Explicit isogenies and endomorphisms of low-genus Jacobians: theory and applications

Benjamin Smith

Team **GRACE**

INRIA Saclay–Île-de-France Laboratoire d'Informatique de l'École polytechnique (LIX)

> Workshop on curves and applications Calgary August 18, 2013

0: Why?

Why study isogenies and endomorphisms?

You don't study vector spaces without matrices. You wouldn't study a group without its quotients and embeddings.

So: we shouldn't study Jacobians without their homomorphisms and endomorphisms.

The fundamental homomorphisms and endomorphisms are isogenies: Geometrically surjective, with finite kernel.

Motivation

Isogenies and endomorphisms of low-genus Jacobians have important applications over number fields and over finite fields.

Why the focus on low genus?

Because isogenies of high-genus Jacobians are (almost) as rare as hen's teeth.

Hen's teeth, you say?

For g > 3, the quotient of a Jacobian by a finite (and maximally Weil-isotropic) subgroup isa Principally Polarized Abelian Variety, but generally not a Jacobian.

Look at the moduli spaces:

- PPAVs: moduli space $\mathcal{A}_g \, \dim \, g(g+1)/2$
- $\bullet\,$ Jacobians: moduli space \mathcal{M}_g , dim 3g 3 $^+ \textit{ive codimension for }g > 3$

Nevertheless:

Can construct families of pairs (X_1, X_2) over number fields with (absolutely simple) isogenous Jacobians in *arbitrarily high genus*: Mestre 2009, S. 2010, S. 2011...

(But these are just curiosities.)

I feel a need for speed

Today: applications of isogenies and endomorphisms in curve-based crypto (so, over \mathbb{F}_q).

- Central role in Point Counting
- Scalar Multiplication algorithms
- Moving instances of the Discrete Logarithm Problem

Definition

We say an isogeny $\mathcal{J}_{\mathcal{X}_1} \to \mathcal{J}_{\mathcal{X}_2}$ is *efficient* if we can compute the image of elements of $\mathcal{J}_{\mathcal{X}_1}(\mathbb{F}_q)$ in $O(1) \mathbb{F}_q$ -operations.

- In practice: "efficient" = "cost of a few group operations".
- [m] is not efficient (in our sense) for $m \gg 0$ (!)

1: Point Counting

Gaudry-Kohel-S., Asiacrypt 2011

The genus 2 point counting problem

Let \mathcal{H}/\mathbb{F}_p be a genus 2 curve: we want to determine $\#\mathcal{J}_{\mathcal{H}}(\mathbb{F}_p)$.

The only vaguely practical algorithm for large p is Schoof–Pila:

- (Crucially) polynomial in log p
- (Also polynomial in field extension degree)
- Exponential in g (never implemented for g > 2)

Gaudry–Schost, 2009: Old record for g = 2: 128 bit p

O(days) per curve, which is way too slow.

"...to reach the level of AES-256, is still science-fiction ... "

The Weil polynomial

Point counting algorithms don't directly count points: They compute the characteristic polynomial $\chi(X)$ of the Frobenius endomorphism π , which fixes the \mathbb{F}_p -points on $\mathcal{J}_{\mathcal{H}}$.

$$\chi(X) = X^4 - s_1 X^3 + (s_2 + 2p) X^2 - p s_1 X + p^2,$$

where

 $|s_1| \le 4\sqrt{p}$ and $|s_2| \le 4p$.

Schoof's algorithm

- Compute $\chi(X) \mod \ell$ for small primes ℓ
- **2** Recombine to get $\chi(X)$ (Chinese Remainder Theorem)
 - CRT+PNT: Need $O(\log p)$ primes ℓ , largest in $O(\log p)$
 - χ(X) mod ℓ is the characteristic polynomial of π restricted
 to the ℓ-torsion
 *J*_{*H*}[ℓ](
 _{*P*}) ≃ (ℤ/ℓℤ)⁴
 - Compute a generic ℓ-torsion point D; find coeffs of χ(X) mod ℓ via a small dim-2 DLP on D (O(ℓ) group ops).
 - The ℓ-torsion is defined by a kernel ideal of degree O(ℓ⁴), so group operations in J_H[ℓ] cost Õ(ℓ⁴) field operations (cf. division polynomials of degree O(ℓ²) for elliptic curves)
 - Computing the kernel ideal costs O(ℓ⁶) F_p-ops (cf. O(ℓ³) for elliptic curves)

Why is genus 2 point counting slow?

