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Let n ≥ 2. Every A ∈ GL(n,Z) defines a ‘linear’ automorphism of the n-torus Tn =
Rn/Zn. Assume for the moment that A is hyperbolic (no eigenvalues of absolute value 1).
Then A — acting linearly on Rn — has an expanding (or unstable) eigenspace W u and a
contracting (or stable) eigenspace W s. Under the quotient map π : Rn −→ Tn these two
spaces get mapped to dense subgroups of Tn which will be denoted by Xu and Xs.

Basic example: Take the matrix A =
(

0 1
1 1

)
. It has an expanding eigenspace v1 and a

contracting eigenspace v2.
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Figure 1

When mapping these eigenspaces to T2 they intersect in infinitely many points, e.g. the
points a, b, c in te drawing. The rectangles G1, G2 ⊂ T2 in the drawing, whose boundaries
are pieces of v1 and v2, form a Markov partition for A: if we assign, to every x ∈ T2, the
sequence (wk) ∈ {0, 1}Z with

wk = j (mod 2) if Akx ∈ Gj , j = 1, 2, k ∈ Z,

we obtain an almost one-to-one map from T2 to the golden mean shift of finite type
V = {(yk) ∈ {0, 1}Z : ykyk+1 = 0 for all k ∈ Z}, which we can reverse to obtain a
continuous, surjective, almost one-to-one map φ : V −→ T2 and a commutative diagram

V
σ−−−−→ V

φ

y yφ
T2 −−−−→

A
T2

where σ : V −→ V is the shift (σy)k = yk+1.
A similar construction can be used to obtain Markov partitions for arbitrary hyperbolic

automorphisms A of Tn, in which the elements of the Markov partitions are again obtained
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from pieces of the stable and unstable subgroups of A through a more complicated process
(resulting in fractal boundaries of these sets).

In the early 1990’s Vershik proposed a different method for constructing symbolic cov-
ers for hyperbolic toral automorphisms which I’ll describe from a more general viewpoint.
The points a, b, c in Figure 1 all lie on an intersection of Xu and Xs in T2, and are thus
homoclinic: their forward and backward orbits under A converge to 0 — and they do
so exponentially fast. We focus on the point a, which is the image under the quotient
map π : R2 −→ T2 of the unique point in the intersection of W u with W s + (1, 0). For
every v = (vk) ∈ `∞(Z,Z) (the set of bounded two-sided integer sequences), the ele-
ment ξ(v) =

∑
k∈Z vkA

−ka is well-defined, and the resulting map ξ : `∞(Z,Z) −→ T2 is
equivariant: the diagram

`∞(Z,Z)
σ̄−−−−→ `∞(Z,Z)

ξ

y yξ
T2 −−−−→

A
T2

commutes, where σ̄ is the shift on `∞(Z,Z).

Claim 1: ξ is surjective.
In order to prove this we assume that A ∈ GL(n,Z) is a companion matrix of the form

Af =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

... 0
0 0 0 . . . 0 1
−f0 −f1 −f2 . . . −fn−2 −fn−1

 ,

where f = f0 + · · · + fn−1z
n−1 + fnz

n is the characteristic polynomial of Af (note that
fn = |f0| = 1). We also assume — to simplify things a little — that f is irreducible.

Denote by σ : TZ −→ TZ the shift, and consider the continuous, surjective group ho-
momorphism f(σ) = f0 + f1σ + · · ·+ fnσ

n : TZ −→ TZ. We set

Xf = ker f(σ) = {x = (xk) ∈ TZ : f0xk+f1xk+1 + · · ·+fnxk+n = 0 for every k ∈ Z}, (1)

and denote by σf the shift on Xf . Since fn = |f0| = 1, the map ψ : Xf −→ Tn, defined by

ψ(x) =

 x0
...

xn−1


for every x ∈ Xf , is an algebraic conjugacy between σf and Af : ψ is a group isomorphism
which makes the diagram

Xf
σf−−−−→ Xf

ψ

y yψ
Tn −−−−→

Af
Tn

commute. We linearize (Xf , σf ) by setting

Wf = {v ∈ `∞(Z,R) : π(v) ∈ Xf} = {v ∈ `∞(Z,R) : f(σ̄)v ∈ `∞(Z,Z)}, (2)
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where π : `∞(Z,R) −→ TZ is component-wise reduction (mod 1) and σ̄ is the shift on
`∞(Z,R). In order to prove Claim 1 we consider the group ring `1(Z,R) and identify each
v = (vk) ∈ `1(Z,R) with the two-sided power series

∑
k∈Z vkz

k. For v, w ∈ `1(Z,R) ⊂
`∞(Z,R), the product of these power series corresponds to the usual convolution of v and
w in `1(Z,R). Then our polynomial f , viewed as an element of `1(Z,R), is invertible. This
follows either from Wiener’s theorem, or by using a partial fraction decomposition

1

f
=

1

fn
·
∑
γ

cγ
z − γ

,

where the sum is taken over the roots of f , and by expressing each term 1
z−γ separately

as a summable two-sided power series:

1

z − γ
=

{
z−1

∑
k≥0 γ

kz−k if |γ| < 1,

−γ−1
∑

k≥0 γ
−kzk if |γ| > 1.

