
L(p; q1,- .- gn) is computed by explicitly choosing a cell decomposition of L(p;q1,...qn):

1
T‘Pﬁ(L(p;‘h,. . Qn)) = (fql _ 1)(£q2 _ 1) - (é'Qn _ ]_)

€ C/+ C,.
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It requires some number theory to show that this formula implies the conditions stated in the
theorem. Clearly, the conditions of the Theorem are sufficient for two lens spaces L(p;qi,...qn)
and L(p;q),...q),) to be homeomorphic. Hence the torsion determines the homeomorphism type
of lens spaces. |

Remark. Three-dimensional lens spaces (introduced in Lecture 1) are obtained as a particular case
of the lens spaces defined above. With the notation of Lecture 1, L(p,q) = L(p;q,1) = L(p; 1,q).

To get rid of the indeterminacy in the definition of the torsion, one can equip the CW-complex
X with two extra structures:

- a homology orientation,

- an BEuler structure.

The homology orientation will eliminate the sign indeterminacy of the torsion, whereas the
Euler structure will eliminate the ¢(H) indeterminacy in (1).

First a refinement of the torsion of chain complexes needs to be introduced. (The torsion

of a general (non necessarily acyclic) chain complex was defined in Lecture 2.) Let C = (0 —

Cm 8m__)1 Cr-1 am—_f L Co — 0) be a based chain complex over a field F. Set §;(C) =

ZZ:O dim Hy(C) (mod 2) and v;(C) = ZZ:O dim Cy, (mod 2). Define a weight N(C) by

m

N(C) =) Bi(C)%(C) € Za.

i=0
Let ¢; be a basis of C;, b; a basis of B; = Im 9; and h; a basis of H;(C), i =0,...,m. Define
m 1
#(C,c,h) = (-1)NO7(C) = (-)NO [ [[bihibir /i) € F*. (2)
i=0

In the case C is acyclic, N(C) = 0 and 7(C,c,h) = 7(C). Thus the refinement introduced in (2) is
relevant only in the case when C is not acyclic and has non trivial homology.

Definition 3.3. A homology orientation of a finite connected CW-complex X is an orientation of
H,(X;R) = ®;>0H;(X;R) (as a vector space over R).

Let X be a finite CW-complex, equipped with a homology orientation w. Let h = (ho, . . ., Agim x )
be a positive basis of H,(X;R) = @;>0H;(X;R), i.e., a basis in the class determined by w. Let
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¢ : Z[H] — T be a fixed ring homomorphism. Let e denote an ordered and oriented collec-
tion of all cells of X. This collection determines a basis of C,(X;R), denoted by eg. Then
F(Cy(X;R),er,h) € R* =R — {0}. Define

sign(X, e, h) = sign (7(C«(X;R), er, h)) € {£1}.

_ Lift e to an ordered and oriented fundamental family F of cells in the maximal abelian covering
X. This family yields a basis of C.(X) over Z[H]. Therefore we also obtain a basis é of C¥(X) =
F ®ym) C+(X). Assuming that HY (X) = 0, there is a well-defined torsion 7(CY¥(X), F) € F*.

Definition 3.4. The sign-refined torsion of X is 79(X,w,F) = 7(C¢(X),F) - sign(X, e, h).

Theorem 10 7%(X,w, F) is independent of the order of the cells of X, their orientations and the
choice of an w—positive basis h.

Proof. A change in the order of the cells of X affects both 7¢(C{(X),F) and 7(Ci(X;R), er, h)
by the same +1 sign change so 7%(X,w, F) is globally unaffected. A similar argument holds in the
case of a change of orientation of a cell. Finally, if h and h' are two w-positive bases of H,(X;R),
then
[bihibi—1/ci] = [bihibi—1/bihibi—1] - [bihibi_1/ci] = [hi/hq] - [bihsbi—1/ci].
If follows that
#(Cu(X;5R), ex, 1) = [ [ sign[hj/hi] - #(Cu(X;R), ex, ).
i>0
Since both h and h' are w-positive, ], sign[hi/hi] = 1. [ ]

Recall that a change in the fundamental family of cells in X will affect 7%(C¥(X),F) — and
thus also 7%(X, w, F) — by a multiplicative factor ¢(h), h € H. Hence from Theorem 10 we deduce

Corollary 10.1 7%(X,w) = 7%(X,w, F) is a well-defined element in F* /p(H).

Hence ¢(H) is the remaining indeterminacy. To remove it amounts to specifying a fundamental
family of cells F in X.

Theorem 11 7%(X,w) is invariant under simple homotopy equivalences preserving the homology
orientation.

See [21] or [18] for a proof. Theorem 11 implies in particular that the sign-refined torsion
79(X,w) is invariant under cellular subdivisions of X. Thus one may apply torsion to homology
oriented compact PL-manifolds.

Euler structures and their relationship to spin®structures of 3-manifolds will be presented in
the next lecture.
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Lecture 4. Euler Structures and Refined Torsions

In this fourth lecture we will see how Euler structures can be used to remove the indeterminacy
in the definition of torsion, as mentioned at the end of the previous lecture. So let us consider a
CW-complex X which is finite, connected, and with vanishing Euler characteristic x(X) = 0. Any
CW-complex is the disjoint union of its open cells, and we shall denote the open n-cells of X by
el, a € Ay,. To further fix the notation, we choose in each open cell a base point (for that cell)
er € el. Of course this creates many possible choices, and care will be necessary to be sure that

the final outcomes are independent of these choices.

Definition 4.1. An Euler chain in X is a singular 1-chain £ with the property

o= (-1

n>0, acA

One may write & = +6; ... £ 3, for suitable arcs §; in X. These arcs should be thought of
as singular 1-simplices in X, they are not in general CW 1-simplices (which are linear combinations
of the e.). A simple example of an Euler chain in the circle S' follows. In this example S! has
the CW structure given by a single vertex e and a single 1-cell e}. For the vertex, one must have

€Y = €Y. For the 1-cell we may choose e} to be any point on el. This is shown in the next diagram.

el = el
There are two obvious arcs from e} to €Y, choosing either of these gives an Euler chain &, since

clearly 0¢ = ¢ef — el.
Proposition 1 Any CW-complex X satisfying the above hypotheses admits an Euler chain.