 $\text{Complexity}(\chi \bmod \ell, g = 2) = \text{Complexity}(\chi \bmod \ell, g = 1)^2$

- Elliptic curves: $\mathbb{Z}[X]/(\chi(X))$ is a quadratic imaginary ring.
- Genus 2: $\mathbb{Z}[X]/(\chi(X))$ is a quartic imaginary ring.

 $\mathbb{Z}[X]/\chi(X)$ has a real subring $\mathbb{Z}[\phi] \subset \mathbb{Q}(\sqrt{D})$ for some D > 0. (We say \mathcal{H} has real multiplication (RM) by $\mathbb{Q}(\sqrt{D})$).

Idea: choose \mathcal{H} such that it has known RM by $\mathbb{Z}[\phi]$ where ϕ is an efficient endomorphism, then compute $\chi(X)$ mod primes in $\mathbb{Z}[\phi]$ instead of primes in \mathbb{Z} .

The general situation: genus looks like genus 1 squared

Genus 2 Point Counting

With efficient RM: genus 2 looks like genus 1

Smith (INRIA/LIX)

An example of efficient RM

Consider the Tautz-Top-Verberkmoes family

$$\mathcal{C}: y^2 = x^5 - 5x^3 + 5x + t.$$

We have an explicit endomorphism ϕ defined by

$$\phi((u, v)) = (x^2 - \tau ux + u^2 + \tau^2 - 4, y - v)$$

where $\tau = \zeta_5 + \zeta_5^{-1}$ (in \mathbb{F}_q if $q \not\equiv \pm 2 \mod 5$).

We have $\phi^2 + \phi - 1 = 0$, so $\mathcal{J}_{\mathcal{C}}$ has efficient RM by $\mathbb{Z}[\phi] \cong \mathbb{Z}[\frac{1+\sqrt{5}}{2}]$.

Other families: (Mestre, Hashimoto, Brumer...)

Smith (INRIA/LIX)

Low-Genus Isogenies and Endomorphisms

Real primes

Suppose ℓ does not divide $\operatorname{disc}(\mathbb{Z}[\phi])$. Then either

•
$$(\ell) = (\ell)$$
 (inert: ℓ stays prime in $\mathbb{Z}[\phi]$)
 $\implies \deg \mathcal{J}_{\mathcal{H}}[\ell] = O(\ell^4)$
• $(\ell) = \mathfrak{a}_1\mathfrak{a}_2 \ (\ell \text{ splits into two prime ideals in } \mathbb{Z}[\phi]$)
 $\implies \mathcal{J}_{\mathcal{H}}[\ell] = \mathcal{J}_{\mathcal{H}}[\mathfrak{a}_1] \oplus \mathcal{J}_{\mathcal{H}}[\mathfrak{a}_2]$, with $\deg \mathcal{J}_{\mathcal{H}}[\mathfrak{a}_i] = O(\ell^2)$
Example: $(1009) = (33 - 4\sqrt{5})(33 + 4\sqrt{5})$ in $\mathbb{Z}[\sqrt{5}]$

Cebotarev density: asymptotically, half the primes split in $\mathbb{Z}[\phi]$. Splitting is determined by a simple congruence condition.

> If ϕ is efficient, then we can explicitly compute in $\mathcal{J}_{\mathcal{H}}[\mathfrak{a}_1]$ and $\mathcal{J}_{\mathcal{H}}[\mathfrak{a}_2]$ instead of $\mathcal{J}_{\mathcal{H}}[\ell]$.

Getting real

There exist 2-parameter families of curves with efficient RM endomorphisms.

