

Entropy minimality of \mathbb{Z}^d shifts of finite type

(joint work with Samuel Lightwood)

Michael H. Schraudner

Centro de Modelamiento Matemático Universidad de Chile

mschraudner@dim.uchile.cl
www.cmm.uchile.cl/~mschraudner

Automata and Symbolic Dynamics at UBC – June 3rd, 2013

Preliminaries

 \mathcal{A} some finite alphabet $d \in \mathbb{N}$ the dimension

$$\begin{split} \mathbb{Z}^d \text{ full shift on } \mathcal{A} &: \qquad \mathcal{A}^{\mathbb{Z}^d} \qquad \sigma : \ \mathbb{Z}^d \times \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{A}^{\mathbb{Z}^d} \\ & \forall \vec{\imath}, \vec{\jmath} \in \mathbb{Z}^d, x \in \mathcal{A}^{\mathbb{Z}^d} : \ \sigma(\vec{\imath}, x)_{\vec{\jmath}} := x_{\vec{\imath} + \vec{\jmath}} \end{split}$$

 $\mathbb{Z}^d \text{ (sub)shifts: } X \subseteq \mathcal{A}^{\mathbb{Z}^d} \text{ shift invariant, closed subset}$ given by a family of forbidden patterns $\mathcal{F} \subseteq \bigcup_{F \subsetneq \mathbb{Z}^d \text{ finite }} \mathcal{A}^F$ on finite shapes such that $X_{\mathcal{F}} := \left\{ x \in \mathcal{A}^{\mathbb{Z}^d} \mid \forall \, \vec{\imath} \in \mathbb{Z}^d, F \subsetneq \mathbb{Z}^d \text{ finite : } x|_{\vec{\imath}+F} \notin \mathcal{F} \right\}$

 \mathbb{Z}^d shifts of finite type (SFTs): X is a \mathbb{Z}^d SFT : $\iff \exists \mathcal{F} \subseteq \bigcup_{F \subsetneq \mathbb{Z}^d \text{ finite }} \mathcal{A}^F$ with $|\mathcal{F}| < \infty$ and $X = X_{\mathcal{F}}$ (local rules) Topological entropy

$$X = X_{\mathcal{F}}$$
 a \mathbb{Z}^d subshift on \mathcal{A}

$$\mathcal{L}(X) := \bigcup_{F \subseteq \mathbb{Z}^d \text{ finite}} \{ x|_F \mid x \in X \}$$

globally admissible patterns (language)

d-dimensional topological entropy of a \mathbb{Z}^d subshift X:

$$h_{\mathrm{top}}(X) := \limsup_{n \to \infty} \frac{\log \left| \mathcal{L}_{[1,n]^d}(X) \right|}{n^d}$$

For \mathbb{Z} SFTs: **Easy to compute the entropy!** $h_{top}(X) = \log \lambda_A$ where A is the transition matrix of a digraph representing the \mathbb{Z} SFT X and $\lambda_A \in \mathbb{R}^+_0$ is its Perron value

For \mathbb{Z}^d SFTs: In general a (very) hard question!

for d > 1 no general algorithm (formula) to compute the entropy, only few examples with known entropy

Entropy minimality

Definition:

A \mathbb{Z}^d subshift X is **entropy minimal** if any (non-empty) proper subshift $Y \subsetneq X$ has strictly less topological entropy, i.e. $h_{top}(Y) < h_{top}(X)$. (very useful in many arguments)

Theorem [folklore]: Every irreducible \mathbb{Z} SFT is entropy minimal.

A \mathbb{Z} SFT (defined by a digraph) is **irreducible** if the graph is **strongly connected**.