Proof. Using the connectivity of X (which implies arcwise connectivity since X is a CW-complex),
choose for each open cell €” a path 87 from a fixed 0-cell ¢ = €? to e? (8 may be taken to be the
trivial path but this makes no difference). Clearly 987 =e? —¢e{. Let us also write |A,| = a,

for the number of n-cells, then of course x(X) =3,50(—1)"an by definition. Defining

§= Z (_1)7153’

n>0, a€A,
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the following simple computation (and the hypothesis x(X) = 0) completes the proof:

o6 = > (-1)opn
n>0, a€Ay,
= > (—D)"(er —€)
n>0, a€A,

= > (V- (-Draned

n>0, a€A, n>0

= Z (_1)n§2’

n>0, ac€A,
as required. |

An Euler chain is certainly not unique, but clearly the difference £ — 7 of two Euler chains is
a l-cycle (i.e. 9(¢ —n) = 0). This difference therefore defines a homology class [ — 7] € Hi(X).
We define an equivalence relation & ~n if and only if [ — n] =0 € H{(X).

Definition 4.2. An Euler structure e on X is an equivalence class of Fuler chains, under the above
equivalence relation. The set of Euler structures on X is denoted Eul(X).

Writing (throughout the rest of this lecture and in subsequent lectures) H = H;(X) =
H(X;7Z), we will now see that a better understanding of Eul(X) can be obtained by observ-
ing that H acts on Eul(X). To define this action, suppose h € Hi(X), e € Eul(X). Taking
representatives, we have h = [h], e = [{], where h, are respectively a 1-cycle and an Euler chain.
Define h-e=[h+¢] € Eul(X), since d(h+§) =0+ 0. It is clear that this is well-defined, i.e.
independent of the choice of h, since any two choices must differ by a boundary.

It will henceforth be convenient to write H multiplicatively, even though it is an abelian group,
since we are dealing with this action and later with the group ring of H. With this convention, it
is trivial to check that h-(h;-e) = (hh1)-e, so that this is indeed an action of H on Eul(X).

Proposition 2 The above action of H on Eul(X) is transitive and free.

Proof. If &, are two Euler chains, then h =& — 7 isa l-cycle. Clearly [ﬁ] [n] = [€], proving
transitivity. And if h-[{] = [£], then with the above notations h+¢ and ¢ differ by a boundary,
i.e. h is itself a boundary and therefore its homology class [h] is trivial. Thus the action is also
free. |

Corollary 2.1 |Eul(X)| = |H|.

The next goal is to show that the choice of base points in the open cells does not affect Eul(X),
in the sense that there is a bijective correspondence between the Euler chains which induces a
canonical bijective correspondence between the Euler structures. To obtain this correspondence,
recall that each open cell e/ in a CW-complex has a homeomorphism (the inverse of its attaching
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o
map) with the open n-disc D™. Thus, for any two selected points e}, e} € €', there is an

oriented path S} in e from e} to €, obtained as the image of the line segment joining the two
[

corresponding points in D™ under the attaching map. For any Euler chain £ for the choice of base

points e, it is clear that 1 = £+ > (—1)"52 is an Euler chain for the choice of base points

er, and thus the correspondence mentioned above is obtained. This correspondence is obviously

H-equivariant; this amounts to nothing more than the commutativity of addition.

Now let us show that for a CW-subdivision X’ of X, there is again a canonical bijective cor-
respondence Eul(X) = Eul(X'), which is also H-equivariant. In fact this is rather similar to the
preceding argument (of course, since H;(X) = H1(X'), the above proposition already shows that
Eul(X) and Eul(X') are in bijective correspondence as H-sets, but we would like to strengthen this
to a canonical isomorphism of H-sets). For simplicity let a = e} denote an open n-cell of X and a
its base point. In X/, a is subdivided into a finite number of cells which we denote b1, ...,b;. Also
let the dimension of b; be n; (of course n; < n), and its base point is written b;. As in the previous
paragraph, for each ¢ one chooses an oriented path f; in @ with 08; = a—b;. Now define the 1-chain
(o = Ele(—l)"i Bi. To determine 0(,, the following elementary lemma will be useful.

Lemma 4 Let B = B" be given a CW-structure, with each open cell contained entirely in OB =
S™1 or in the interior B= B \ 0B. Then X(é) =(—-1)".

Proof. Since X(é) +x(8" 1) = x(B") =1, we find that X(é) =1-(1-(-1)")=(-1". 1N

Returning now to (,, and using this lemma, we have

o = Y (-1)mop = Ei}l(—l)"i(@—bi)
= X(B)Q—Zle(—l)m(_’i
= (=D)"a— X5 (-1,

From this calculation, it is clear that starting from an Euler chain & for X, taking &' =&Y (q,
where the sum is taken over all open cells a =€ of X, one obtains an Euler chain for X’. Just as
in the previous argument, this correspondence is canonical and induces a canonical correspondence
on the Euler structures Eul(X) = Eul(X’) that is H-equivariant.

In Lecture 3 the notion of a fundamental family of cells € for the maximal abelian cover X
of X was defined. With any such fundamental family, an Euler structure for X is determined, as
follows. First, let z € X be any point, and next select base points eiee. Let p: X » X
" = p(e;") as the base point for €;". Since X is connected,
we may choose an oriented arc «; from z to ¢, for each fundamental cell €] of X. Finally, define

€ =Y ;(—1)"pa;. We claim that £ is an Euler chain for X, as follows from the simple computation:

06 =3 (-1 Ip(E") —pl@)] = 3 (DM ~ x(Xpla) = 3 (-1,

% %

be the covering projection, then take e

recalling that x(X) = 0.
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The Euler structure [£] € Eul(X) is independent of the choices made, both for the arcs «; and
for z. To see the independence for the choice of arcs, suppose ¢ is another choice. Then «; — ¢
determines a 1-cycle in X and thus a 1-dimensional homology class in H;(X). But because X is
a maximal abelian cover of X, the induced map in homology p, : Hi(X) — Hi(X) equals 0. Tt
follows that p(«;) and p(c}) are homologous (i.e., differ by a boundary), and therefore give rise to
the same Euler structure on X (recall that this was precisely the equivalence relation used to define

an Euler structure).

Secondly, suppose a different point y € X is selected. Using connectivity choose a fixed path 8
from y to z. To get an Euler structure [1] starting at y, since we have already shown independence
of the choice of paths, we may select the path from y to €' that consists of the path j followed by
«;. This path is homologous to S + «;, so the Euler structure is given by

[n] = [ (1) (0B + pes)] = [3_(~1)"pas] = [¢]

2

using once more the fact that x(X) = 0.