- Families form codim-1 subvarieties of dim-3 moduli space. In English: we only lose 1 degree of freedom (from 3) in random curve selection.
- We know, in advance, which primes ℓ split (density 1/2)
- Use only split primes: still $O(\log p)$ of size $O(\log p)$
- For the split ℓ ,
 - kernel ideal degree drops from $O(\ell^4)$ to $O(\ell^2)$
 - group operations in kernel drop from $\widetilde{O}(\ell^4)$ to $\widetilde{O}(\ell^2) \mathbb{F}_p$ -ops
 - Cost of computing kernel drops from $\widetilde{O}(\ell^6)$ to $\widetilde{O}(\ell^3) \mathbb{F}_p$ -ops
- Total complexity drops from $\widetilde{O}(\log^8 p)$ to $\widetilde{O}(\log^5 p)$ bit ops

Purely theoretical cuteness

Comparison with elliptic curve point counting

Schoof for Elliptic Curves / 𝔽_p : proven Õ(log⁵ p) bit ops
Schoof–Elkies–Atkin for Elliptic Curves / 𝔽_p : heuristic Õ(log⁴ p) bit ops
RM Schoof–Pila for genus 2 / 𝔽_p : proven Õ(log⁵ p) bit ops

> So point counting has the same unconditional complexity for genus 2 explicit-RM curves over \mathbb{F}_p as for elliptic curves over the same \mathbb{F}_p !

Keeping it real

We searched for a secure genus 2 curve in the explicit $\mathbb{Q}(\sqrt{5})$ -RM family

$$\mathcal{H}: y^2 = x^5 - 5x^3 + 5x + t$$

over \mathbb{F}_{p} with $q = 2^{128} + 573$.

Computing $\chi(T)$ for any $t \in \mathbb{F}_p$: about 3 Core2 core-hours at 2.83GHz; we use the split primes $\ell \leq 131$.

We ran 245 trials, finding 27 prime-order Jacobians.

We found that the Jacobian of the curve at

t = 75146620714142230387068843744286456025

has prime order, and so does its quadratic twist.

Keeping it surreal

From the realm of science fiction... 1024 bits

We computed $\chi(T)$ for $\mathcal{H}: y^2 = x^5 - 5x^3 + 5x + t$ over \mathbb{F}_p with $q = 2^{512} + 1273$ and

t = 2908566633378727243799826112991980174977453300368095776223256986807375270272014471477919 88284560426970082027081672153243497592108531 6560590832659122351278.

This took about 80 core-days (same setup as before); we only used the split primes $\ell \leq$ 419.

2: Scalar Multiplication

S., Asiacrypt 2013

Geometry: Use It or Lose It

Elliptic curves are a source of concrete groups that perform essentially as well as black-box groups...

BUT

..there's nothing black-box about a smooth plane cubic

Problems:

Destructive Exploit the geometry to solve DLPs faster (reduce security) Constructive Exploit the geometry to make cryptosystems more efficient

Eigenvalues of endomorphisms

We have a cryptosystem in a cyclic group $\mathcal{G} \cong \mathbb{Z}/N\mathbb{Z}$, embedded in an elliptic curve \mathcal{E} .

$$\operatorname{End}(\mathcal{G}) = \mathbb{Z}/N\mathbb{Z}$$

 $\operatorname{End}(\mathcal{E}) \supseteq \mathbb{Z}[\pi], \quad \text{where } \pi : (x, y) \longmapsto (x^q, y^q) \text{ (Frobenius)}$

If $\psi \in \operatorname{End}_{\mathbb{F}_q}(\mathcal{E})$ restricts to an endomorphism of \mathcal{G} (that is, $\psi(\mathcal{G}) \subseteq \mathcal{G}$) —and this happens pretty much all the time—then

$$\psi(P) = [\lambda_{\psi}]P$$
 for all $P \in \mathcal{G}$

We call λ_{ψ} the *eigenvalue* of ψ on \mathcal{G} . *Note:* $-N/2 < \lambda_{\psi} < N/2$.

Scalar multiplication with an endomorphism

Consider scalar multiplication: we want to compute [m]P. Abstractly, we can do this with $\log_2 m$ doubles.

Suppose $\psi \in \operatorname{End}(\mathcal{E})$ has eigenvalue λ_{ψ} in $\mathbb{Z}/N\mathbb{Z}$. If

$$m \equiv a + b\lambda_{\psi} \pmod{N},$$

then

$$[m]P = [a]P \oplus [b]\psi(P)$$

—and we can compute the RHS using multiexponentation. Hence

• if ψ can be evaluated fast (time/space < few doubles), and

• if we can find a and b significantly shorter than m,

then we can compute [m]P significantly faster.

