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Introduction
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SFTs with nearly full entropy

Definitions

Choose finite set A, called the alphabet

A configuration with finite shape S ⊂ Zd is an element of AS

A Zd shift of finite type or SFT is defined by a finite set F
of forbidden configurations:

X (F) := {x ∈ AZd

: x does not contain any w ∈ F}

Example: d = 2, A = {0, 1}, F = { 11 , 1
1 }:

X (F) is the Z2 hard square shift, the set of all 0-1 arrays
without horizontally or vertically adjacent 1s.

This is a nearest neighbor (or n.n.) SFT: all forbidden
configurations just pairs of adjacent letters
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SFTs with nearly full entropy

Definitions

L(X ) = {configurations which appear in elements of X}

LS(X ) = L(X ) ∩ AS ; legal configurations with shape S

The topological entropy of X is

h(X ) := lim
n→∞

1

nd
log |L[1,n]d (X )|

Example: X = {1, 2, . . . , k}Zd
(no restrictions)

h(X ) = lim
k→∞

1

nd
log knd = log k

Ronnie Pavlov Shifts of finite type with nearly full entropy



Introduction
Measures of maximal entropy on SFTs

SFTs with nearly full entropy

Definitions

L(X ) = {configurations which appear in elements of X}
LS(X ) = L(X ) ∩ AS ; legal configurations with shape S

The topological entropy of X is

h(X ) := lim
n→∞

1

nd
log |L[1,n]d (X )|

Example: X = {1, 2, . . . , k}Zd
(no restrictions)

h(X ) = lim
k→∞

1

nd
log knd = log k

Ronnie Pavlov Shifts of finite type with nearly full entropy



Introduction
Measures of maximal entropy on SFTs

SFTs with nearly full entropy

Definitions

L(X ) = {configurations which appear in elements of X}
LS(X ) = L(X ) ∩ AS ; legal configurations with shape S

The topological entropy of X is

h(X ) := lim
n→∞

1

nd
log |L[1,n]d (X )|

Example: X = {1, 2, . . . , k}Zd
(no restrictions)

h(X ) = lim
k→∞

1

nd
log knd = log k

Ronnie Pavlov Shifts of finite type with nearly full entropy



Introduction
Measures of maximal entropy on SFTs

SFTs with nearly full entropy

Definitions

L(X ) = {configurations which appear in elements of X}
LS(X ) = L(X ) ∩ AS ; legal configurations with shape S

The topological entropy of X is

h(X ) := lim
n→∞

1

nd
log |L[1,n]d (X )|

Example: X = {1, 2, . . . , k}Zd
(no restrictions)

h(X ) = lim
k→∞

1

nd
log knd = log k

Ronnie Pavlov Shifts of finite type with nearly full entropy



Introduction
Measures of maximal entropy on SFTs

SFTs with nearly full entropy

Definitions

L(X ) = {configurations which appear in elements of X}
LS(X ) = L(X ) ∩ AS ; legal configurations with shape S

The topological entropy of X is

h(X ) := lim
n→∞

1

nd
log |L[1,n]d (X )|

Example: X = {1, 2, . . . , k}Zd
(no restrictions)

h(X ) = lim
k→∞

1

nd
log knd = log k

Ronnie Pavlov Shifts of finite type with nearly full entropy



Introduction
Measures of maximal entropy on SFTs

SFTs with nearly full entropy

Definitions

L(X ) = {configurations which appear in elements of X}
LS(X ) = L(X ) ∩ AS ; legal configurations with shape S

The topological entropy of X is

h(X ) := lim
n→∞

1

nd
log |L[1,n]d (X )|

Example: X = {1, 2, . . . , k}Zd
(no restrictions)

h(X ) = lim
k→∞

1

nd
log knd = log k

Ronnie Pavlov Shifts of finite type with nearly full entropy



Introduction
Measures of maximal entropy on SFTs

SFTs with nearly full entropy

Definitions

Any stationary probability Borel µ on AZd
has

measure-theoretic entropy

h(µ) = lim
n→∞

−1

nd

∑
w∈A[1,n]d

µ([w ]) logµ([w ])

For w ∈ AS , [w ] := {x ∈ AZd

: x |S = w}

Example: if µ is Bernoulli (i.i.d.) measure uniformly
distributed on {1, . . . , k}, then

h(µ) = lim
n→∞

−1

nd

∑
w∈A[1,n]d

k−n
d

log(k−n
d
) = log k

Note that h(µ) = h({1, . . . , k}Zd
)
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SFTs with nearly full entropy

Definitions

Variational Principle: sup h(µ) = h(X ), and this sup is
achieved for Zd SFTs

Any measure achieving the max is a measure of maximal
entropy or MME

Example: if X is the full shift AZd
, then uniform Bernoulli

measure is the unique MME

MMEs are invaluable in understanding structure of SFTs

Hard to give explicit description of MMEs in general
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SFTs with nearly full entropy

Properties of MMEs on SFTs

Theorem: (Burton-Steif/Lanford-Ruelle) Any MME µ on a
n.n. Zd SFT has the following property:

For any finite S and T ⊃ ∂S for which S ∩ T = ∅, and for
any δ ∈ LT (X ), µ(x |S : x |T = δ) is uniform over all
x ∈ LS(X ) for which xδ ∈ L(X ).

Example: X the Z2 hard square shift: (no 11 , 1
1 )

conditioned on
1 0 1 0
0 0
0 1
1 0 0 0

, fillings 0 0
0 0 , 0 0

1 0 , 1 0
0 0 equally probable.

Same conditional probabilities if
1 0 1 0
0 0
0 1
1 0 0 0

changed to

0 1 0 0 1
0 1 0 1 0
1 0 0 0

0 1
0 1 0 0 0 0
1 0 1

Examples of Markov Random Fields (“conditional
independence of inside and outside”); more in Nishant’s talk

Ronnie Pavlov Shifts of finite type with nearly full entropy
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SFTs with nearly full entropy

Multiple MMEs

Despite the fact that these conditional measures are
completely determined for MMEs for any n.n. SFT, there can
be more than one MME.

Easy example: d = 1, X = {0, 1}Z ∪ {2, 3}Z.

h(X ) = limn→∞
1
n log 2n+1 = log 2

Two MMEs; ( 1
2 ,

1
2 )-Bernoulli measure on {0, 1} and

( 1
2 ,

1
2 )-Bernoulli measure on {2, 3}.

Only such examples for d = 1; any irreducible Z SFT has
unique MME
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SFTs with nearly full entropy

Multiple MMEs

Harder example: iceberg model IM of Burton-Steif: d = 2,
A = {−M, . . . ,−1, 1, . . . ,M}, F = { ij , ij : ij < −1}.

Only allowed adjacent integers with opposite signs are ±1.
For M > 3136e, IM has exactly two MMEs.

IM is strongly irreducible, an extremely strong topological
mixing property; used often to prove properties of Zd SFTs.

There are several conditions guaranteeing that a nearest
neighbor Zd SFT has a unique MME.
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SFTs with nearly full entropy

Uniqueness conditions

Theorem: (Markley-Paul, 1981) If X is a n.n. Zd SFT with
alphabet A and ∃G ⊂ A, |G | >

(
1− 1

2d

)
|A|, so that every

g ∈ G can legally appear next to every a ∈ A in any direction,
then X has a unique MME.

“Most letters can appear next to all letters”

Theorem: (Haggstrom, 1996) If X is a n.n. Zd SFT with
alphabet A and every a ∈ A has at least (1− 1

4d2 )|A| allowed
neighbors in any direction, then X has a unique MME.

“All letters can appear next to most letters”

Theorem: (P., 2013) For any d , ∃εd > 0 so that if X is a n.n.
Zd SFT with alphabet A and ∃G ⊂ A, |G | > (1− εd) |A|, so
that every g ∈ G has at least (1− εd)|A| allowed neighbors in
any direction, then X has a unique MME.

“Most letters can appear next to most letters”
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SFTs with nearly full entropy

Uniqueness conditions

Call SFTs satisfying hypothesis of the last theorem ε-full.

In fact, can state a version of ε-fullness without any mention
of legal adjacencies

Proposition: (P.) For X a n.n. Zd SFT,
(1) ∀ε,∃α s.t. h(X ) > (log |A|)− α =⇒ X is ε-full, and
(2) ∀α′,∃ε′ s.t. X is ε′-full =⇒ h(X ) > (log |A|)− α′.
Corollary: (P.) For any d , there exists αd so that any n.n. Zd

SFT with entropy at least (log |A|)− αd has a unique MME.

Informally we say such SFTs have nearly full entropy.
In fact, we get more than just unique MME, also we know that

h(X ) is computable to tolerance n−1 in time eO(nd ).

Our proof gives αd = d−17+o(1).
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SFTs with nearly full entropy

SFTs with nearly full entropy (d = 1)

In d = 1, the only way to have multiple MMEs is to have
multiple irreducible components of maximal entropy

Recall example X = {0, 1}Z ∪ {2, 3}Z

X has multiple MMEs

=⇒ A contains two components of size at least eh(X )

=⇒ |A| ≥ 2eh(X )

=⇒ (log |A|)− h(X ) ≥ log 2

So, (log |A|)− h(X ) < log 2 =⇒ X has unique MME.

log 2 is optimal: X = [1, n]Z ∪ [n + 1, 2n]Z has two MMEs.
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SFTs with nearly full entropy (d = 2)

d = 2 more complicated; recall iceberg model IM :

A = {−M, . . . ,−1, 1, . . . ,M}, F = { ij , ij : ij < −1}.
For M > 3136e, IM has exactly two MMEs.

For any M, h(IM) > logM:

Assigning positive integers uniformly and independently would
give entropy of logM
Can allow −1 occasionally to add slightly more entropy

For large M, IM has multiple MMEs, but
(log |A|)− h(IM) < log 2.

The two components of A inducing distinct MMEs can
interact, unlike d = 1 case
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SFTs with nearly full entropy (d > 2)

Define α̃d to be optimal value of αd

i.e. α̃d is maximum number for which
h(X ) > (log |A|)− α̃d =⇒ X has unique MME

α̃1 = log 2

α̃2 < log 2 (iceberg model)

α̃d > d−17+o(1)

α̃d < d−0.25+o(1)
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SFTs with nearly full entropy

Questions

What is true decay rate for optimal entropy gap αd? (Have
polynomial upper and lower bounds with different degrees)

One way to interpret main result: “perturbing” full shift yields
unique MME.

Can generalize to perturbations of other SFTs?

Ultimate goal: conjugacy-invariant checkable condition
implying unique MME for all SFTs

This result is “closer” in the sense that it makes no explicit
reference to safe symbols/allowed adjacencies, but it is still
restricted to nearest neighbor SFTs...
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