Summarizing the above discussion, we have shown that for any fundamental family F of cells
in X, a unique Euler structure e = e(F) € Eul(X) is determined. Conversely, we have the next
proposition.

Proposition 3 For any e € Eul(X), there ezists a fundamental family of cells F in X such that
e =e(F).

Proof. Start with any fundamental family of cells F;, which determines an Euler structure e; =
e(F1) = [€1]. By Proposition 2, there exists a unique h € H such that e = h-e;. Now consider
any O-cell a = ’é? € Fi1, and also the 0-cell b = h-a. There is a path v in X from a to b, and py
is a loop in X, i.e. a 1-cycle, that represents h. It is then clear that modifying F; on the single cell
ato F=(Fi\{a})U{b} has the effect of adding pry to the Euler chain £;, and thus gives the
Euler structure [py+&1]=h-e1 =e. [ |

Remark. There is no uniqueness of the fundamental family of cells F in Proposition 3. However,
a slight modification of the proof of Proposition 3, left to the reader as an exercise, shows that if
F = (e2)n,o and F = (€'y)n,qo are two fundamental families of cells such that e = e(F) = e(F’),

then
[T D" =1,

where the product is taken over all cells of all dimensions and hj, € H is the unique element h in
H such that '], = h-e?. (Recall that we use the multiplicative notation for elements in H.)

With this information on Euler structures, we can now return to the idea of torsion. Let X
be any finite connected CW-complex, X its maximal abelian cover, and w a homology orientation
for X, as defined in Lecture 3. Also take F to be a field, e € Eul(X) an Euler structure on
X, H = Hi(X) as usual, and finally let ¢ : Z[H] - F a homomorphism (of rings with unity,
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ie. (1) =1). With this data we can now define a refined torsion 7%(X,w,e) € F as follows.
First consider the chain complex C?(X) = F ®z g C.(X) , where Z[H] acts on C,(X) via
the deck transformations (as discussed in Lecture 3), and acts on F via ¢. Specifically, for any
heH ¢cC(X), yeF onehas Y® (h-&) = (p(h)-v7) ®&, and this action is extended
linearly to all of Z[H]. The algebraic machinery developed in Lecture 2 can now be applied, once
a basis is chosen for our chain complex C¥(X). Of course this is given by the last proposition, i.e.
one takes a fundamental family of cells F such that e = e(F) for the basis. We can now define

(X, w,¢) = { 7w, F) €F, if CY(X) is acyclic,
T\ 0€R, otherwise.

Here 7(X,w, F) denotes the sign-refined torsion defined by means of the homology orientation w of
H,.(X;R) and the fundamental family of cells F in Lecture 3. If one chooses another fundamental
family F' of cells such that e = e(F), then

(X,0,F) = ¢ ([](han) ") 7(X, 0, F) = 7(X, 0, ),

according to the Remark following Proposition 3. (The first equality above is a general consequence
of how the torsion changes under cell change, see Lecture 3, p. 18.)

This achieves the goal stated in Lecture 3, namely by fixing the homology orientation and the
Euler structure, the torsion is a well-defined unique element of F. The next proposition gives a nice
equivariance property of 7¥ with respect to the action of H.

Proposition 4 For h € H, one has 7%(X,w,h-e) = p(h) - 79 (X,w,e).

Proof. The proof is quite similar to that of the previous proposition. One simply modifies a
fundamental family of cells for e on a single 0-cell a to h - a. This gives a fundamental family of
cells for h - e, and it is easily checked that this multiplies the torsion by ¢(h). [ |

Thus far X has represented an arbitrary finite CW-complex. We now turn to the important
special case X = M™, a smooth (C*°) manifold of dimension m. It will be supposed that
M is closed (compact and without boundary) and connected. We are interested in non-singular
vector fields u on M, meaning that for each = € M, wu(z) is a non-zero tangent vector at z, and
furthermore the function u is continuous (even smooth). Not every such manifold admits a non-
singular vector field, for example S? has no non-singular vector field (“you can’t smooth down the
hair on a hairy basketball”, or equivalently “at some point on the Earth the wind is not blowing”).
In fact, there is a theorem of the Swiss mathematician Heinz Hopf, from 1927 [3], that asserts that
M admits a non-singular vector field if and only if x(M) = 0. For example, as we saw in Lecture
1, x(S?*) =2 #0, hence any even-dimensional sphere cannot admit a non-singular vector field.
Nevertheless the family of manifolds for which a non-singular vector field exists is large, indeed for
any odd dimensional manifold M it follows from Poincaré duality that x(M) = 0 and therefore M
admits a non-singular vector field.
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Figure 14: The Stiefel flow on a 2-simplex

Definition 4.3. Vect(M) =V/ ~, where V is the set of all non-singular vector fields on M, and
the equivalence relation is defined by u ~ v if and only if the restrictions of v and v to the
complement of some point in M are homotopic through non-singular vector fields.

Note that one is led to the same equivalence relation, and therefore to the same definition of
Vect(M), if one replaces in the definition above “the complement of some point of M” by “the
complement of some ball in M” or by “the complement of any point of M”.

We now state a theorem which gives another interpretation of Eul(M) for smooth manifolds.
Here we are making use of a basic theorem of differential topology, which says that for a smooth
manifold M there exists a smooth (C!) triangulation of M, and thus M has a CW-structure with
respect to which Eul(M) can be defined.

Theorem 12 For a smooth manifold M with x(M) =0, Vect(M) = Eul(M).

Proof outline. The proof consists in defining a map Eul(M) — Vect(M) and verifying that it is
Hy(M)-equivariant. The smooth manifold M has a C'! triangulation which we call X. To the first
barycentric subdvision X(1) of X, one can associate the so-called Stiefel-Whitney singular vector
field. This vector field is smooth, and non-singular except precisely at the barycenters of the sim-
plices. For an explicit definition, the reader is referred to [2] and [18]. The picture of the flow on
a 2-simplex is given in Fig. 14. Let F = {€;} be a fundamental family of simplices in the maximal
abelian covering X of X. Each simplex &; in X covers a simplex ¢; in X. For each i, choose a path
in X from the base point Zy € X to the barycenter of &. The projection of this path to X is a path
from the base point zy € X to e;. These paths can be chosen so that they are disjointly embedded
except at zg. Thus the union of these paths for all 7 is a wedge of embedded intervals in X, a
regular neighborhood of which is a ball B. The vector field being non-singular on the complement
of B, it can be extended to a non-singular vector field v to the whole manifold M (since x(M) = 0).
The class of v in Vect(M) only depends on F € Eul(X) = Eul(M). This yields the desired map
Eul(M) — Vect(M), F — v. This map is H1(M )-equivariant and hence bijective. [ |