Scalar multiplication with an endomorphism

Lemma

If $|\lambda_{\psi}| > N^{1/2}$, then we can find a and b such that

$$a + b\lambda_{\psi} \equiv m \pmod{N}$$

with

a and b in $O(\sqrt{N})$.

(Even better: can compute a and b easily)

Great! Now all we need is a source of good \mathcal{E} equipped with fast ψand this turns out to be highly nontrivial.

Note: integer multiplications and Frobenius do not make good $\psi.$

GLV Curves (Gallant-Lambert-Vanstone, CRYPTO 2001)

Start with an explicit CM curve over $\overline{\mathbb{Q}}$ and reduce mod p.

Example (CM by $\sqrt{-1}$) Let $p \equiv 1 \pmod{4}$; let *i* be a square root of -1 in \mathbb{F}_p . Then the curves

$$\mathcal{E}_a: y^2 = x^3 + ax$$

have an explicit (and extremely efficient) endomorphism

$$\psi:(x,y)\longmapsto(-x,iy).$$

Good scalar decompositions: this $\lambda_{\psi} \equiv \sqrt{-1} \pmod{N}$.

Limitations of GLV

The curves $\mathcal{E}_a/\mathbb{F}_p: y^2 = x^3 + ax$ look perfect...

...but we are not always free to choose our own prime p.

Example

The 256-bit prime $p = 2^{255} - 19$ offers very fast field arithmetic. The \mathbb{F}_p -isomorphism classes of $\mathcal{E}_a/\mathbb{F}_p$ are represented by a = 1, 2, 4, 8.

Largest prime factor of
$$\#\mathcal{E}_a(\mathbb{F}_p) = \begin{cases} 199 \text{ bits} & \text{if } a = 1\\ 239 \text{ bits} & \text{if } a = 2\\ 175 \text{ bits} & \text{if } a = 4\\ 173 \text{ bits} & \text{if } a = 8 \end{cases}$$

So we pay for fast arithmetic with at least 17 (/256) bits of group order, which is about 9 (/128) bits of security.

Other GLV curves

We can try other explicit CM curves... But there are hardly any of them!

- ψ fast (generally) implies deg ϕ very small
- deg ϕ small, $\phi \notin \mathbb{Z} \implies \mathbb{Z}[\phi]$ has small discriminant Δ
- curves with CM by discriminant Δ have j-invariant classified by Hilbert polynomials H_Δ
- H_{Δ} has very small degree, typically 1 for tiny Δ
- \implies only one *j*-invariant per Δ
- Only 2, 4, or 6 twists (curves) per j-invariant
- \Rightarrow a handful of suitable curves, none of which might have (almost)-prime reduction mod p

Only 18 GLV curves with endomorphisms faster than doubling. No guarantee *any* of them have good cryptographic group orders mod p.

Curve rarity is a critical weakness of the GLV technique.

GLS Curves (Galbraith–Lin–Scott, EUROCRYPT 2009)

Start with any curve over \mathbb{F}_p , extend to \mathbb{F}_{p^2} , and use *p*-th powering on the quadratic twist.

Example

Let $p \equiv 5 \pmod{8}$, take A, B, in \mathbb{F}_p , take μ in \mathbb{F}_{p^2} with μ nonsquare:

$$\mathcal{E}/\mathbb{F}_{p^2}: y^2 = x^3 + \mu^2 A x + \mu^3 B$$

has an efficient endomorphism

$$\psi: (x, y) \longmapsto (-x^p, iy^p)$$
 where $i^2 = -1$.

p-th powering in $\mathbb{F}_{p^2} = \mathbb{F}_p(\sqrt{D})$ *almost free:* $(a_0 + a_1\sqrt{D})^p = a_0 - a_q\sqrt{D}$ Good scalar decompositions: $\lambda_{\psi} \equiv \sqrt{-1} \pmod{N}$.

Twist security: the problem with GLS

GLS offers *p* different *j*-invariants with an extremely fast endomorphism. Some of these *j*-invariants should give prime/secure order curves.

