Symbolic covers of toral automorphisms

Klaus Schmidt, Vienna

UBC, June 4, 2013

Let $n \geq 2$. Every $A \in GL(n, \mathbb{Z})$ defines a 'linear' automorphism of the n-torus $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$. Assume for the moment that A is hyperbolic (no eigenvalues of absolute value 1). Then A — acting linearly on \mathbb{R}^n — has an expanding (or unstable) eigenspace W^u and a contracting (or stable) eigenspace W^s . Under the quotient map $\pi \colon \mathbb{R}^n \longrightarrow \mathbb{T}^n$ these two spaces get mapped to dense subgroups of \mathbb{T}^n which will be denoted by X^u and X^s .

Basic example: Take the matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. It has an expanding eigenspace v_1 and a contracting eigenspace v_2 .

When mapping these eigenspaces to \mathbb{T}^2 they intersect in infinitely many points, e.g. the points a, b, c in te drawing. The rectangles $G_1, G_2 \subset \mathbb{T}^2$ in the drawing, whose boundaries are pieces of v_1 and v_2 , form a *Markov partition* for A: if we assign, to every $x \in \mathbb{T}^2$, the sequence $(w_k) \in \{0,1\}^{\mathbb{Z}}$ with

$$w_k = j \pmod{2}$$
 if $A^k x \in G_j$, $j = 1, 2, k \in \mathbb{Z}$,

we obtain an almost one-to-one map from \mathbb{T}^2 to the *golden mean* shift of finite type $V = \{(y_k) \in \{0,1\}^{\mathbb{Z}} : y_k y_{k+1} = 0 \text{ for all } k \in \mathbb{Z}\}$, which we can reverse to obtain a continuous, surjective, almost one-to-one map $\phi: V \longrightarrow \mathbb{T}^2$ and a commutative diagram

$$V \xrightarrow{\sigma} V$$

$$\phi \downarrow \qquad \qquad \downarrow \phi$$

$$\mathbb{T}^2 \xrightarrow{A} \mathbb{T}^2$$

where $\sigma: V \longrightarrow V$ is the shift $(\sigma y)_k = y_{k+1}$.

A similar construction can be used to obtain Markov partitions for arbitrary hyperbolic automorphisms A of \mathbb{T}^n , in which the elements of the Markov partitions are again obtained

from pieces of the stable and unstable subgroups of A through a more complicated process (resulting in fractal boundaries of these sets).

In the early 1990's Vershik proposed a different method for constructing symbolic covers for hyperbolic toral automorphisms which I'll describe from a more general viewpoint. The points a, b, c in Figure 1 all lie on an intersection of X^u and X^s in \mathbb{T}^2 , and are thus homoclinic: their forward and backward orbits under A converge to 0 — and they do so exponentially fast. We focus on the point a, which is the image under the quotient map $\pi \colon \mathbb{R}^2 \longrightarrow \mathbb{T}^2$ of the unique point in the intersection of W^u with $W^s + (1,0)$. For every $v = (v_k) \in \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$ (the set of bounded two-sided integer sequences), the element $\xi(v) = \sum_{k \in \mathbb{Z}} v_k A^{-k} a$ is well-defined, and the resulting map $\xi \colon \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \longrightarrow \mathbb{T}^2$ is equivariant: the diagram

$$\begin{array}{ccc}
\ell^{\infty}(\mathbb{Z}, \mathbb{Z}) & \stackrel{\bar{\sigma}}{\longrightarrow} & \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \\
\xi \downarrow & & \downarrow \xi \\
\mathbb{T}^2 & \stackrel{}{\longrightarrow} & \mathbb{T}^2
\end{array}$$

commutes, where $\bar{\sigma}$ is the shift on $\ell^{\infty}(\mathbb{Z}, \mathbb{Z})$.

Claim 1: ξ is surjective.

In order to prove this we assume that $A \in GL(n,\mathbb{Z})$ is a companion matrix of the form

$$A_f = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -f_0 & -f_1 & -f_2 & \dots & -f_{n-2} & -f_{n-1} \end{bmatrix},$$

where $f = f_0 + \cdots + f_{n-1}z^{n-1} + f_nz^n$ is the characteristic polynomial of A_f (note that