27



Before specializing this still further to 3-manifolds, we introduce the idea of a Spin®-structure
on M. For n > 3,it is well known that one has m1(SO(n)) = Zs, so the universal covering of
SO(n) is a 2-fold covering. It is also a Lie group and is called Spin(n). Thus, for n > 3, one has
an exact sequence of Lie groups

Zg2 — Spin(n) % SO(n),

with Spin(n) simply connected. The group Zs = {£1} acts on Spin(n) via group multiplication by
+1, thus ¢(z) = ¢(—=x), = € Spin(n). We now briefly explain how the group Spin(n) is related to
Clifford algebras. This can be found in many textbooks. A good source, for example, is [5], since
this covers Clifford algebras, Spin(n), as well as Spin®(n) (in Appendix D of this book). The perhaps
easiest way to define Clifford algebras is in terms of generators and relations. Let eq,...,e, be an
orthonormal basis of R". The Clifford algebra Cl(n) is the algebra over R generated by eq,...,e,
subject to relations

ei-ej=—ej-e fori#j andel = —1. (3)
It follows from the definition that there is a natural inclusion R C Cl(n).

Writing every element of Cl(n) as a sum of ordered products e;, - --e;, with 41 < -+ < i, we
see that

dimg Cl(n) = 1 + GL) + @) +ot (Z) = o,

Any R-map f : R* — R" extends to an R-algebra map f : T(n) — T'(n), where
T(n) = ®j>0(R" ® -+ ® R") = D;>0(R")™

is the tensor algebra generated by R™. If f is orthogonal (i.e. preserves the euclidean norm of R"),
it follows from (3) that f induces a map of Clifford algebras Cl(n) — Cl(n). It follows that there
is an embedding O(n) — Aut(Cl(n)).

In particular, the map R” — R™, z +— —z extends to an involution « : z — —z of Cl(n) which
yields a decomposition

Cl(n) = Cly(n) ® Cly(n), (4)

where Cl;(n) = Ker (o — (—1)71d). Let Pin(n) be the group generated by elements v in R” C Cl(n)
such that [|v[|> = 1. Any element v € R® C Pin(n) is invertible : decompose a generator v =
>~; Aiei, s0 according to (3),

U2 = Z)\i)\jeiej = Z/\?ef + Z )\i)\jeiej = — EAZQ = —||’U||2 = -1.
i, i i#] i

Thus Pin(n) is a subgroup of the multiplicative group of units (invertible elements) of Cl(n). The

classical spin group is defined by

Spin(n) = Pin(n) N Cly(n).

It consists of all elements of Pin(n) which can be written as a product of an even number of the
generators given above for Pin(n). Because any product of elements of an orthonormal basis is
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in Pin(n), Pin(n) contains a vector space basis for Cl(n). Similarly, Spin(n) contains a vector
space basis for Cly(n). It follows that (the isomorphism class) of any representation p of Cly(n) is
determined by (the isomorphism class of) its restriction p|spin(n)-

To see that this definition is equivalent to the one presented above, note that Spin(n) acts
on Cl(n) by conjugation. This action preserves the algebra structure and the decomposition (4).
A little more careful observation shows that this action induces a representation of Spin(n) as
endomorphisms of Cl(n) preserving R” C Cl(n), acting on R” as elements of SO(n). Hence there
is an induced map Spin(n) — SO(n), easily seen to be surjective, with kernel +1.

The particular case n = 3 will be of special interest to us (see Lecture 5). The Clifford algebra
Cl(2) has dimension 4 and is easily seen from (3) to be isomorphic to the quaternion algebra H.
The Clifford algebra Cl(3) has dimension 8 and is isomorphic to the direct sum of two copies of the
quaternion algebra H. The subalgebra Cly(3) is isomorphic to C1(2), thus to H (in fact diagonally
embedded in C1(3) = H & H). The group Spin(3) is the group of unit quaternions, isomorphic to
S3.

We now define Spin(n), the “complexification” of Spin(n). Let S* be the unit circle, thought
of as the set of complex numbers of modulus 1. Then

Spin‘(n) = (Spin(n) x S1)/Z,,

where Zg acts via the diagonal embedding, specifically [z, A\] = [—z,—A], where z € Spin(n), |\ =
1. It is then clear that there is an exact sequence of Lie groups

sty Spin®(n) % SO(n) (5)
where i(A) =[1,\] and [z, = ¢(z) (here 1 € Spin(n) is taken as the base point of Spin(n)).

Ezercise. Any complex representation p of Spin(n) such that p(—1) = —1 extends uniquely to a
complex representation of Spin¢(n).

We record a special example in dimension 3.
Ezample. Spin®(3) ~ U(2) as Lie groups.

To see this, first recall the familiar isomorphisms SU(2) =~ S% ~ Spin(3) ~ Sp(1). Assuming
this, we think of an element z of Spin(3) as a matrix in SU(2), i.e.

_|la b
= -p a)

where a,b € C, |a?+|b|?> = 1. Representing an element of S as usual by a unit complex number
A, it is not hard to check that the map

Aa b
[x,)\]HA-x—[_)\l—) /\E]
is well defined, is a homomorphism, and is bijective, as a map from Spin®(3) — U(2). [ |
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The complex Clifford algebra is defined as Cl(n) ®g C. Denote by 9(C, k) the algebra over C
of k x k matrices of complex numbers. A basic result asserts that

M(C,272) if n is even;

n— n— 6
M(C,2"2 ) ®IM(C,2"2 ) if n is odd. (©)

Cl(n) ® C = {

Furthermore, if n is odd then Cly(n) ® C is embedded diagonally in the sum (6).

