Shifts of finite type with nearly full entropy

Ronnie Pavlov

University of Denver www.math.du.edu/~rpavlov

Automata Theory and Symbolic Dynamics Workshop, UBC

4 3 5 4

Definitions

• Choose finite set A, called the **alphabet**

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Definitions

- Choose finite set A, called the alphabet
- A configuration with finite shape $S \subset \mathbb{Z}^d$ is an element of A^S

- Choose finite set A, called the alphabet
- A configuration with finite shape $S \subset \mathbb{Z}^d$ is an element of A^S
- A Z^d shift of finite type or SFT is defined by a finite set \mathcal{F} of forbidden configurations:

- Choose finite set A, called the alphabet
- A configuration with finite shape $S \subset \mathbb{Z}^d$ is an element of A^S
- A Z^d shift of finite type or SFT is defined by a finite set \mathcal{F} of forbidden configurations:

•
$$X(\mathcal{F}) := \{x \in A^{\mathbb{Z}^d} : x \text{ does not contain any } w \in \mathcal{F}\}$$

- Choose finite set A, called the alphabet
- A configuration with finite shape $S \subset \mathbb{Z}^d$ is an element of A^S
- A Z^d shift of finite type or SFT is defined by a finite set \mathcal{F} of forbidden configurations:
 - $X(\mathcal{F}) := \{x \in A^{\mathbb{Z}^d} : x \text{ does not contain any } w \in \mathcal{F}\}$
- Example: d = 2, $A = \{0, 1\}$, $\mathcal{F} = \{11, \frac{1}{1}\}$:

- Choose finite set A, called the alphabet
- A configuration with finite shape $S \subset \mathbb{Z}^d$ is an element of A^S
- A Z^d shift of finite type or SFT is defined by a finite set \mathcal{F} of forbidden configurations:
 - $X(\mathcal{F}) := \{x \in A^{\mathbb{Z}^d} : x \text{ does not contain any } w \in \mathcal{F}\}$
- Example: d = 2, $A = \{0, 1\}$, $\mathcal{F} = \{11, \frac{1}{1}\}$:
 - X(𝔅) is the Z² hard square shift, the set of all 0-1 arrays without horizontally or vertically adjacent 1s.

Definitions

- Choose finite set A, called the alphabet
- A configuration with finite shape $S \subset \mathbb{Z}^d$ is an element of A^S
- A Z^d shift of finite type or SFT is defined by a finite set F of forbidden configurations:
 - $X(\mathcal{F}) := \{x \in A^{\mathbb{Z}^d} : x \text{ does not contain any } w \in \mathcal{F}\}$
- Example: d = 2, $A = \{0, 1\}$, $\mathcal{F} = \{11, \frac{1}{1}\}$:
 - X(𝔅) is the Z² hard square shift, the set of all 0-1 arrays without horizontally or vertically adjacent 1s.
- This is a **nearest neighbor** (or **n.n.**) SFT: all forbidden configurations just pairs of adjacent letters

□ > < = > <

Definitions

• $L(X) = \{$ configurations which appear in elements of $X \}$

/□ ▶ < 글 ▶ < 글

э

Definitions

- $L(X) = \{$ configurations which appear in elements of $X \}$
- $L_S(X) = L(X) \cap A^S$; legal configurations with shape S

/□ ▶ < 글 ▶ < 글

Definitions

- $L(X) = \{$ configurations which appear in elements of $X \}$
- $L_S(X) = L(X) \cap A^S$; legal configurations with shape S
- The topological entropy of X is

□ > < = > <

Definitions

- $L(X) = \{$ configurations which appear in elements of $X \}$
- $L_S(X) = L(X) \cap A^S$; legal configurations with shape S
- The topological entropy of X is

$$h(X) := \lim_{n \to \infty} \frac{1}{n^d} \log |L_{[1,n]^d}(X)|$$

□ > < = > <

Definitions

- $L(X) = \{$ configurations which appear in elements of $X\}$
- $L_S(X) = L(X) \cap A^S$; legal configurations with shape S
- The topological entropy of X is

$$h(X) := \lim_{n \to \infty} \frac{1}{n^d} \log |L_{[1,n]^d}(X)|$$

• Example: $X = \{1, 2, \dots, k\}^{\mathbb{Z}^d}$ (no restrictions)

/□ ▶ < 글 ▶ < 글

Definitions

- $L(X) = \{$ configurations which appear in elements of $X\}$
- $L_S(X) = L(X) \cap A^S$; legal configurations with shape S
- The topological entropy of X is

$$h(X) := \lim_{n \to \infty} \frac{1}{n^d} \log |L_{[1,n]^d}(X)|$$

• Example: $X = \{1, 2, \dots, k\}^{\mathbb{Z}^d}$ (no restrictions)

•
$$h(X) = \lim_{k \to \infty} \frac{1}{n^d} \log k^{n^d} = \log k$$

伺 ト イ ヨ ト イ ヨ

Definitions

 Any stationary probability Borel µ on A^{ℤ^d} has measure-theoretic entropy

-

э

Definitions

 Any stationary probability Borel μ on A^{Z^d} has measure-theoretic entropy
 h(μ) = lim_{n→∞} -1/n^d ∑_{w∈A^{[1,n]^d}} μ([w]) log μ([w])

伺 ト く ヨ ト く ヨ ト

э

Definitions

Any stationary probability Borel µ on A^{Z^d} has measure-theoretic entropy

h(µ) = lim_{n→∞} -1/n^d ∑_{w∈A^{[1,n]^d}} µ([w]) log µ([w])

For w ∈ A^S, [w] := {x ∈ A^{Z^d} : x|_S = w}

Definitions

Any stationary probability Borel μ on A^{Z^d} has measure-theoretic entropy

h(μ) = lim_{n→∞} -1/n^d ∑_{w∈A^{[1,n]^d}} μ([w]) log μ([w])
For w ∈ A^S, [w] := {x ∈ A^{Z^d} : x|_S = w}

Example: if μ is Bernoulli (i.i.d.) measure uniformly distributed on {1,..., k}, then

Definitions

• Any stationary probability Borel μ on $A^{\mathbb{Z}^{a}}$ has measure-theoretic entropy $h(\mu) = \lim_{n \to \infty} \frac{-1}{n^d} \sum_{w \in \mathcal{W}} \mu([w]) \log \mu([w])$ $w \in \Delta^{[1,n]d}$ • For $w \in A^S$, $[w] := \{x \in A^{\mathbb{Z}^d} : x | s = w\}$ • Example: if μ is Bernoulli (i.i.d.) measure uniformly distributed on $\{1, \ldots, k\}$, then $h(\mu) = \lim_{n \to \infty} \frac{-1}{n^d} \sum_{k=1}^{n^d} \log(k^{-n^d}) = \log k$ $w \in A^{[1,n]d}$

伺下 イヨト イヨ

- Any stationary probability Borel μ on $A^{\mathbb{Z}^d}$ has measure-theoretic entropy $h(\mu) = \lim_{n \to \infty} \frac{-1}{n^d} \sum_{w \in \mathcal{W}} \mu([w]) \log \mu([w])$ $w \in \Delta^{[1,n]d}$ • For $w \in A^{S}$. $[w] := \{x \in A^{\mathbb{Z}^{d}} : x | s = w\}$ • Example: if μ is Bernoulli (i.i.d.) measure uniformly distributed on $\{1, \ldots, k\}$, then $h(\mu) = \lim_{n \to \infty} \frac{-1}{n^d} \sum_{k=n^d} \log(k^{-n^d}) = \log k$ $w \in A^{[1,n]d}$
- Note that $h(\mu) = h(\{1, \dots, k\}^{\mathbb{Z}^d})$

Definitions

 Variational Principle: sup h(μ) = h(X), and this sup is achieved for Z^d SFTs

/□ ▶ < 글 ▶ < 글

э

Definitions

- Variational Principle: sup h(μ) = h(X), and this sup is achieved for Z^d SFTs
- Any measure achieving the max is a **measure of maximal** entropy or **MME**

/□ ▶ < 글 ▶ < 글

Definitions

- Variational Principle: sup h(μ) = h(X), and this sup is achieved for Z^d SFTs
- Any measure achieving the max is a **measure of maximal** entropy or **MME**
- Example: if X is the full shift $A^{\mathbb{Z}^d}$, then uniform Bernoulli measure is the unique MME

Definitions

- Variational Principle: sup h(μ) = h(X), and this sup is achieved for Z^d SFTs
- Any measure achieving the max is a **measure of maximal** entropy or **MME**
- Example: if X is the full shift $A^{\mathbb{Z}^d}$, then uniform Bernoulli measure is the unique MME
- MMEs are invaluable in understanding structure of SFTs

□ > < = > <

Definitions

- Variational Principle: sup h(μ) = h(X), and this sup is achieved for Z^d SFTs
- Any measure achieving the max is a **measure of maximal** entropy or **MME**
- Example: if X is the full shift $A^{\mathbb{Z}^d}$, then uniform Bernoulli measure is the unique MME
- MMEs are invaluable in understanding structure of SFTs
- Hard to give explicit description of MMEs in general

Properties of MMEs on SFTs

Theorem: (Burton-Steif/Lanford-Ruelle) Any MME μ on a n.n. Z^d SFT has the following property:

Properties of MMEs on SFTs

Theorem: (Burton-Steif/Lanford-Ruelle) Any MME μ on a n.n. Z^d SFT has the following property:

For any finite S and $T \supset \partial S$ for which $S \cap T = \emptyset$, and for any $\delta \in L_T(X)$, $\mu(x|_S : x|_T = \delta)$ is uniform over all $x \in L_S(X)$ for which $x\delta \in L(X)$.

A 3 3 4 4

Properties of MMEs on SFTs

 Theorem: (Burton-Steif/Lanford-Ruelle) Any MME μ on a n.n. