
Problem Set # 2

WCATSS 2014

1. (a) Let A be a commutative Frobenius algebra over C of dimension n. Prove that there exist

e1, . . . , en ∈ A such that e2i = ei for all i; eiej = 0 if i 6= j; and 1 = e1 + · · · + en.

(b) Let τ : A → C be the trace and set µj = τ(ej). Suppose f is the 2-dimensional oriented field

theory with f(S1) = A. Compute f(Xg) ∈ C, where Xg is the closed oriented connected surface

of genus g.

2. This problem continues #2 from Problem Set #1, in particular uses the notation from that problem.

(a) Suppose X : Y0 → Y1 is a bordism. Construct a correspondence
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(b) Construct a field theory F : Bord〈1,2〉 → VectQ by “linearizing” the correspondences: to a closed

1-manifold Y let F (Y ) be the vector space of rational functions on C(Y ), and then use “push-

pull” to define F on a bordism. (That is, F (X) = t∗ ◦ s
∗. You’ll have to make sense of this!)

Notice this works in any dimension, so in particular you recover the 1-dimensional theory from

the first problem set.

(c) Identify the Frobenius algebra F (S1). Complexify and apply problem #1. What are the ei

and µi in this case?

(d) Recover a classical formula of Frobenius which counts the number of homomorphisms from the

fundamental group of a surface of genus g to a finite group G.

3. Fix a field k and let Vectk denote the symmetric monoidal category of vector spaces over k; the

monoidal structure is given by tensor product. Prove that a vector space has a dual if and only if

it is finite dimensional.

4. Are left and right duals (of objects) the same in braided monoidal categories?

5. Recall that for B → BO(n) a fibration, a B-structure on a smooth k-manifold (k ≤ n) is a lift

of its tangent classifier M
τM−−→ BO(k)

−×Rn−k

−−−−−→ BO(n) to B. (Warning: this definition is a little

informal, since the tangent classifier τM is only defined up to contractible choices. There are a
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number of ways to make this definition precise: choosing explicit models for everything in sight

(for instance working with manifolds embedded into some Euclidean spaces, and working with

Grassmanns), or using the language of stacks, or using ∞-categories).)

Fix a fibration B → BO(n) and a number k < n. Let P and Q be closed (k − 1)-manifolds,

each equipped with a B-structure. Let M be a k-dimensional B-cobordism from P to Q. Explain

that there exists another k-dimensional B-cobordism M∨ from Q to P , and (k + 1)-dimensional

B-cobordisms E from M ⊔Q M∨ to I × P and C from I × Q to M∨ ⊔P M . The full generality

of B-structures isn’t important here, so go ahead and do this for the two cases B = BO(n) and

B = EO(n) ≃ ∗ if you’d like; likewise, do this just for (k, n) = (1, 2) if you’d like.

6. The Kauffman bracket is an invariant of (unoriented) planar diagrams that takes values in Z[q, q−1].

It satisfies the relation

〈RL〉 − 〈ResTB〉 = q−1〈ResLR〉

where here RL denotes the right-over-left crossing, ResTB denotes the top-bottom resolution, and

ResLR denotes the left-right resolution.

(a) Explain that the above relation, together with the specification 〈U⊔k〉 = (q + q−1)k for each

k ≥ 0, determine the values of 〈−〉 – here U denotes the unknot.

(b) Verify that the Kauffman bracket is not a link invariant by showing that it is not invariant with

respect to the Reidemister moves.

(c) Verify that the correction J(L) := (−1)#LRq2#LR−#RL〈DL〉 is an oriented link invariant.

(d) Show that J(L ⊔ U) = (q + q−1)J(L).

(e) Explain that J is the unique oriented link invariant for which J(U⊔k) = (q + q−1)k and which

satisfies the Skein relation:

q2J(LR)− q−2J(RL) = (q − q−1)J(Res)

where LR is the left over right crossing, RL is the right over left crossing, and Res is the unique

oriented resolution of the crossing.
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