By Wederburn’s theorem, 9t(C, k) has an irreducible finite dimensional complex representation
Sc, unique up to isomorphism and the corresponding map 9(C, k) — End¢(Sc) is an isomorphism
of algebras. It follows from (6) that

e If n is even, then Cl(n) has an irreducible complex representation Sg(n) of dimension 22,
which is unique up to isomorphism. In this case, the action of Cl(n) ® C on S¢(n) induces an
isomorphism

Cl(n) ® C — End¢(Sc(n)) = Sc(n) ® Sc(n)*. (7)

e Ifn is odd, then Cl(n) has exactly two irreducible complex representations, up to isomorphism
(obtained by projecting Cl(n) ® C onto one of the two summands in (6) and taking the
Wederburn’s irreducible representation of that summand), each of them of dimension 2"
These representations induce, by restriction, isomorphic irreducible representations Sc(n) of
Clp(n). The action of Cly(n) @ C on S¢(n) induces an isomorphism

Note that by the exercise above, the induced representation Spin(n) — Autc(Sc(n)) extends
uniquely to a representation Spin¢(n) — Autc(Sc(n))

Now consider the tangent bundle 73y — M for a smooth n-dimensional manifold M. In
general the structure group GL(n) of this bundle can be reduced to O(n), e.g. by the introduction
of a Riemannian metric. If the manifold is orientable it can be further reduced to SO(n) (this is
equivalent to the vanishing of the first Stiefel-Whitney class w;(M)), and if the structure group lifts
further to Spin(n) (equivalent to the vanishing of wy(M)) one then calls the orientable manifold a
spin manifold. Similarly it is also possible that the structure group may lift to Spin®(n), and one
then calls M a Spin® manifold.

Definition 4.4. Let n : E(n) — B be a principal right SO(n)-bundle over base B. A rigid
Spin®structure on 7 is a pair ((, f), where ( : E({) — B is a principal Spin¢(n)-bundle over B and
f:E(C) = E(n) is a map such that the following diagram is commutative

E(¢) x Spin‘(n) — E(()

N

=y f B

7

E(n) x SO(n) — E(n)
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where 1 : Spin®(n) — SO(n) is the canonical epimorphism defined by (5) and the horizontal arrows
are the right actions of Spin®(n) and SO(n) respectively. Two such pairs (¢, f) and (¢', f') define
the same Spin®-structure if there exists a bundle isomorphism g : ( — ¢/ such that f'og = f. A
Spin®structure on an oriented m-manifold is a Spin®structure on the oriented frame bundle F);
associated to Ty.

The obstruction to the existence of Spin‘-structures on M is Swq(M) € H3(M) where 3 :
H?(M;Zs) — H?(M) is the Bockstein homomorphism associated to the short exact sequence of

coefficients 0 — Z %3 Z — Zy — 0 and wo(M) € H?(M;Zsy) is the second Stiefel-Whitney class of
M. By exactness of the sequence

s HAM) = HX(M;29) 5 H3 (M) = -,

we see that Spin®structures exist on M if and only if we(M) is the mod 2 reduction of an integral
cohomology class (in H2(M) = H?(M;Z)). Hence it is “easier” for an orientable manifold to be
Spin® than to be spin. For further details see Appendix D of [5].

Turning to the case M = M3 of an orientable 3-manifold, a theorem of Stiefel [15] implies
that 757 is in fact trivial — one also says that M is parallelizable or equivalently that M admits 3
pointwise linearly independent vector fields. One consequence of this is that M is a Spin® manifold.
Another useful fact is that H2(M) acts freely and transitively on the set of Spin® structures on
M; this is related to the fact that the first Chern class ¢; (M) classifies circle bundles over M.

Theorem 13 For M an oriented 3-manifold, Spin®(M) = Vect(M).

Proof outline. Let v be a non-singular vector field on M, which certainly exists since the tan-
gent bundle (as mentioned above) is trivial. Also suppose that M has been supplied with a Rie-
mannian metric. Then using v one obtains an orthogonal decomposition of the tangent bundle
T = Ro ® (Rv)-. The vector bundle Rv is of course a trivial line bundle, with trivial struc-
ture group. The complementary vector bundle (Rv)l is of rank 2, and its structure group is
St = S0(2) = U(2) = Spin‘(3). [

Corollary 13.1 For M as above, Spin®(M) = Eul(M).

We end Lecture 4 at this point.
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Lecture 5. Relations with the Seiberg-Witten
Invariants

The aim of this lecture is to define a numerical invariant of Spin®-structures (or, equivalently,
Euler structures), following [19]. We shall also discuss relations with the Seiberg-Witten Invariants.

The first step consists in defining the “maximal abelian torsion”. We need a few classical
algebraic preliminaries.

Definition 5.1. Let R be a commutative ring (with unit 1) and S a subset of R. The localization
S~ 'R is a commutative R-algebra and an R-algebra map m : R — S~ 'R such that m(s) is invertible
in S"!'R for every s € S and (S 'R, m) solves the universal problem:

SR

i.e., for any commutative R-algebra R’ and any R-algebra map f : R — R’ such that f(s) is in-
vertible for any s € S, there exists a unique R-algebra map g: S~ 'R — R such that g om = f.

As is well-known, the localization S~' R exists and is unique up to isomorphism, for any subset
S C R. If S is multiplicatively closed and contains 1 € R, then any element z € S™'R can be
written (not uniquely in general) z = m(r)m(s)~! for some r € R and s € S. The kernel Ker m
consists precisely of elements of R that are annihilated by multiplication by elements in S.

Definition 5.2. Let R be a commutative ring (with unit 1). Denote by S the subset of all non-zero
divisors of R. The localization S™'R is called the classical ring of fractions of R and is denoted

Q(R).

It follows that the ring homomorphism m : R — Q(R) is injective (so R may be regarded as
a subring of @Q(R)) and that if R is a domain (i.e. has no non-zero divisors), then Q(R) coincides
with the quotient field Fr(R) of R.

Let X be a finite connected CW-complex. Finiteness implies that the abelian group H = H;(X)
is finitely generated. The group ring Z[H] is an associative commutative ring with unit.

Suppose first that H is free abelian, generated by t1,...,%,. (We use multiplicative notation.)
Then Z[H] is isomorphic to the ring Z[t{, ..., t}!] of Laurent polynomials in n variables. Since Z is
a domain, Z[t1, ..., t,] is also a (unique factorization) domain. It follows that Z[H] is again a (unique
factorization) domain. In particular, Q(Z[H]) = Fr(Z[H]) which is isomorphic to Q(t1,...,t,), the
field of rational functions of t1, ..., t, with coefficients in Q.

In general, if H has torsion elements, then Z[H| has zero divisors and therefore so has Q(Z[H]).
In particular, we cannot apply the previous argument. Nevertheless, the following result holds.
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Lemma 5 Let H be a finite abelian group. Then Q[H| splits in a unique fashion as a direct sum
of finitely many fields.