Since the point y = f−1 =
∑

k∈Z ykz
k obtained in this manner has summable coefficients,

we can form the group homomorphism ξ̄ =
∑

k∈Z ykσ̄
k : `∞(Z,R) −→ `∞(Z,R), which

satisfies that ξ̄ = f(σ̄)−1. From the definition of Wf it is now clear that Wf = ξ̄(`∞(Z,Z))
and f(σ̄)Wf = `∞(Z,Z). Hence ξ := π◦ ξ̄ : `∞(Z,Z) −→ Xf is surjective. In order to verify
that ξ is really the map appearing in the statement of Claim 1 one can check that the
point v(0) ∈ `∞(Z,Z), defined by

v
(0)
k =

{
1 if k = 0,

0 otherwise,

gets mapped by ξ to the homoclinic point a in Figure 1.
We obtain the following result:

Theorem 1. If f = f0+· · ·+fnzn is an irreducible polynomial with integer coefficients and
no roots of absolute value 1 (we call such a polynomial hyperbolic), and if Xf = ker f(σ) ⊂
TZ is the closed, shift-invariant subgroup defined in (1), then the map ξ : `∞(Z,Z) −→ Xf

defined in the last paragraph is a shift-equivariant surjective group homomorphism with
kernel f(σ̄)(`∞(Z,Z)).

Theorem 1 is obviously not restricted to irreducible toral automorphisms. We could
take, for example, f = z−2 or f = 3−2z, in which case the space Xf would be a solenoid
rather than a torus.

Theorem 1 yields the diagram

f(σ)(`∞(Z,Z))
σ̄−−−−→ f(σ)(`∞(Z,Z))y y

`∞(Z,Z)
σ̄−−−−→ `∞(Z,Z)

ξ

y yξ
Xf

σf−−−−→ Xf

and allows us to identify Xf equivariantly with `∞(Z,Z)/f(σ̄)(`∞(Z,Z)). In order to use
this result to obtain symbolic covers or representations of Xf one has to find closed,
bounded, shift-invariant, subsets V ⊂ `∞(Z,Z) which meet every coset of f(σ̄)(`∞(Z,Z))
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in `∞(Z,Z) in at least one point (i.e., such that the restriction ξ|V : V −→ Xf is surjective),
but whose intersection with each of these cosets is as small as possible. If f is a Pisot
polynomial (i.e., if f has one large root β > 1 and all other roots have absolute value < 1),
then the two-sided β-shift Vβ is sofic and satisfies that ξ(Vβ) = Xf ; it is conjectured (but
proved only in some special cases) that the restriction ξ|Vβ is almost one-to-one (in which
case we say that Vβ is a sofic representation of Xf ). For f = z2 − z − 1 this example was
the starting point for Vershik’s original construction. I should also mention the following
general result.

Theorem 2 (S, 2000). Let f be an irreducible hyperbolic polynomial with integer coeffi-
cients, and let Xf = ker f(σ) ⊂ TZ be the closed, shift-invariant subgroup defined in (1).
Then there exists a sofic shift V ⊂ `∞(Z,Z) such that the restriction ξ|V : V −→ Xf is
surjective and almost one-to-one. In other words, V is a sofic representation of Xf .

Nonhyperbolic polynomials. The last part of the talk (which I didn’t get to) was
supposed to discuss irreducible nonhyperbolic polynomials, i.e., irreducible noncyclotomic
polynomials with some roots of absolute value 1. Examples are f = 1 − z − z2 − z3 + z4

(a Salem polynomial with one root β > 1, two roots of absolute value 1, and the root
1/β), or f = 5 − 6z + 5z2 (with two noncyclotomic roots of absolute value 1). One can
define Xf ⊂ TZ and Wf ⊂ `∞(Z,R) exactly as before; for f = 1− z − z2 − z3 + z4, σf is
algebraically conjugate to the toral automorphism

Af =

(
0 1 0 0
0 0 1 0
0 0 0 1
−1 1 1 1

)
, (3)

but in general one again obtains solenoids. For any such f , the automorphism σf of the
group Xf is ergodic, but nonexpansive, and has no homoclinic points and no Markov par-
titions. The map f(σ̄) : Wf −→ `∞(Z,Z) is neither injective nor surjective, and the space
f(σ̄)(Wf ) ⊂ `∞(Z,Z) is a bit of a mystery. The search for symbolic representations (which
was originally motivated by the question whether the two-sided β-shift of a Salem number
β could be regarded as a symbolic representation of the corresponding nonhyperbolic toral
automorphism Af — or the shift space Xf — defined by the minimal polynomial f of β).