 $f_n = |f_0| = 1$). We also assume — to simplify things a little — that f is irreducible. Denote by $\sigma \colon \mathbb{T}^{\mathbb{Z}} \longrightarrow \mathbb{T}^{\mathbb{Z}}$ the shift, and consider the continuous, surjective group homomorphism $f(\sigma) = f_0 + f_1 \sigma + \cdots + f_n \sigma^n \colon \mathbb{T}^{\mathbb{Z}} \longrightarrow \mathbb{T}^{\mathbb{Z}}$. We set

$$X_f = \ker f(\sigma) = \{ x = (x_k) \in \mathbb{T}^{\mathbb{Z}} : f_0 x_k + f_1 x_{k+1} + \dots + f_n x_{k+n} = 0 \text{ for every } k \in \mathbb{Z} \},$$
 (1)

and denote by σ_f the shift on X_f . Since $f_n = |f_0| = 1$, the map $\psi \colon X_f \longrightarrow \mathbb{T}^n$, defined by

$$\psi(x) = \begin{bmatrix} x_0 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

for every $x \in X_f$, is an algebraic conjugacy between σ_f and A_f : ψ is a group isomorphism which makes the diagram

$$X_f \xrightarrow{\sigma_f} X_f$$

$$\psi \downarrow \qquad \qquad \downarrow \psi$$

$$\mathbb{T}^n \xrightarrow{A_f} \mathbb{T}^n$$

commute. We linearize (X_f, σ_f) by setting

$$W_f = \{ v \in \ell^{\infty}(\mathbb{Z}, \mathbb{R}) : \pi(v) \in X_f \} = \{ v \in \ell^{\infty}(\mathbb{Z}, \mathbb{R}) : f(\bar{\sigma})v \in \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \}, \tag{2}$$

where $\pi : \ell^{\infty}(\mathbb{Z}, \mathbb{R}) \longrightarrow \mathbb{T}^{\mathbb{Z}}$ is component-wise reduction (mod 1) and $\bar{\sigma}$ is the shift on $\ell^{\infty}(\mathbb{Z}, \mathbb{R})$. In order to prove Claim 1 we consider the group ring $\ell^{1}(\mathbb{Z}, \mathbb{R})$ and identify each $v = (v_{k}) \in \ell^{1}(\mathbb{Z}, \mathbb{R})$ with the two-sided power series $\sum_{k \in \mathbb{Z}} v_{k} z^{k}$. For $v, w \in \ell^{1}(\mathbb{Z}, \mathbb{R}) \subset \ell^{\infty}(\mathbb{Z}, \mathbb{R})$, the product of these power series corresponds to the usual convolution of v and w in $\ell^{1}(\mathbb{Z}, \mathbb{R})$. Then our polynomial f, viewed as an element of $\ell^{1}(\mathbb{Z}, \mathbb{R})$, is invertible. This follows either from Wiener's theorem, or by using a partial fraction decomposition

$$\frac{1}{f} = \frac{1}{f_n} \cdot \sum_{\gamma} \frac{c_{\gamma}}{z - \gamma},$$

where the sum is taken over the roots of f, and by expressing each term $\frac{1}{z-\gamma}$ separately as a summable two-sided power series:

$$\frac{1}{z - \gamma} = \begin{cases} z^{-1} \sum_{k \ge 0} \gamma^k z^{-k} & \text{if } |\gamma| < 1, \\ -\gamma^{-1} \sum_{k \ge 0} \gamma^{-k} z^k & \text{if } |\gamma| > 1. \end{cases}$$

Since the point $y = f^{-1} = \sum_{k \in \mathbb{Z}} y_k z^k$ obtained in this manner has summable coefficients, we can form the group homomorphism $\bar{\xi} = \sum_{k \in \mathbb{Z}} y_k \bar{\sigma}^k \colon \ell^{\infty}(\mathbb{Z}, \mathbb{R}) \longrightarrow \ell^{\infty}(\mathbb{Z}, \mathbb{R})$, which satisfies that $\bar{\xi} = f(\bar{\sigma})^{-1}$. From the definition of W_f it is now clear that $W_f = \bar{\xi}(\ell^{\infty}(\mathbb{Z}, \mathbb{Z}))$ and $f(\bar{\sigma})W_f = \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$. Hence $\xi \coloneqq \pi \circ \bar{\xi} \colon \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \longrightarrow X_f$ is surjective. In order to verify that ξ is really the map appearing in the statement of Claim 1 one can check that the point $\mathbf{v}^{(0)} \in \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$, defined by

$$\mathbf{v}_k^{(0)} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise,} \end{cases}$$

gets mapped by ξ to the homoclinic point a in Figure 1.

We obtain the following result:

Theorem 1. If $f = f_0 + \cdots + f_n z^n$ is an irreducible polynomial with integer coefficients and no roots of absolute value 1 (we call such a polynomial hyperbolic), and if $X_f = \ker f(\sigma) \subset \mathbb{T}^{\mathbb{Z}}$ is the closed, shift-invariant subgroup defined in (1), then the map $\xi \colon \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \longrightarrow X_f$ defined in the last paragraph is a shift-equivariant surjective group homomorphism with $\ker f(\bar{\sigma})(\ell^{\infty}(\mathbb{Z}, \mathbb{Z}))$.