The fields in question are cyclotomic: they appear naturally as one extends characters of H
to ring homomorphisms Q[H] — C. Since Q(Z[H]|) = Q(Q[H]), lemma 5 easily implies that
Q(Z[H]) = Q[H] for any finite abelian group.

To treat the general case, choose a splitting H = Tors H @ G where G = H/Tors H. By lemma
5, Q[Tors H] = @7_,C; where Cj, j =1,...,r, is a field. Thus

Q[H] = (Q[Tors H))[G] = @©j=1C}[G] = @)1 Ry

where R; = C;[G], j =1,...,r, is a domain (since G is free abelian and C; is a domain). Therefore
Q[H] is a direct sum of finitely many domains.

Remark. The splitting H = Tors H @ G is not unique. However, the splitting of Q[H] obtained
above is unique.

As a consequence, Q(Z[H]) = Q(Q[H]) = Q(®;R;) = ®;Q(R;) is a direct sum of fields. Set
Fj = Q(R;), j = 1,...,r. Consider the ring inclusion ¢ : Z[H] — Q(Z[H]) = &}_,F;. We can
define ¢; : Z[H] — F; to be ¢ composed with the projection onto the j-th summand. This in turns
yields a torsion 7% (X,w, e) € F; for any e € Eul(X) provided that X is endowed with a homology
orientation w.

Definition 5.3. The mazimal abelian torsion 7(X,w,e) is defined as

r

T(X,w,e) =Y 7 (X,e) € P F;. (9)

As we know from the previous two lectures, 7(X,w, e) has no indeterminacy at all and is well
defined as an element in Q(Z[H]) = @j_; Fj. To simplify notation, we shall omit the homology
orientation and write 7(M,e) = 7(M,w,e). Recall also from the previous lecture that H acts on
Eul(X). Then for h € H C Q(Z[H]), Proposition 4 now reads

7(X,h-e) = hr(X,e). (10)

We now specialize further to the case when X is a closed oriented 3-manifold M. A priori, as
we have seen, 7(M, e) lies in Q(Z[H]). But since M is a 3-manifold, there is a stronger result.

Theorem 14 Suppose that by (M) = rank H > 2. For any e € Eul(X), 7(M,e) € Z[H].

In particular, we can expand 7(M,e) = > 5y ny g where ng € Z. Each integer ng = ngy(e) depends
on the Euler structure e.
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Definition 5.4. The torsion function T : Eul(M) — Z is defined by T'(e) = ni(e). (Recall that as
H is regarded as a multiplicative group, 1 is the neutral element of H.)

The torsion function introduced in [19] is the desired numerical invariant, as it takes values in
Z. Note that there is no loss of information with respect to the (sign-refined) maximal abelian
torsion : formula (10) implies that T'(h - €) = nj-1(e) and therefore

T(M,e) = ZT(g_le) g.

geG

We now present the relation with Seiberg-Witten invariants. To formulate the Seiberg-Witten
invariants for a closed 3-manifold M, we endow M with

e 3 Riemannian metric g,

e a Spin®structure o.

Recall from the previous Lecture, that Spin(3) = U(2). Thus a rigid representative of o is a
principal U(2)-bundle P — M lifting the bundle Fs of orthonormal frames over M. There is a
natural action p of the group U(2) on C? : thus we can form a 2-dimensional complex vector bundle
(called the spin bundle) by setting Sc(P) = P x, Endc(C?). Note that p is nothing else than the
Clifford representation discussed in the previous Lecture for n = 3 (S¢(3) = C?).

From the SO(3)-bundle F; of orthonormal frames over M, one can also form
Cl(Fu) = Fu xso(3) CI(3)

since SO(3) acts naturally on C1(3). This is a locally trivial bundle of real Clifford algebras and is
defined without the choice of a spin structure. It can be regarded as a new algebra structure on the
exterior algebra of the tangent bundle. Similarly, there is the bundle of complex Clifford algebras

CI(FM) RC=Fy X 50(3) (01(3) ® (C).

Since there is a Spin®-structure o (represented by the U(2)-bundle P — M) the complex Clifford
bundle Cl(Fs) ® C will act on the complex spin bundle S¢(P), as we now proceed to explain. Recall
that Spin¢(3) = U(2) acts on C1(3) by conjugation. It follows that we can also regard Cl(F;) ® C
as

CI(FM) C=P X Spin®(3) (01(3) &® (C)

The Clifford multiplication of C1(3) ®C on S¢(3) = C? commutes with the action of Spin®(3) = U(2)
in the sense that (a-c)-v = (aca™!)-v = a- (c-v) for a € Spin®(3), ¢ € C1(3) and v € C2. This
remark leads to the observation that there is a well-defined global action

(C(Fum) ® C) x Sc(P) — Sc(P)
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where each fibre is isomorphic to the Clifford multiplication.

Since M has a Riemannian metric g, there is a canonical identification of the tangent bundle
and the cotangent bundle. Hence the action of Cl(Fj;) ® C on Sc(P) by Clifford multiplication
determines an action of complex-valued differential forms on sections of the spin bundles.

There is also a natural action of U(2) on C via the determinant : this yields a U(1)-bundle,
which is the determinant line bundle of P, denoted by det o.

The Seiberg-Witten equations involve a U(1l)-connection A on det o (and its curvature 2-
form F4) and a section v of the spin bundle S¢(P). A standard reference for connections and
their curvature in differential geometry is [4]. Since a connection geometrically is a horizontal
distribution in the total space, any SO(3)-connection on Fp; — M lifts to a Spin(3)-connection.
Since Spin¢(3) — SO(3) is not a finite covering, there is no canonical way of lifting an SO(3)-
connection on Fjs to a Spin®(3)-connection on P. However, there is a unique connection V on P
induced by the Levi-Civita connection on Fj; and the connection A on det o.

The Dirac operator is a map on sections of S¢(P),
Pa : C=(Sc(P)) = C%(Sc(P))
defined by ;
Ba(¥)(x) = 2; ei - Ve, (1)(x)

where e, e9, €3 is an oriented orthonormal frame for the tangent space T, M at xz and dot denotes
the Clifford multiplication. Orthonormality of the frames ensure that the Dirac operator is well-
defined. The Dirac operator is an elliptic first order linear differential operator and its properties
have been extensively studied, see e.g. [5].

The equations are:

Fa = 9@y — §[[¢|*1d
(SW){ Palv) = 0. 1

The spin bundle S¢(P) has a hermitian metric, so that Sc(P) is sent to its dual via an anti-
complex isomorphism. Here 1* denotes the hermitian dual to %, that is, the image of 9 under this
isomorphism in the dual bundle S¢(P)*.