Definition: A \mathbb{Z}^d subshift X is called

- (topologically) mixing if for any two non-empty finite subsets $V, W \subsetneq \mathbb{Z}^d$ there exists a constant $D_{V,W} \in \mathbb{N}$ so that for any $\vec{i} \in \mathbb{Z}^d$ for which V and $\vec{i} + W$ have separation at least $D_{V,W}$ and any pair of valid points $x, y \in X$ there exists a valid point $z \in X$ such that $z|_V = x|_V$ and $z|_{\vec{i}+W} = y|_{\vec{i}+W}$. non-uniform mixing condition
- block gluing if there exists a constant $g \in \mathbb{N}$ (gap size) such that for any two cuboid blocks $B_1, B_2 \subsetneq \mathbb{Z}^d$ with separation at least g and any pair of valid points $x, y \in X$ there exists a valid point $z \in X$ such that $z|_{B_1} = x|_{B_1}$ and $z|_{B_2} = y|_{B_2}$.
- uniformly filling if there exists a constant $l \in \mathbb{N}$ (filling length) such that for any cuboid block $B \subsetneq \mathbb{Z}^d$ and any pair of valid points $x, y \in X$ there exists a valid point $z \in X$ such that $z|_B = x|_B$ and $z|_{\mathbb{Z}^d \setminus (B+[-l,+l]^d)} = y|_{\mathbb{Z}^d \setminus (B+[-l,+l]^d)}$.

Observation [Boyle-Pavlov-S]: For $g \in \mathbb{N}$ and any \mathbb{Z}^d shift X we have:

X uniformly filling with filling length $g \Longrightarrow X$ block gluing with gap $g \Longrightarrow X$ (topol.) mixing

For \mathbb{Z} SFTs the whole hierarchy collapses to a single notion (mixing). In \mathbb{Z}^d (d > 1) the 3 notions are distinct.

Consequences of uniform mixing conditions

Questions: Can we say anything about entropy minimality of \mathbb{Z}^d SFTs? Even without knowing the exact value of the entropy? (the \mathbb{Z} proof uses Perron-Frobenius which is not available in \mathbb{Z}^d SFTs)

Theorem [folklore]:

Every uniformly filling \mathbb{Z}^d subshift X (not necessarily SFT) is entropy minimal.

Questions:

What causes (non) entropy minimality in \mathbb{Z}^d SFTs?

Do we really need this very strong uniform mixing condition to assure entropy minimality?

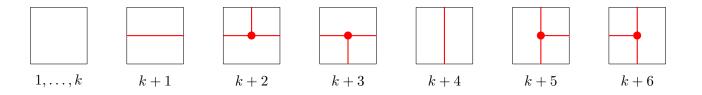
At first it seems **Yes!**, as:

Observation [S]:

There exist block gluing \mathbb{Z}^d SFTs which are not entropy minimal.

Wire shifts

We define the family of nearest neighbor \mathbb{Z}^2 SFTs called wire shifts W_k over an alphabet \mathcal{A}_k $(k \in \mathbb{N}_0)$ consisting of k distinct but completely interchangeable blanks plus 6 wire symbols (drawn as unit square Wang tiles):



Obvious rules of preserving the presence of wires across edges.

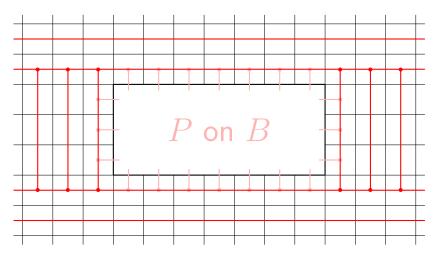
(think of edges as being colored either red or white and apply Wang tiling rules)

Configurations in \mathbb{Z}^2 contain **blanks** and possibly a system of **infinite straight wires** which can branch into subwires in T-junctions, but which neither start nor stop. (no pure corners)

(Similarly we can define a family of \mathbb{Z}^3 SFTs called Wall shifts etc.)

Observation: Properties of the Wire shifts W_k :

• W_k is **block gluing** for any $k \in \mathbb{N}_0$. (horizontal or vertical separation ≥ 2 , build wires as below)



only boundaries matter

- W_k is **not uniformly filling** for k > 0 (W_0 is uniformly filling). (wires have to continue)
- The boundary of all blanks is frozen (**non-universal**).
- **Topological entropies** (exactly known for k > 1):

 $h_{\text{top}}(W_k) = \log k \quad \text{for } k > 1 \qquad \text{vs.} \qquad \log 1.75 < h_{\text{top}}(W_1) < \log 1.97$

• W_k is **not entropy minimal** for k > 1 (contains full shift on k blanks as proper subshift). W_0 is entropy minimal (uniformly filling).

Subshifts with signals

Questions: What is the **difference** between block gluing and uniform filling?

Block gluing systems may contain frozen boundaries, signals may escape to infinity.

