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Motivation

0: Why?
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Motivation

Why study isogenies and endomorphisms?

You don’t study vector spaces without matrices.
You wouldn’t study a group without its quotients and embeddings.

So: we shouldn’t study Jacobians
without their homomorphisms and endomorphisms.

The fundamental homomorphisms and endomorphisms are isogenies:
Geometrically surjective, with finite kernel.
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Motivation

Motivation

Isogenies and endomorphisms of low-genus Jacobians have
important applications over number fields and over finite fields.

Why the focus on low genus?

Because isogenies of high-genus Jacobians are (almost)
as rare as hen’s teeth.
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Motivation

Hen’s teeth, you say?

For g > 3, the quotient of a Jacobian by a finite
(and maximally Weil-isotropic) subgroup is

a Principally Polarized Abelian Variety, but generally not a Jacobian.

Look at the moduli spaces:

PPAVs: moduli space Ag dim g(g + 1)/2

Jacobians: moduli space Mg , dim 3g − 3 +ive codimension for g > 3

Nevertheless:

Can construct families of pairs (X1,X2) over number fields
with (absolutely simple) isogenous Jacobians

in arbitrarily high genus: Mestre 2009, S. 2010, S. 2011...

(But these are just curiosities.)
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Motivation

I feel a need for speed

Today: applications of isogenies and endomorphisms in curve-based crypto
(so, over Fq).

Central role in Point Counting

Scalar Multiplication algorithms

Moving instances of the Discrete Logarithm Problem

Definition

We say an isogeny JX1 → JX2 is efficient if we can compute the image of
elements of JX1(Fq) in O(1) Fq-operations.

In practice: ”efficient” = ”cost of a few group operations”.

[m] is not efficient (in our sense) for m� 0 (!)
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Genus 2 Point Counting

1: Point Counting
Gaudry–Kohel–S., Asiacrypt 2011
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Genus 2 Point Counting

The genus 2 point counting problem

Let H/Fp be a genus 2 curve: we want to determine #JH(Fp).

The only vaguely practical algorithm for large p is Schoof–Pila:

(Crucially) polynomial in log p

(Also polynomial in field extension degree)

Exponential in g (never implemented for g > 2)

Gaudry–Schost, 2009: Old record for g = 2: 128 bit p

O(days) per curve, which is way too slow.

“...to reach the level of AES-256, is still science-fiction...”
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Genus 2 Point Counting

The Weil polynomial

Point counting algorithms don’t directly count points:
They compute the characteristic polynomial χ(X ) of the

Frobenius endomorphism π, which fixes the Fp-points on JH.

χ(X ) = X 4 − s1X 3 + (s2 + 2p)X 2 − ps1X + p2,

where

|s1| ≤ 4
√

p and |s2| ≤ 4p.

χ(π) = [0]: so for all D in JH(Fp), we have
π4(D)− [s1]π3(D) + [s2 + 2p]π2(D)− [ps1]π(D) + [p2]D = 0

χ(1) = #JH(Fp)
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Genus 2 Point Counting

Schoof’s algorithm

1 Compute χ(X ) mod ` for small primes `
2 Recombine to get χ(X ) (Chinese Remainder Theorem)

CRT+PNT: Need O(log p) primes `, largest in O(log p)

χ(X ) mod ` is the characteristic polynomial of π restricted
to the `-torsion JH[`](Fp) ∼= (Z/`Z)4

Compute a generic `-torsion point D; find coeffs of
χ(X ) mod ` via a small dim-2 DLP on D (O(`) group ops).

The `-torsion is defined by a kernel ideal of degree O(`4),
so group operations in JH[`] cost Õ(`4) field operations
(cf. division polynomials of degree O(`2) for elliptic curves)

Computing the kernel ideal costs Õ(`6) Fp-ops

(cf. Õ(`3) for elliptic curves)
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Genus 2 Point Counting

Why is genus 2 point counting slow?

Complexity(χ mod `, g = 2) = Complexity(χ mod `, g = 1)2

Elliptic curves: Z[X ]/(χ(X )) is a quadratic imaginary ring.

Genus 2: Z[X ]/(χ(X )) is a quartic imaginary ring.

Z[X ]/χ(X ) has a real subring Z[φ] ⊂ Q(
√

D) for some D > 0.
(We say H has real multiplication (RM) by Q(

√
D)).

Idea: choose H such that it has known RM by Z[φ]
where φ is an efficient endomorphism,

then compute χ(X ) mod primes in Z[φ] instead of primes in Z.
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Genus 2 Point Counting

The general situation: genus looks like genus 1 squared
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Genus 2 Point Counting

With efficient RM: genus 2 looks like genus 1
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Genus 2 Point Counting

An example of efficient RM

Consider the Tautz–Top–Verberkmoes family

C : y 2 = x5 − 5x3 + 5x + t.

We have an explicit endomorphism φ defined by

φ((u, v)) = (x2 − τux + u2 + τ 2 − 4, y − v)

where τ = ζ5 + ζ−1
5 (in Fq if q 6≡ ±2 mod 5).

We have φ2 + φ− 1 = 0, so

JC has efficient RM by Z[φ] ∼= Z[ 1+
√

5
2

].

Other families: (Mestre, Hashimoto, Brumer...)
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Genus 2 Point Counting

Real primes

Suppose ` does not divide disc(Z[φ]). Then either

(`) = (`) (inert: ` stays prime in Z[φ])
=⇒ degJH[`] = O(`4)

(`) = a1a2 (` splits into two prime ideals in Z[φ])
=⇒ JH[`] = JH[a1]⊕ JH[a2], with degJH[ai] = O(`2)

Example: (1009) = (33− 4
√

5)(33 + 4
√

5) in Z[
√

5]

Cebotarev density: asymptotically, half the primes split in Z[φ].
Splitting is determined by a simple congruence condition.

If φ is efficient, then we can explicitly
compute in JH[a1] and JH[a2] instead of JH[`].
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Genus 2 Point Counting

Getting real

There exist 2-parameter families of curves with efficient RM
endomorphisms.

Families form codim-1 subvarieties of dim-3 moduli space.
In English: we only lose 1 degree of freedom (from 3)
in random curve selection.

We know, in advance, which primes ` split (density 1/2)

Use only split primes: still O(log p) of size O(log p)

For the split `,

kernel ideal degree drops from O(`4) to O(`2)

group operations in kernel drop from Õ(`4) to Õ(`2) Fp-ops

Cost of computing kernel drops from Õ(`6) to Õ(`3) Fp-ops

Total complexity drops from Õ(log8 p) to Õ(log5 p) bit ops
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Genus 2 Point Counting

Purely theoretical cuteness

Comparison with elliptic curve point counting

Schoof for Elliptic Curves / Fp :

proven Õ(log5 p) bit ops

Schoof–Elkies–Atkin for Elliptic Curves / Fp :

heuristic Õ(log4 p) bit ops

RM Schoof–Pila for genus 2 / Fp :

proven Õ(log5 p) bit ops

So point counting has the same unconditional complexity
for genus 2 explicit-RM curves over Fp

as for elliptic curves over the same Fp!
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Genus 2 Point Counting

Keeping it real

We searched for a secure genus 2 curve in the explicit Q(
√

5)-RM family

H : y 2 = x5 − 5x3 + 5x + t

over Fp with q = 2128 + 573.

Computing χ(T ) for any t ∈ Fp: about 3 Core2 core-hours at 2.83GHz;
we use the split primes ` ≤ 131.

We ran 245 trials, finding 27 prime-order Jacobians.

We found that the Jacobian of the curve at

t = 75146620714142230387068843744286456025

has prime order, and so does its quadratic twist.
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Genus 2 Point Counting

Keeping it surreal

From the realm of science fiction...