Denote by C(P) the set of solutions of (SW). The group G = C*(M,U(1)) acts on C(P).
Then, leaving aside technical details, one produces the moduli space

Mm=C(P)/G.
One major result (e.g. [6]) is that if by(M) > 2, that 9 consists of a finite number of oriented
points and is essentially independent of the metric g (the main difficulty), which shows that 91 is
a topological invariant of M. Define SW (o) € Z to be the algebraic sum of these points.
Theorem 15 If by(M) > 2 then T = £SW.
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Here we identify Eul(M) and Spin®(M) as explained in Lecture 4. The proof consists in estab-
lishing a set of properties (“axioms”) defining the torsion function up to sign and showing that the
Seiberg-Witten function satisfies these properties. See [20] for details.

Remark. In the case when the first Betti number of M is less or equal to 1, one can still extract
topological invariants of M from a family of perturbations of the Seiberg-Witten equations. The
process is then more delicate and the invariants obtained are related to the Casson-Walker invari-
ant. See [6] [7] [9] [11]. Then the torsion can also be interpreted and generalized in the context of
Floer homology, see [8] [12] [13].
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Lecture 6. Relations with cohomology

In this last lecture, we turn to the relations between the torsion and cohomology. Let M be
a closed connected oriented 3-manifold. In this section, homology and cohomology groups will
be with integral coefficients, unless explicitly stated otherwise. The cohomology groups H°(M)
and H3(M) are isomorphic to Z. The first and second cohomology groups H!(M) and H?(M)
are related by H'(M) = Hom(H?(M),Z). Tt follows from Poincaré duality that H'(M) is a free
Abelian group of rank by (M) = rank H;(M), the first Betti number of M. Furthermore, H' (M)
carries a skew-symmetric trilinear form fy, : H' (M) x HY(M) x H*(M) — Z defined, in terms of
the cup product, by
fu(z,y,2) = (zUy U2)([M]) € Z (12)

where [M] € H3(M) denotes the fundamental class of M (the distinguished generator of H3(M)).

Theorem 16 (D. Sullivan) Any skew symmetric trilinear form on a lattice of finite rank can be
realized as fyr for some oriented closed 3-manifold M.

The proof involves surgery performed on handlebodies. See [16] for details.

We now discuss relations with torsions. From now on, we suppose that M is a closed connected
oriented 3-manifold with n = b;(M) > 3, equipped with a homology orientation w and an Euler
structure e € Eul(M). We set H = H{(M) = H?(M). Then the refined torsion 7(M,w,e), as
defined in Lecture 4 and interpreted in Lecture 5, is an element in Z[H].

The map

E:Z[H]—)Z, thhr—)th

heH heH

is a ring homomorphism, called the augmentation map. The kernel 7 = Ker ¢ is called the aug-
mentation ideal of Z[H]. For instance, h —1 € Z for any h € H. As in any group ring, there is a
decreasing filtration

Z[H|=I°2>2T27?D...2I"D....

The following result describes where 7(M, w, ) lies in this filtration depending on the first Betti
number n = dim H1(M;R) of M.

Theorem 17 Consider the following two cases.
Case 1. Let n > 4 be even. Then 7(M,w,e) € IT" 2.

Case 2. Let n > 3 be odd. Then 7(M,w,e) € IT" 3. Furthermore, T(M,w,e) (mod I"72?) €
In3/T" 2 is determined by the skew symmetric trilinear form fy.

The skew symmetric trilinear form is a (homotopical) invariant of M and depends neither on
w nor on e. So we deduce the following consequence.
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Corollary 17.1 If n > 3 is odd, then 7(M,w,e) (mod I ?2) is a homotopical invariant of M.

We shall describe an explicit formula relating the skew symmetric trilinear form fj; to the
torsion 7(M,w, e). For this, we need some preliminary algebra for trilinear forms.

Let N be a free module of finite rank over a commutative associative ring R. Let f : NXNXN —
R be a trilinear form. The (bilinear) map

fiNxN = N*, f(z,9)(2) = f(z,y,2),

is the right adjoint map associated to f. If (z;); is a basis in N and (z]); is the dual basis in N*
then

f(a,b) = Zf(a, b,z)z}, a,b€ N. (13)

The expression (13) is independent of the choice of bases (2;);, (2));. We can extend the adjoint map
by embedding N* into the symmetric algebra S(N*) of N*. We may regard S(N*) as R[(%])i], the
graded polynomial algebra on the elements of the dual basis. The grading is given by the degree.
For any ordered basis z = (z;); of N, there is a well defined determinant

det(f (2, 2))i,; € S(N*).

A trilinear form f : Nx N x N — R issaid to be alternate if f(z,z,y) = f(z,y,y) = f(z,y,x) =
0 for all z,y € N.

Lemma 6 An alternate trilinear form is skew-symmetric. The converse holds if the characteristic
of R is different from 2.

Proof. The first statement follows from the observation that

O:f(x—l-y,x-i-y,z) :f(xay,z)+f(ya$az)

and cyclic permutation of the variables. Conversely, let f be skew-symmetric. Then f(z,z,z) =
—f(z,z,2) so 2f(z,z,2z) = 0 and f(z,z,z) = 0. The conclusion follows by cyclic permutation of
the variables. |

Lemma 7 If f is alternate then det(f(2i,2))ij =0

Proof. The matrix A = (f(2i,2;))i,; is alternate, i.e., satisfies A7 = —A and has diagonal elements
equal to 0. The size of A is equal to the rank n of N. Suppose first that n is odd. Then
det A = det AT = —det A. If multiplication by 2 in R is invertible, then it follows that det A = 0.
In general, let T with Tj; = 0 fori = 1,...,n and T;; = —T;; fori > j. Clearly det T € Z[T};]1<i<j<n-
Since Z[T;]1<i<j<n has characteristic different from 2, det 7' = 0. Furthermore, A is a specialization
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of T. So det A is obtained from detT via the homomorphism Z[T};|i<i<j<n — R[Tijli<i<j<n
(induced from the unique homomorphism Z — R) and specialization. Hence det A = 0. Suppose
now that n is even. We recall the notion of Pfaffian of an alternate matrix of size n = 2m. Let &
be a partition of £ = {1,...,2m} into subsets of 2 elements: ¢ : E = [[,,,, X; with X; = {4, 5i }.
Define a permutation 7 of the set F by 7(2/ — 1) = 4; and 7(2]) = j;, for 1 <[ < m. Clearly
7 depends on the order (1 < < m) used to write the collection of subsets of the partition and
the order (i;,7;) used to write the elements of each subset of the partition. However, the element
Pfe(A) = e(7) - 1,2, Ai, j,, where &(7) denotes the signature of 7, is independent of those choices.
The Pfaffian of A, denoted Pf(A), is defined as Pf(4) =}, Pf¢(A) where { runs over all partitions
of E into subsets of 2 elements. It is a classical result that det A = (Pf(A))2. Hence it suffices
to show that Pf(A) = 0. Here A;; = f(zi,z]-) = > i f(2i, 2, 2k) 7. For a fixed partition £ and a
permutation 7 representing it,

