Problem Set # 2
WCATSS 2014

1. (a) Let A be a commutative Frobenius algebra over C of dimension n. Prove that there exist
e1,...,e, € A such that €2 = e; for all i; eie; =0if i #j;and 1 =ey + -+ +ep.

(b) Let 7: A — C be the trace and set p; = 7(e;). Suppose f is the 2-dimensional oriented field

theory with f(S') = A. Compute f(X,) € C, where X, is the closed oriented connected surface

of genus g.

2. This problem continues #2 from Problem Set #1, in particular uses the notation from that problem.

(a) Suppose X : Yy — Y] is a bordism. Construct a correspondence

C(Yo) C(Y1)

(b) Construct a field theory F': Bord; 2y — Vectg by “linearizing” the correspondences: to a closed
1-manifold Y let F'(Y') be the vector space of rational functions on C(Y'), and then use “push-
pull” to define F' on a bordism. (That is, F/(X) = t,. o s*. You'll have to make sense of this!)
Notice this works in any dimension, so in particular you recover the 1-dimensional theory from

the first problem set.

(c) Identify the Frobenius algebra F(S'). Complexify and apply problem #1. What are the e;

and y; in this case?

(d) Recover a classical formula of Frobenius which counts the number of homomorphisms from the

fundamental group of a surface of genus ¢ to a finite group G.

3. Fix a field k and let Vecty denote the symmetric monoidal category of vector spaces over k; the
monoidal structure is given by tensor product. Prove that a vector space has a dual if and only if

it is finite dimensional.
4. Are left and right duals (of objects) the same in braided monoidal categories?

5. Recall that for B — BO(n) a fibration, a B-structure on a smooth k-manifold (k < n) is a lift
n—k
of its tangent classifier M % BO(k) =R, BO(n) to B. (Warning: this definition is a little

informal, since the tangent classifier 7,; is only defined up to contractible choices. There are a
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number of ways to make this definition precise: choosing explicit models for everything in sight
(for instance working with manifolds embedded into some Euclidean spaces, and working with

Grassmanns), or using the language of stacks, or using oco-categories).)

Fix a fibration B — BO(n) and a number &k < n. Let P and @ be closed (k — 1)-manifolds,
each equipped with a B-structure. Let M be a k-dimensional B-cobordism from P to (). Explain
that there exists another k-dimensional B-cobordism M"Y from @ to P, and (k + 1)-dimensional
B-cobordisms E from M Ug MY to I x P and C from I x @ to MY Up M. The full generality
of B-structures isn’t important here, so go ahead and do this for the two cases B = BO(n) and
B = EO(n) ~ % if you'd like; likewise, do this just for (k,n) = (1,2) if you'd like.

. The Kauffman bracket is an invariant of (unoriented) planar diagrams that takes values in Z[q, ¢ }].
It satisfies the relation
(RL) — (Restp) = ¢ "(ResrR)

where here RL denotes the right-over-left crossing, Restp denotes the top-bottom resolution, and
Resp g denotes the left-right resolution.

(a) Explain that the above relation, together with the specification (U"%) = (¢ 4+ ¢~ 1)* for each
k > 0, determine the values of (—) — here U denotes the unknot.

(b) Verify that the Kauffman bracket is not a link invariant by showing that it is not invariant with

respect to the Reidemister moves.
(c) Verify that the correction J(L) := (—1)#LEg2#LE=#RL(D Y js an oriented link invariant.
(d) Show that J(LUU) = (¢ +q 1)J(L).

(e) Explain that J is the unique oriented link invariant for which J(U"*) = (¢ + ¢~1)* and which

satisfies the Skein relation:
¢°J(LR) —q *J(RL) = (¢ —q ')J(Res)

where LR is the left over right crossing, RL is the right over left crossing, and Res is the unique

oriented resolution of the crossing.