Theorem 1 is obviously not restricted to irreducible toral automorphisms. We could take, for example, f = z - 2 or f = 3 - 2z, in which case the space X_f would be a solenoid rather than a torus.

Theorem 1 yields the diagram

$$f(\sigma)(\ell^{\infty}(\mathbb{Z}, \mathbb{Z})) \xrightarrow{\bar{\sigma}} f(\sigma)(\ell^{\infty}(\mathbb{Z}, \mathbb{Z}))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \xrightarrow{\bar{\sigma}} \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$$

$$\xi \downarrow \qquad \qquad \downarrow \xi$$

$$X_f \xrightarrow{\sigma_f} X_f$$

and allows us to identify X_f equivariantly with $\ell^{\infty}(\mathbb{Z}, \mathbb{Z})/f(\bar{\sigma})(\ell^{\infty}(\mathbb{Z}, \mathbb{Z}))$. In order to use this result to obtain symbolic covers or representations of X_f one has to find closed, bounded, shift-invariant, subsets $V \subset \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$ which meet every coset of $f(\bar{\sigma})(\ell^{\infty}(\mathbb{Z}, \mathbb{Z}))$

in $\ell^{\infty}(\mathbb{Z}, \mathbb{Z})$ in at least one point (i.e., such that the restriction $\xi|_V \colon V \longrightarrow X_f$ is surjective), but whose intersection with each of these cosets is as small as possible. If f is a Pisot polynomial (i.e., if f has one large root $\beta > 1$ and all other roots have absolute value < 1), then the two-sided β -shift V_{β} is sofic and satisfies that $\xi(V_{\beta}) = X_f$; it is conjectured (but proved only in some special cases) that the restriction $\xi|_{V_{\beta}}$ is almost one-to-one (in which case we say that V_{β} is a sofic representation of X_f). For $f = z^2 - z - 1$ this example was the starting point for Vershik's original construction. I should also mention the following general result.

Theorem 2 (S, 2000). Let f be an irreducible hyperbolic polynomial with integer coefficients, and let $X_f = \ker f(\sigma) \subset \mathbb{T}^{\mathbb{Z}}$ be the closed, shift-invariant subgroup defined in (1). Then there exists a sofic shift $V \subset \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$ such that the restriction $\xi|_V : V \longrightarrow X_f$ is surjective and almost one-to-one. In other words, V is a sofic representation of X_f .

Nonhyperbolic polynomials. The last part of the talk (which I didn't get to) was supposed to discuss irreducible nonhyperbolic polynomials, i.e., irreducible noncyclotomic polynomials with some roots of absolute value 1. Examples are $f = 1 - z - z^2 - z^3 + z^4$ (a Salem polynomial with one root $\beta > 1$, two roots of absolute value 1, and the root $1/\beta$), or $f = 5 - 6z + 5z^2$ (with two noncyclotomic roots of absolute value 1). One can define $X_f \subset \mathbb{T}^{\mathbb{Z}}$ and $W_f \subset \ell^{\infty}(\mathbb{Z}, \mathbb{R})$ exactly as before; for $f = 1 - z - z^2 - z^3 + z^4$, σ_f is algebraically conjugate to the toral automorphism

$$A_f = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 1 & 1 & 1 \end{pmatrix}, \tag{3}$$

but in general one again obtains solenoids. For any such f, the automorphism σ_f of the group X_f is ergodic, but nonexpansive, and has no homoclinic points and no Markov partitions. The map $f(\bar{\sigma}) \colon W_f \longrightarrow \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$ is neither injective nor surjective, and the space $f(\bar{\sigma})(W_f) \subset \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$ is a bit of a mystery. The search for symbolic representations (which was originally motivated by the question whether the two-sided β -shift of a Salem number β could be regarded as a symbolic representation of the corresponding nonhyperbolic toral automorphism A_f — or the shift space X_f — defined by the minimal polynomial f of β).

Although the following discussion is quite general, I'll keep referring to the toral automorphism A_f in (3). The matrix A_f has one-dimensional expanding and contracting subspaces $W^u, W^s \subset \mathbb{R}^4$, and a two-dimensional invariant subspace $W^{(0)}$ on which A_f acts isometrically by rotation. Under the quotient map $\pi \colon \mathbb{R}^4 \longrightarrow \mathbb{T}^4 \cong X_f$ these three spaces get mapped to dense subgroups of $X_f \cong \mathbb{T}^4$ which will be denoted by X^u, X^s and $X^{(0)}$, the unstable, stable and central subgroups. Although the intersection $X^u \cap X^s$ is empty, the intersections $(X^{(u)} + X^{(0)}) \cap X^s$ and $X^{(u)} \cap (X^{(0)} + X^s)$ contain nonzero points which are forward and backward homoclinic, respectively. We denote by a^+ and a^- the images under π of the unique points in $(W^{(u)} + W^{(0)}) \cap W^s$ and $W^{(u)} \cap (W^{(0)} + W^s)$, respectively, and set, for every $v \in \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$,

$$\bar{\xi}^*(v) = \sum_{n>0} v_n \bar{\sigma}^{-n}(a^-) + \sum_{n<0} v_n \bar{\sigma}^{-n}(a^+). \tag{4}$$