Definition: A \mathbb{Z}^d subshift has a **signal** if there is a proper subset $S \subsetneq A$ of its alphabet and a finite neighborhood $F \subsetneq \mathbb{Z}^d$ such that whenever a symbol from S occurs at some coordinate it has to be part of an infinite F-connected component formed only by symbols from S.

Recode \mathbb{Z}^d SFTs to nearest neighbor SFTs, then signals are truly connected components of symbols from \mathcal{S} .

Examples: Wires in the wire shifts W_k with $k \ge 1$, where $S = \{\text{non-blank symbols}\}$.

Signals (= wire symbols) have to escape to infinity \implies there are non universal boundaries (one way to destroy entropy minimality)

Signals may start (or end) at a given coordinate from where they spread (like a rooted tree) or they might come from and go to infinity (like the wires).

Universal boundaries

Question: Is entropy minimality really related to a uniform mixing condition? What about the wire shift W_1 ?

Definition:

A pattern $Q \in \mathcal{L}_{\partial C_N}(X)$ on the boundary of the cube $C_N = [1, N]^d$ is *M*-universal if any pattern $P \in \mathcal{L}_{C_M}(X)$ can occur (somewhere) in its interior.

 $\forall P \in \mathcal{L}_{C_M}(X) : \exists x \in X : x|_{\partial C_N} = Q \land \exists \vec{i} \in \mathbb{Z}^d : \vec{i} + C_M \subseteq C_N \land x|_{\vec{i} + C_M} = P.$

Observations: M-universal boundary patterns are also m-universal for m < M.

In uniformly filling shifts all C_N -boundary patterns are (N - l)-universal.

Wire shifts W_k (k > 0) have non-universal boundary patterns (Q = all blanks). But they also have universal boundary patterns.

Rich vs. poor boundaries

Definition: Let $N \in \mathbb{N}$ and $\varepsilon > 0$.

A boundary pattern $Q \in \mathcal{L}_{\partial C_N}(X)$ is ε -rich, if $\log \left| \left\{ P \in \mathcal{L}_{C_N}(X) \mid P|_{\partial C_N} = Q \right\} \right| > (h_{\text{top}}(X) - \varepsilon) \cdot |C_N|$

Conversely Q is ε -poor, if

$$\log \left| \left\{ P \in \mathcal{L}_{C_N}(X) \mid P|_{\partial C_N} = Q \right\} \right| \le (h_{\text{top}}(X) - \varepsilon) \cdot |C_N|$$

Observation [Lightwood-S]:

In the wire shift W_1 every (large enough) boundary pattern is either M-universal or is ε -poor. (depending on whether or not there are wires near the 4 corners)

In the wire shift W_k (k > 1) there exist (arbitrarily large) ε -rich boundary patterns which are not 1-universal.

A characterization of entropy minimality for \mathbb{Z}^d SFTs

Theorem [Lightwood-S]:

A \mathbb{Z}^d SFT is entropy minimal if and only if the set of all non-universal boundary patterns is poor.

Consequences: The wire shift W_1 is entropy minimal, all other W_k (k > 1) are not.

Maximal measure(s) on W_1 has(ve) full support.

interesting to see what such measure(s) could look like (not obvious, wide open question)

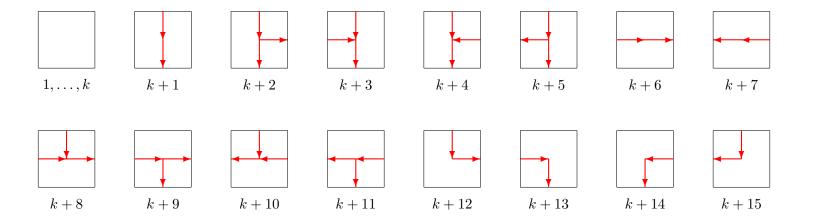
There is a conceptual change of behavior in families like the wire shifts:

uniformly filling ---> entropy minimal block gluing ---> non entropy minimal block gluing with no signals with signals with signals

Another family of examples

Define the family of corner gluing meandering streams \mathbb{Z}^2 SFTs $X_{MS,k}$ for $k \in \mathbb{N}$ [Boyle-Pavlov-S]:

The alphabet (displayed below) consists of k blanks and 15 stream symbols (modelling a system of rivers meandering from North to South through the \mathbb{Z}^2 plane).



All of $X_{MS,k}$ are corner gluing (not uniformly filling); the first ones are entropy minimal, but for k large they are no longer entropy minimal.