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Let n > 2. Every A € GL(n,Z) defines a ‘linear’ automorphism of the n-torus T" =
R™/7Z"™. Assume for the moment that A is hyperbolic (no eigenvalues of absolute value 1).
Then A — acting linearly on R” — has an expanding (or unstable) eigenspace W and a
contracting (or stable) eigenspace W?*. Under the quotient map 7: R” — T" these two
spaces get mapped to dense subgroups of T" which will be denoted by X* and X*®.

Basic example: Take the matrix A = ((1) %) It has an expanding eigenspace v; and a
contracting eigenspace vs.
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FIGURE 1

When mapping these eigenspaces to T? they intersect in infinitely many points, e.g. the
points a, b, ¢ in te drawing. The rectangles G, G2 C T? in the drawing, whose boundaries
are pieces of v; and vy, form a Markov partition for A: if we assign, to every x € T2, the
sequence (wy,) € {0,1}Z with

wy = j (mod?2) if A¥z € G;, j=1,2, k€Z,

we obtain an almost one-to-one map from T? to the golden mean shift of finite type
V = {(yw) € {0,1}2 : yrypy1 = O forall k € Z}, which we can reverse to obtain a
continuous, surjective, almost one-to-one map ¢: V. — T? and a commutative diagram
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where o: V' — V' is the shift (oy)r = yr41-
A similar construction can be used to obtain Markov partitions for arbitrary hyperbolic
automorphisms A of T”, in which the elements of the Markov partitions are again obtained



from pieces of the stable and unstable subgroups of A through a more complicated process
(resulting in fractal boundaries of these sets).

In the early 1990’s Vershik proposed a different method for constructing symbolic cov-
ers for hyperbolic toral automorphisms which I’ll describe from a more general viewpoint.
The points a, b, ¢ in Figure 1 all lie on an intersection of X% and X* in T?, and are thus
homoclinic: their forward and backward orbits under A converge to 0 — and they do
so exponentially fast. We focus on the point a, which is the image under the quotient
map 7: R?2 — T? of the unique point in the intersection of W* with W* + (1,0). For
every v = (v) € (*°(Z,Z) (the set of bounded two-sided integer sequences), the ele-
ment £(v) = Yo, vkA Fa is well-defined, and the resulting map &: (>°(Z,Z) — T? is
equivariant: the diagram

(X(Z2,7) —Z— 1>°(Z,7)
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A

commutes, where & is the shift on ¢>°(Z,7Z).

Claim 1: £ is surjective.
In order to prove this we assume that A € GL(n,Z) is a companion matrix of the form

0 1 0 0 0
0 0 1 0 0
Af = . : . . 0 )
0 0 0 0 1
—fo —fi —fo ... —fa2 —fa1]

where f = fo+ -+ fa_12"" ! + fu2" is the characteristic polynomial of A; (note that
fn=1fol =1). We also assume — to simplify things a little — that f is irreducible.

Denote by o: T# — T% the shift, and consider the continuous, surjective group ho-
momorphism f(c) = fo + fioc + -+ fno™: TZ — TZ. We set

Xj=ker f(o) = {x = (vx) € T%: foxg+ fizgs1+- -+ fapin = 0 for every k € Z}, (1)
and denote by o the shift on X;. Since f,, = |fo| =1, the map ¢: Xy — T", defined by

)
Y(z) =
Tp—1

for every x € Xy, is an algebraic conjugacy between oy and Ay: 9 is a group isomorphism
which makes the diagram
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commute. We linearize (Xf, o) by setting

Wy = {v € ®(Z,R) : 7(v) € X;} = {v € °(Z,R) : f(5)v € (*(Z, L)}, (2)



where 7: £>°(Z,R) — T% is component-wise reduction (mod1) and & is the shift on
(>*(Z,R). In order to prove Claim 1 we consider the group ring ¢*(Z,R) and identify each
v = (v;) € €1(Z,R) with the two-sided power series Y, ., vgz". For v,w € (}(Z,R) C
(>*(Z,R), the product of these power series corresponds to the usual convolution of v and
w in ¢1(Z,R). Then our polynomial f, viewed as an element of ¢}(Z, R), is invertible. This
follows either from Wiener’s theorem, or by using a partial fraction decomposition
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where the sum is taken over the roots of f, and by expressing each term ﬁ separately

as a summable two-sided power series:

1 _ 271 2 k>0 2=k if |y < 1,
Z=7 . Zkzo yRZE i |y > 1.