m
Pfﬁ(A) = Z E(T) ) H f(zilazjlazkl)zzl et sz
k=K1, ,km) 1=1
where ki,...,ky, run over the set E. Since ¢ is a partition of E, ki € X, = {ip,jp} for some

1 <p < m. Since Pf¢(A) is independent of the order in which the partition £ : E = X1 [[--- ][ Xm
is written, we can choose an ordering of the subsets X|s so that that p = 1. Then f(z;,,zj,,2k,) =0
and Pf¢(A) = 0. It follows that Pf(A) = 0, which finishes the proof. [ |

From now on, we assume that f is an alternate form. It turns out that a refined determinant
can be defined for f.

Lemma 8 Denote by z an ordered basis of N. Denote by (f(zj,zk))j’k# the matriz obtained from

(f(2j,2k))jk by removing the i-th row and the i-th column.

1. There exists a unique element d(z) € S"~3(N*) such that for any i,

det (f(zj,2)) ki = d(2) - ()% € S(N*).

2. If z,2' are two bases of N then d(z) = [2/2')? - d(2') € S"73(N*).

The second statement says that d(z) and d(2') differ by a multiplicative constant which is the
square of an invertible element in R. Let us consider the special case R = Z. Then the subgroup Z*
of invertible elements in Z is just {£1}. Hence d(z) = d(z') for any bases z,z’ of N. This justifies
the following definition.

Definition 6.1. The determinant Det f of an alternate trilinear form f on a free abelian group N
is Det f = d(z) for some basis z of N.

Let us return now to the case when N = H'(M) and f = fj/ is given by the triple cup product
as defined by (12). It will be convenient to remark that N* = Hom(H'(M),Z) = H/Tors H. For
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any h; € N* = H/Tors H, denote by h; € H a lift of h;. Since the first Betti number n is the rank
of HY (M), Det f € S"73(N*).

Theorem 18 Suppose that n = by(M) > 3 is odd. Ezpand Det fyr = E aphi ... hy 3,
he(N*)n—3
where ap, € Z.. Then

T(M,e) =|Tors H|- > ap(h1—1)...(hp_3 —1) mod I">. (14)
he(N*)n=3

Since hj — 1 € T, the right hand side of (14) clearly is in Z"3. Modulo 7" 2, it does not depend
on the choice of lifts h;.

Let r > 2 be a natural number. The ring structure of Z, allows us to define a trilinear pairing
Ir: HI(M;ZT) X HI(M;ZT) X HI(M;ZT) = Ly, (z,y,2) = (z Uy U z)([M]).

For any r > 2, f, is skew-symmetric (because of the skew-symmetry of the cup product). If r > 3
is odd, then f, is alternate. Otherwise, f, may not be alternate. This can even be made a little
more precise. Let r be even. Denote by 8, : H'(M; Z,) — H?(M;Z) the Bockstein homomorphism
associated to the exact sequence 0 — Z — Z — Z, — 0. Let x,y € H'(M;Z,). Tt can be seen that

fr(@,z,y) = 5(Br(z) Uy)([M]).

Consider the projection map p, : Z[H] — Z,[H| obtained by reducing mod r the coefficients.
We may investigate the nature of p,7 = p,(7(M,e)) and ask whether an analog of Theorem 17
holds for p,7. Consider the augmentation map &, : Z.[H] — Zy, Y ,cgmph = Y ey mp. Define
T, = Ker ¢,. Recall that there is a decreasing filtration

Z,[H =T 2T, 2I?2...DI"D....

The group Hi(M;Z,) is a finitely generated Z,-module. Let b be the maximal number of cyclic
summands Z, in a direct sum decomposition of H;(M;Z,). The homology group H has a rank
as a Z-module (the first Betti number b (M) of M). Since H1(M;Z,) = H Q Z,, it follows that
b > by (M) with equality if and only if H has no cyclic summand of order a multiple of r.

Theorem 19 Let r be an odd prime number. Let b > 2. Then

;e =2 if b is even,
Pr T3 if b is odd.

Furthermore, if b is odd, then p,7 (mod Z272) € Tt=3/10~2.

In the case b > 3 is odd, there is also an explicit formula expressing the triple cup product f,
in terms of p,7, which is analogous to Theorem 18.
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We now discuss the relation with the linking pairing. The linking pairing is a symmetric bilinear
pairing Aps : Tors H x Tors H — Q/Z defined as follows. Consider the long exact sequence
= HY(M;Q) — H'(M:Q/z) & H*(M;2) — H*(M;Q) — ...

associated to the exact sequence of coefficients 0 -+ Z — Q — Q/Z — 0. The Bockstein homomor-
phism 8 : H'(M;Q/Z) — H?(M;Z) has image Tors H?(M;Z) = Tors H. Let x,y € Tors H. Pick
T € H'(M;Q/Z) such that B(Z) = z. Define Ay (z,y) = (Z Uy)([M]) € Q/Z. A short verification
shows that Aps(z,y) does not depend on the choice of the lift Z of z.

The linking pairing Ajs can be explicitly recovered from the torsion 7, provided that M is a
rational homology 3-sphere (that is, H is finite). According to Lecture 5, the maximal abelian
torsion 7 can be seen as a H-equivariant map

Eul(M) — Q[H], e~ 7(M,e) = > _ a®(h)h.
heH

Recall that H-equivariance means 7(M,h-e) = h-7(M,e), for any h € H. Since Q[H| is canonically
isomorphic to the ring of Q-valued functions on H (with convolution as a product), 7(M,e) may
be viewed as a map H — Q.

Theorem 20 (see [19]) The following relation holds:

VhkeH t(Mhk-e)—1(M,h-e)—71(M,k-e)+7(M,e) = —Ap(h,k) mod 1.
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