1024 bits
We computed χ(T ) for H : y 2 = x5 − 5x3 + 5x + t

over Fp with q = 2512 + 1273 and

t = 29085666333787272437998261129919801749774533
00368095776223256986807375270272014471477919
88284560426970082027081672153243497592108531
6560590832659122351278.

This took about 80 core-days (same setup as before);
we only used the split primes ` ≤ 419.
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Genus 2 Point Counting

The cardinality is

#JH(Fp) = 17976931348623159077293051907890247336179
76978942306572734300811577326758055023757
37059489561441845417204171807809294449627
63452801227364805323818926258902074851818
08988886875773723732892032531588464639346
29657544938945248034686681123456817063106
48544084486938739666585942218663644225871
2684177900105119005520.
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Elliptic Curve Scalar Multiplication

2: Scalar Multiplication
S., Asiacrypt 2013
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Elliptic Curve Scalar Multiplication

Geometry: Use It or Lose It

Elliptic curves are a source of concrete groups
that perform essentially as well as black-box groups...

BUT
..there’s nothing black-box about a smooth plane cubic

Problems:

Destructive Exploit the geometry to solve DLPs faster (reduce security)

Constructive Exploit the geometry to make cryptosystems more efficient
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Elliptic Curve Scalar Multiplication

Eigenvalues of endomorphisms

We have a cryptosystem in a cyclic group G ∼= Z/NZ,
embedded in an elliptic curve E .

End(G) = Z/NZ
End(E) ⊇ Z[π], where π : (x , y) 7−→ (xq, yq) (Frobenius)

If ψ ∈ EndFq(E) restricts to an endomorphism of G (that is, ψ(G) ⊆ G)
—and this happens pretty much all the time—then

ψ(P) = [λψ]P for all P ∈ G

We call λψ the eigenvalue of ψ on G. Note: −N/2 < λψ < N/2.
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Elliptic Curve Scalar Multiplication

Scalar multiplication with an endomorphism

Consider scalar multiplication: we want to compute [m]P.
Abstractly, we can do this with log2 m doubles.

Suppose ψ ∈ End(E) has eigenvalue λψ in Z/NZ.
If

m ≡ a + bλψ (mod N),

then
[m]P = [a]P ⊕ [b]ψ(P)

—and we can compute the RHS using multiexponentation.
Hence

if ψ can be evaluated fast (time/space < few doubles), and

if we can find a and b significantly shorter than m,

then we can compute [m]P significantly faster.
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Elliptic Curve Scalar Multiplication

Scalar multiplication with an endomorphism

Lemma

If |λψ| > N1/2, then we can find a and b such that

a + bλψ ≡ m (mod N)

with
a and b in O(

√
N).

(Even better: can compute a and b easily)

Great! Now all we need is a source of good E equipped with fast ψ...
...and this turns out to be highly nontrivial.

Note: integer multiplications and Frobenius do not make good ψ.
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Elliptic Curve Scalar Multiplication

GLV Curves (Gallant–Lambert–Vanstone, CRYPTO 2001)

Start with an explicit CM curve over Q and reduce mod p.

Example (CM by
√
−1)

Let p ≡ 1 (mod 4); let i be a square root of −1 in Fp. Then the curves

Ea : y 2 = x3 + ax

have an explicit (and extremely efficient) endomorphism

ψ : (x , y) 7−→ (−x , iy).

Good scalar decompositions: this λψ ≡
√
−1 (mod N).
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Elliptic Curve Scalar Multiplication

Limitations of GLV

The curves Ea/Fp : y 2 = x3 + ax look perfect...
...but we are not always free to choose our own prime p.

Example

The 256-bit prime p = 2255 − 19 offers very fast field arithmetic.
The Fp-isomorphism classes of Ea/Fp are represented by a = 1, 2, 4, 8.

Largest prime factor of #Ea(Fp) =


199 bits if a = 1

239 bits if a = 2

175 bits if a = 4

173 bits if a = 8

So we pay for fast arithmetic with at least 17 (/256) bits of group order,
which is about 9 (/128) bits of security.