Since the point y = f~1 = Y okez yr2"* obtained in this manner has summable coefficients,
we can form the group homomorphism £ = >, , yxo": >°(Z,R) — (°°(Z,R), which
satisfies that € = f(&)~!. From the definition of W it is now clear that Wy = £(¢°°(Z, Z))
and f(5)Wy = (*(Z,Z). Hence & := wol: (*°(Z,Z) — X is surjective. In order to verify
that € is really the map appearing in the statement of Claim 1 one can check that the
point v(© ¢ (>*(Z,7), defined by

K 0 otherwise,

1 ifk=
V(O):{ if k 0,

gets mapped by £ to the homoclinic point a in Figure 1.
We obtain the following result:

Theorem 1. If f = fo+- - -+ fn2™ is an irreducible polynomial with integer coefficients and
no roots of absolute value 1 (we call such a polynomial hyperbolic), and if Xy = ker f(o) C
T? is the closed, shift-invariant subgroup defined in , then the map &: 4°(Z,72) — Xy
defined in the last paragraph is a shift-equivariant surjective group homomorphism with
kernel f(a)({>°(Z,Z)).

Theorem [1] is obviously not restricted to irreducible toral automorphisms. We could
take, for example, f = 2z —2 or f = 3 — 2z, in which case the space X; would be a solenoid
rather than a torus.

Theorem [1] yields the diagram

F(0)(¢2(2,2)) —"— f(0)(t*(Z,2))

! l

>(z2,2) —Z—  1~(Z,7)
i I
Xy B X;
and allows us to identify Xy equivariantly with ¢>°(Z,Z)/f(5)(¢>*(Z,Z)). In order to use

this result to obtain symbolic covers or representations of X; one has to find closed,
bounded, shift-invariant, subsets V' C £°°(Z,Z) which meet every coset of f()((*°(Z,Z))



in £>°(7Z,7Z) in at least one point (i.e., such that the restriction {|y : V' — X is surjective),
but whose intersection with each of these cosets is as small as possible. If f is a Pisot
polynomial (i.e., if f has one large root 5 > 1 and all other roots have absolute value < 1),
then the two-sided [-shift Vj is sofic and satisfies that {(V3) = Xy; it is conjectured (but
proved only in some special cases) that the restriction {|y, is almost one-to-one (in which
case we say that Vj is a sofic representation of X ). For f = 22 — 2z — 1 this example was
the starting point for Vershik’s original construction. I should also mention the following
general result.

Theorem 2 (S, 2000). Let f be an irreducible hyperbolic polynomial with integer coeffi-
cients, and let Xy = ker f(o) C T% be the closed, shift-invariant subgroup defined in .
Then there exists a sofic shift V. C £°°(Z,7) such that the restriction |y :V — Xy is
surjective and almost one-to-one. In other words, V is a sofic representation of Xj.