Solves the secure curve choice problem for fixed p! Weak point: built-in twist-insecurity.

- Some fast curve arithmetic (eg. Montgomery) is twist-agnostic
- Fouque-Réal-Lercier-Vallette attack: sneak in a point on the twist
 ⇒ can recover secret keys by solving DLogs on the twist
- So we need almost-prime order for both the curve and its twist

GLS curves: twist is (by construction) a subfield curve, and its largest prime factor is in O(p) instead of $O(p^2)$: built-in weakness.

New endomorphisms

Consider a general elliptic curve $\mathcal{E}: y^2 = x^3 + Ax + B$ over \mathbb{F}_{p^2} .

No obvious endomorphisms, apart from

- [m] for $m \in \mathbb{Z}$ (eigenvalue m, too slow for big m !)
- Frobenius $\pi: (x, y) \to (x^{p^2}, y^{p^2})$ (fixes \mathbb{F}_{p^2} -points: eigenvalue 1), and
- Linear combinations: too slow!

We would like to use the sub-Frobenius

$$\pi_0:(x,y)\longmapsto(x^p,y^p),$$

but it's not an endomorphism: it is an isogeny mapping us onto

$${}^{(p)}\mathcal{E}: y^2 = x^3 + A^p x + B^p$$

...which, over \mathbb{F}_{p^2} , coincides with the Galois conjugate of \mathcal{E} .

New endomorphisms

We've mapped onto the wrong curve! We need to get back to \mathcal{E} .

We have another *p*-powering isogeny ${}^{(p)}\pi_0 : {}^{(p)}\mathcal{E} \to \mathcal{E}$, but the composition ${}^{(p)}\pi_0\pi_0$ is π (Frobenius), no use!

Idea: What if \mathcal{E} was the reduction mod p of a **quadratic** \mathbb{Q} -**curve**?

\mathbb{Q} -curves

Definition

A quadratic \mathbb{Q} -curve of degree d is

- an elliptic curve $\widetilde{\mathcal{E}}: y^2 = x^3 + Ax + B$ over a quadratic field $\mathbb{Q}(\sqrt{\Delta})$,
- without complex multiplication,
- s.t. \exists a *d*-isogeny $\widetilde{\phi} : \widetilde{\mathcal{E}} \longrightarrow {}^{\sigma}\widetilde{\mathcal{E}} : y^2 = x^3 + \sigma(A)x + \sigma(B)$.

Here σ is conjugation on $\mathbb{Q}(\sqrt{\Delta})$, and $\tilde{\phi}$ can be defined over $\mathbb{Q}(\sqrt{\Delta}, \sqrt{-d})$.

Where do we find quadratic \mathbb{Q} -curves of degree d? Look at the map

$$X_0(d) \longrightarrow X^*(d) := X_0(d) / \langle \text{Atkin-Lehners} \rangle.$$

• \mathbb{Q} -curves correspond to irrational preimages of points in $X^*(d)(\mathbb{Q})$

• $X_0(d) \cong \mathbb{P}^1$ for small d; can give one-parameter families of \mathbb{Q} -curves

From \mathbb{Q} -curves to endomorphisms

Start with a \mathbb{Q} -curve: we have a *d*-isogeny

$$\widetilde{\phi}: \widetilde{\mathcal{E}} \longrightarrow {}^{\sigma}\!\widetilde{\mathcal{E}}$$
 over $\mathbb{Q}(\sqrt{\Delta}, \sqrt{-d}).$

Reduce $\widetilde{\phi}$ modulo a prime *p* inert in $\mathbb{Q}(\sqrt{\Delta})$ to get a *d*-isogeny

$$\phi: \mathcal{E} \longrightarrow {}^{(p)}\mathcal{E}$$
 over \mathbb{F}_{p^2} .

Then compose with $\pi_0: {}^{(p)}\!\mathcal{E} \to \mathcal{E}$ to get a degree-dp endomorphism

 $\psi := \pi_0 \circ \phi$ in End(\mathcal{E}).

Using ${}^{\sigma}\!\widetilde{\phi}\circ\widetilde{\phi}=[\pm d]$ (since $\widetilde{\mathcal{E}}$ has no CM), we see that

$$\psi^2 = [\pm d] \pi_{\mathcal{E}}.$$

When d is very small: ψ is fast, with a big eigenvalue $(\pm \sqrt{\pm d} \pmod{N})$.