Since the coordinates a_n^+ and a_{-n}^- decay exponentially as $n \to \infty$ and $W_h \subset \ell^{\infty}(\mathbb{Z}, \mathbb{R})$ is closed, $\bar{\xi}^*(v)$ is well-defined, but it will in general not lie in $\ell^{\infty}(\mathbb{Z}, \mathbb{R})$, but in

$$\ell^*(\mathbb{Z}, \mathbb{R}) = \left\{ w = (w_n) \in \mathbb{R}^{\mathbb{Z}} : \sup_{n \in \mathbb{Z}} \frac{|w_n|}{|n|+1} < \infty \right\}.$$

It is not difficult to check that

$$f(\bar{\sigma}) \circ \bar{\xi}^*(v) = v$$

for every $v \in \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$, and that

$$f(\bar{\sigma})(W_f) = \{ v \in \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) : \bar{\xi}^*(v) \in \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \}$$

We again write $\pi \colon \ell^*(\mathbb{Z}, \mathbb{R}) \longrightarrow \mathbb{T}^{\mathbb{Z}}$ for coordinate-wise reduction (mod 1) and set

$$W_f^* = \{ w \in \ell^*(\mathbb{Z}, \mathbb{Z}) : \pi(w) \in X_f \}.$$

Then $\bar{\xi}^*(\ell^{\infty}(\mathbb{Z},\mathbb{Z})) \subset W_f^*$, but the maps $\bar{\xi}^* \colon \ell^{\infty}(\mathbb{Z},\mathbb{Z}) \longrightarrow \ell^*(\mathbb{Z},\mathbb{Z})$ and

$$\xi^* = \pi \circ \bar{\xi^*} \colon \ell^{\infty}(\mathbb{Z}, \mathbb{Z}) \longrightarrow X_f \tag{5}$$

are not shift-equivariant: for every $v \in \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$,

$$\sigma_f \circ \xi^*(v) - \xi^* \circ \bar{\sigma}(v) \in \pi(\ker f(\bar{\sigma})) \ (= X^{(0)} \text{ in our special case}).$$

If $V \subset \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$ is a closed, shift-invariant subset, then the non-equivariance of ξ suggests that we should not look at $\xi(V)$, but at the σ_f -invariant set $\xi(V) + \ker f(\sigma)$ (or, in our special case, the A_f -invariant set $\xi(V) + X^{(0)}$).

Definition. A closed, bounded, shift-invariant subset $V \subset \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$ is a (symbolic) pseudo-cover of X_f if $\xi(V) + \ker f(\sigma) = X_f$.

Problem: Let $f = 1 - z - z^2 - z^3 + z^4$, and let A_f be the matrix (3). Is the two-sided beta-shift V_{β} determined by the root $\beta > 1$ of f a symbolic pseudo-cover of $X_f = \mathbb{T}^4$? This still unresolved problem provided much of the initial motivation for the work on nonhyperbolic polynomials described here.

Although I cannot say much about the automorphism (3) or, more generally, about β -shifts arising from Salem numbers, I'll finish by stating a recent general result.

Theorem 3 (S, 2013). Let f be a noncyclotomic irreducible nonhyperbolic polynomial with integer coefficients, and let σ_f be the shift on the group $X_f \subset \mathbb{T}^{\mathbb{Z}}$ defined in (1). Then there exists a symbolic pseudo-cover $V \subset f(\bar{\sigma})(W_f) \subset \ell^{\infty}(\mathbb{Z},\mathbb{Z})$ whose entropy coincides with that of the automorphism σ_f .

Problem: Under the hypotheses of Theorem 3, does there always exist an equal entropy sofic pseudocover $V \subset \ell^{\infty}(\mathbb{Z}, \mathbb{Z})$ of X_f ?

Remark. For background, details and references concerning most of the results mentioned here see the brief survey:

K. Schmidt, Quotients of $\ell^{\infty}(\mathbf{Z}, \mathbf{Z})$ and symbolic covers of toral automorphisms., Amer. Math. Soc. Transl. **217** (2006), 223–246

http://www.mat.univie.ac.at/~kschmidt/Publications/vershik.pdf.