Although the following discussion is quite general, I’ll keep referring to the toral au-
tomorphism Af in (3). The matrix Af has one-dimensional expanding and contracting
subspaces W u,W s ⊂ R4, and a two-dimensional invariant subspace W (0) on which Af
acts isometrically by rotation. Under the quotient map π : R4 −→ T4 ∼= Xf these three
spaces get mapped to dense subgroups of Xf

∼= T4 which will be denoted by Xu, Xs and
X(0), the unstable, stable and central subgroups. Although the intersection Xu ∩ Xs is
empty, the intersections (X(u) +X(0))∩Xs and X(u)∩ (X(0) +Xs) contain nonzero points
which are forward and backward homoclinic, respectively. We denote by a+ and a− the
images under π of the unique points in (W (u) + W (0)) ∩W s and W (u) ∩ (W (0) + W s),
respectively, and set, for every v ∈ `∞(Z,Z),

ξ̄∗(v) =
∑
n≥0

vnσ̄
−n(a−) +

∑
n<0

vnσ̄
−n(a+). (4)

Since the coordinates a+
n and a−−n decay exponentially as n → ∞ and Wh ⊂ `∞(Z,R) is

closed, ξ̄∗(v) is well-defined, but it will in general not lie in `∞(Z,R), but in

`∗(Z,R) =
{
w = (wn) ∈ RZ : supn∈Z

|wn|
|n|+1 <∞

}
.
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It is not difficult to check that
f(σ̄) ◦ ξ̄∗(v) = v

for every v ∈ `∞(Z,Z), and that

f(σ̄)(Wf ) = {v ∈ `∞(Z,Z) : ξ̄∗(v) ∈ `∞(Z,Z)}

We again write π : `∗(Z,R) −→ TZ for coordinate-wise reduction (mod 1) and set

W ∗f = {w ∈ `∗(Z,Z) : π(w) ∈ Xf}.

Then ξ̄∗(`∞(Z,Z)) ⊂W ∗f , but the maps ξ̄∗ : `∞(Z,Z) −→ `∗(Z,Z) and

ξ∗ = π ◦ ξ̄∗ : `∞(Z,Z) −→ Xf (5)

are not shift-equivariant: for every v ∈ `∞(Z,Z),

σf ◦ ξ∗(v)− ξ∗ ◦ σ̄(v) ∈ π(ker f(σ̄)) (= X(0) in our special case).

If V ⊂ `∞(Z,Z) is a closed, shift-invariant subset, then the non-equivariance of ξ suggests
that we should not look at ξ(V ), but at the σf -invariant set ξ(V ) + ker f(σ) (or, in our
special case, the Af -invariant set ξ(V ) +X(0)).

Definition. A closed, bounded, shift-invariant subset V ⊂ `∞(Z,Z) is a (symbolic)
pseudo-cover of Xf if ξ(V ) + ker f(σ) = Xf .

Problem: Let f = 1 − z − z2 − z3 + z4, and let Af be the matrix (3). Is the two-sided
beta-shift Vβ determined by the root β > 1 of f a symbolic pseudo-cover of Xf = T4?
This still unresolved problem provided much of the initial motivation for the work on
nonhyperbolic polynomials described here.

Although I cannot say much about the automorphism (3) or, more generally, about
β-shifts arising from Salem numbers, I’ll finish by stating a recent general result.

Theorem 3 (S, 2013). Let f be a noncyclotomic irreducible nonhyperbolic polynomial
with integer coefficients, and let σf be the shift on the group Xf ⊂ TZ defined in (1). Then
there exists a symbolic pseudo-cover V ⊂ f(σ̄)(Wf ) ⊂ `∞(Z,Z) whose entropy coincides
with that of the automorphism σf .

Problem: Under the hypotheses of Theorem 3, does there always exist an equal entropy
sofic pseudocover V ⊂ `∞(Z,Z) of Xf?

Remark. For background, details and references concerning most of the results mentioned
here see the brief survey:

K. Schmidt, Quotients of `∞(Z,Z) and symbolic covers of toral automorphisms., Amer.
Math. Soc. Transl. 217 (2006), 223–246
or
http://www.mat.univie.ac.at/~kschmidt/Publications/vershik.pdf.
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