Example: Universal quadratic \mathbb{Q} -curve of degree 2

Example (Hasegawa)

Let Δ be any squarefree discriminant, $t\in\mathbb{Q}$ a free parameter, and

$$\widetilde{\mathcal{E}}/\mathbb{Q}(\sqrt{\Delta}): y^2 = (x-4)(x^2+4x+18t\sqrt{\Delta}-14)$$

$$\sigma \widetilde{\mathcal{E}}/\mathbb{Q}(\sqrt{\Delta}): y^2 = (x-4)(x^2+4x-18t\sqrt{\Delta}-14)$$

There exists a 2-isogeny $\widetilde{\phi}:\widetilde{\mathcal{E}}\to {}^{\sigma}\!\widetilde{\mathcal{E}}$, defined by

$$\widetilde{\phi}: (x,y) \longmapsto \left(f(x), rac{y}{\sqrt{-2}}f'(x)
ight) ext{ where } f(x) = -rac{x}{2} - rac{9(1+t\sqrt{\Delta})}{x-4}$$

- Good reduction mod every prime p>3 inert in $\mathbb{Q}(\sqrt{\Delta})$
- Given a fast prime p: choose Δ st p is inert \implies fast field arithmetic
- $2p \epsilon$ different *j*-invariants in \mathbb{F}_{p^2} (w/ codomains) \implies *curve choice!*

Example: degree-2p endomorphisms

For any p>3, let Δ be a nonsquare mod p. For every $t\in \mathbb{F}_p$,

$$\mathcal{E}_t/\mathbb{F}_{p^2}: y^2 = x^3 - 6(5 - 3t\sqrt{\Delta})x + 8(7 - 9t\sqrt{\Delta})$$

has an efficiently computable endomorphism

$$\psi: (x,y) \longmapsto \left(f(x^p), \frac{y^p}{\sqrt{-2}}f'(x^p)\right) \text{ where } f(x^p) = \frac{-x^p}{2} - \frac{9(1-t\sqrt{\Delta})}{(x^p-4)}$$

such that $\psi^2 = [\pm 2]\pi_{\mathcal{E}_t}$. Note: ψ is faster than doubling.

Example (160-bit curves)

Work over $\mathbb{F}_{p^2} = \mathbb{F}_p(\sqrt{2})$ with $p = 2^{80} - 93$; take t = 4556. Then

• secure order: $#\mathcal{E}_{4556}(\mathbb{F}_{p^2}) = 2 \cdot (159\text{-bit prime})$

• *twist-secure*: $\# \mathcal{E}'_{4556}(\mathbb{F}_{p^2}) = 2 \cdot (159\text{-bit prime})$

...And 160-bit scalar multiplications become 80-bit multiexponentiations.

More generally: other degrees

 $g(X_0(d)) = 0 \implies$ family of degree-dp endomorphisms

- d = 1: degenerate case, recover GLS
- d = 3: we construct prime-order twist-secure curves
- d = 5: we construct prime-order twist-prime-order curves
- $d \ge 7$: even more curves... but slower, less interesting.

Example (From d = 3 family)

Work over $\mathbb{F}_{p^2} = \mathbb{F}_p(\sqrt{-1})$ with $p = 2^{127} - 1$: very fast arithmetic. Take t = 122912611041315220011572494331480107107; then

- $#\mathcal{E}_{3,t}(\mathbb{F}_{p}(\sqrt{-1})) = 3 \cdot (253\text{-bit prime})$ secure
- $\#\mathcal{E}'_{3,t}(\mathbb{F}_p(\sqrt{-1})) = 254$ -bit prime *twist secure!*

Any scalar multiplication on this curve requires at most 127 doubles.

Going further

We have 1-parameter families of elliptic curves over \mathbb{F}_{p^2} with efficient endomorphisms of degree 1p (GLS), 2p, 3p, 5p, 7p.

That's more than enough curves over \mathbb{F}_{p^2} !

Question: can we find more curves efficient endomorphisms over the prime field \mathbb{F}_p ?