Smith (INRIA/LIX) Low-Genus Isogenies and Endomorphisms Calgary, 18/08/2013 27 / 38



Elliptic Curve Scalar Multiplication

Other GLV curves

We can try other explicit CM curves... But there are hardly any of them!

ψ fast (generally) implies deg φ very small

deg φ small, φ /∈ Z =⇒ Z[φ] has small discriminant ∆

curves with CM by discriminant ∆ have j-invariant classified by Hilbert polynomials H∆

H∆ has very small degree, typically 1 for tiny ∆

=⇒ only one j-invariant per ∆

Only 2, 4, or 6 twists (curves) per j-invariant

=⇒ a handful of suitable curves, none of which might have (almost)-prime reduction mod p

Only 18 GLV curves with endomorphisms faster than doubling.
No guarantee any of them have good cryptographic group orders mod p.

Curve rarity is a critical weakness of the GLV technique.
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Elliptic Curve Scalar Multiplication

GLS Curves (Galbraith–Lin–Scott, EUROCRYPT 2009)

Start with any curve over Fp, extend to Fp2,
and use p-th powering on the quadratic twist.

Example

Let p ≡ 5 (mod 8), take A, B, in Fp, take µ in Fp2 with µ nonsquare:

E/Fp2 : y 2 = x3 + µ2Ax + µ3B

has an efficient endomorphism

ψ : (x , y) 7−→ (−xp, iyp) where i2 = −1.

p-th powering in Fp2 = Fp(
√

D) almost free: (a0 + a1

√
D)p = a0 − aq

√
D

Good scalar decompositions: λψ ≡
√
−1 (mod N).
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Elliptic Curve Scalar Multiplication

Twist security: the problem with GLS

GLS offers p different j-invariants with an extremely fast endomorphism.
Some of these j-invariants should give prime/secure order curves.

Solves the secure curve choice problem for fixed p!

Weak point: built-in twist-insecurity.

Some fast curve arithmetic (eg. Montgomery) is twist-agnostic

Fouque–Réal–Lercier–Vallette attack: sneak in a point on the twist
=⇒ can recover secret keys by solving DLogs on the twist

So we need almost-prime order for both the curve and its twist

GLS curves: twist is (by construction) a subfield curve, and its
largest prime factor is in O(p) instead of O(p2): built-in weakness.
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Elliptic Curve Scalar Multiplication

New endomorphisms

Consider a general elliptic curve E : y 2 = x3 + Ax + B over Fp2 .

No obvious endomorphisms, apart from

[m] for m ∈ Z (eigenvalue m, too slow for big m !)

Frobenius π : (x , y)→ (xp2
, yp2

) (fixes Fp2-points: eigenvalue 1), and

Linear combinations: too slow!

We would like to use the sub-Frobenius

π0 : (x , y) 7−→ (xp, yp),

but it’s not an endomorphism: it is an isogeny mapping us onto

(p)E : y 2 = x3 + Apx + Bp

...which, over Fp2 , coincides with the Galois conjugate of E .
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Elliptic Curve Scalar Multiplication

New endomorphisms

We’ve mapped onto the wrong curve! We need to get back to E .

We have another p-powering isogeny (p)π0 : (p)E → E ,
but the composition (p)π0π0 is π (Frobenius), no use!

Idea: What if E was the reduction mod p of a quadratic Q-curve?

Smith (INRIA/LIX) Low-Genus Isogenies and Endomorphisms Calgary, 18/08/2013 32 / 38



Elliptic Curve Scalar Multiplication

Q-curves

Definition

A quadratic Q-curve of degree d is

an elliptic curve Ẽ : y 2 = x3 + Ax + B over a quadratic field Q(
√

∆),

without complex multiplication,

s.t. ∃ a d-isogeny φ̃ : Ẽ −→ σẼ : y 2 = x3 + σ(A)x + σ(B).

Here σ is conjugation on Q(
√

∆), and φ̃ can be defined over Q(
√

∆,
√
−d).

Where do we find quadratic Q-curves of degree d? Look at the map

X0(d) −→ X ∗(d) := X0(d)/〈Atkin–Lehners〉.

Q-curves correspond to irrational preimages of points in X ∗(d)(Q)

X0(d) ∼= P1 for small d ; can give one-parameter families of Q-curves
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Elliptic Curve Scalar Multiplication

From Q-curves to endomorphisms

Start with a Q-curve: we have a d-isogeny

φ̃ : Ẽ −→ σẼ over Q(
√

∆,
√
−d).

Reduce φ̃ modulo a prime p inert in Q(
√

∆) to get a d-isogeny

φ : E −→ (p)E over Fp2 .

Then compose with π0 : (p)E → E to get a degree-dp endomorphism

ψ := π0 ◦ φ in End(E).

Using σφ̃ ◦ φ̃ = [±d ] (since Ẽ has no CM), we see that

ψ2 = [±d ]πE .

When d is very small: ψ is fast, with a big eigenvalue (±
√
±d (mod N)).
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Elliptic Curve Scalar Multiplication

Example: Universal quadratic Q-curve of degree 2

Example (Hasegawa)

Let ∆ be any squarefree discriminant, t ∈ Q a free parameter, and

Ẽ/Q(
√

∆) : y 2 = (x − 4)(x2 + 4x + 18t
√

∆− 14)

σẼ/Q(
√

∆) : y 2 = (x − 4)(x2 + 4x − 18t
√

∆− 14)

There exists a 2-isogeny φ̃ : Ẽ → σẼ , defined by

φ̃ : (x , y) 7−→
(

f (x),
y√
−2

f ′(x)

)
where f (x) = −x

2
− 9(1 + t

√
∆)

x − 4

Good reduction mod every prime p > 3 inert in Q(
√

∆)

Given a fast prime p: choose ∆ st p is inert =⇒ fast field arithmetic

2p− ε different j-invariants in Fp2 (w/ codomains) =⇒ curve choice!
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Elliptic Curve Scalar Multiplication

Example: degree-2p endomorphisms

For any p > 3, let ∆ be a nonsquare mod p. For every t ∈ Fp,

Et/Fp2 : y 2 = x3 − 6(5− 3t
√

∆)x + 8(7− 9t
√

∆)

has an efficiently computable endomorphism

ψ : (x , y) 7−→
(

f (xp),
yp

√
−2

f ′(xp)

)
where f (xp) =

−xp

2
− 9(1− t

√
∆)

(xp − 4)

such that ψ2 = [±2]πEt . Note: ψ is faster than doubling.

Example (160-bit curves)

Work over Fp2 = Fp(
√

2) with p = 280 − 93; take t = 4556. Then

secure order: #E4556(Fp2) = 2 · (159-bit prime)

twist-secure: #E ′4556(Fp2) = 2 · (159-bit prime)

...And 160-bit scalar multiplications become 80-bit multiexponentiations.
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Elliptic Curve Scalar Multiplication

More generally: other degrees

g(X0(d)) = 0 =⇒ family of degree-dp endomorphisms

d = 1: degenerate case, recover GLS

d = 3: we construct prime-order twist-secure curves

d = 5: we construct prime-order twist-prime-order curves

d ≥ 7: even more curves... but slower, less interesting.

Example (From d = 3 family)

Work over Fp2 = Fp(
√
−1) with p = 2127 − 1: very fast arithmetic.

Take t = 122912611041315220011572494331480107107; then

#E3,t(Fp(
√
−1)) = 3 · (253-bit prime) secure

#E ′3,t(Fp(
√
−1)) = 254-bit prime twist secure!

Any scalar multiplication on this curve requires at most 127 doubles.
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Elliptic Curve Scalar Multiplication

Going further

We have 1-parameter families of elliptic curves
over Fp2 with efficient endomorphisms of degree

1p (GLS), 2p, 3p, 5p, 7p.

That’s more than enough curves over Fp2!

Question: can we find more curves efficient
endomorphisms over the prime field Fp?
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