Nonhyperbolic polynomials. The last part of the talk (which I didn’t get to) was
supposed to discuss irreducible nonhyperbolic polynomials, i.e., irreducible noncyclotomic
polynomials with some roots of absolute value 1. Examples are f = 1 — z — 22 — 23 + 2%
(a Salem polynomial with one root 8 > 1, two roots of absolute value 1, and the root
1/8), or f =5 — 62 + 522 (with two noncyclotomic roots of absolute value 1). One can
define Xy C TZ and Wy C £°(Z,R) exactly as before; for f =1 — 2z — 22— 23+ 24, oy is
algebraically conjugate to the toral automorphism
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but in general one again obtains solenoids. For any such f, the automorphism o of the
group Xy is ergodic, but nonexpansive, and has no homoclinic points and no Markov par-
titions. The map f(5): Wy — €°°(Z,Z) is neither injective nor surjective, and the space
f(6)(Wy) C £>°(Z,Z) is a bit of a mystery. The search for symbolic representations (which
was originally motivated by the question whether the two-sided §-shift of a Salem number
5 could be regarded as a symbolic representation of the corresponding nonhyperbolic toral
automorphism Ay — or the shift space Xy — defined by the minimal polynomial f of ).
Although the following discussion is quite general, I'll keep referring to the toral au-
tomorphism Ay in . The matrix Ay has one-dimensional expanding and contracting
subspaces W4 W* c R%, and a two-dimensional invariant subspace W(© on which A ¥
acts isometrically by rotation. Under the quotient map 7: R* — T4 = X 7 these three
spaces get mapped to dense subgroups of Xy = T* which will be denoted by X%, X* and
X the unstable, stable and central subgroups. Although the intersection X* N X* is
empty, the intersections (X + X©)n X* and X N (X + X*) contain nonzero points
which are forward and backward homoclinic, respectively. We denote by a™ and a~ the
images under 7 of the unique points in (W® + W©O) N W* and W™ n (WO 4 Ws),

respectively, and set, for every v € (*°(Z,7Z),

g* (v) = Z v M(a”) + Z Unﬁin(aJr)- (4)

n>0 n<0

—=OoOO

Since the coordinates a} and a_,, decay exponentially as n — oo and W}, C £*°(Z,R) is
closed, £*(v) is well-defined, but it will in general not lie in £°°(Z,R), but in

*(Z,R) = {w = (wy,) € R” : sup,,cz, ﬁ_’;‘l < 00}



It is not difficult to check that B
f(@) o0& (v) =v
for every v € £°°(Z,7Z), and that

f(@)Wy) ={v e t>(Z,Z): £ (v) € £2(Z, Z)}
We again write 7: £*(Z,R) — T% for coordinate-wise reduction (mod 1) and set
Wi ={wel(Z,Z): n(w) € Xy}
Then £*(¢>2(Z,7)) C W}, but the maps £ (°(Z,7) — £*(Z,7) and
=m0l U®(Z,Z) — Xy (5)
are not shift-equivariant: for every v € (*°(Z,7Z),
opo&*(v) =& oa(v) € mker f(7)) (= X© in our special case).

If V C(>*(Z,7Z) is a closed, shift-invariant subset, then the non-equivariance of £ suggests
that we should not look at £(V'), but at the os-invariant set {(V') + ker f(o) (or, in our
special case, the Ag-invariant set {(V') + X0,

Definition. A closed, bounded, shift-invariant subset V' C ¢*°(Z,Z) is a (symbolic)
pseudo-cover of Xy if (V) + ker f(o) = X;.

Problem: Let f =1 — 2z — 22 — 23 4+ 2%, and let Ay be the matrix (3)). Is the two-sided
beta-shift Vs determined by the root 8 > 1 of f a symbolic pseudo-cover of Xy = T4?
This still unresolved problem provided much of the initial motivation for the work on
nonhyperbolic polynomials described here.

Although I cannot say much about the automorphism or, more generally, about
[-shifts arising from Salem numbers, I'll finish by stating a recent general result.

Theorem 3 (S, 2013). Let f be a noncyclotomic irreducible nonhyperbolic polynomial
with integer coefficients, and let oy be the shift on the group Xy C TZ defined in . Then
there exists a symbolic pseudo-cover V- C f(a)(Wy) C £>°(Z,Z) whose entropy coincides
with that of the automorphism oy.

Problem: Under the hypotheses of Theorem (3| does there always exist an equal entropy
sofic pseudocover V' C £*°(Z,Z) of X;?

Remark. For background, details and references concerning most of the results mentioned
here see the brief survey:

K. Schmidt, Quotients of ¢>°(Z,Z) and symbolic covers of toral automorphisms., Amer.
Math. Soc. Transl. 217 (2006), 223-246

or

http://www.mat.univie.ac.at/~kschmidt/Publications/vershik.pdf.
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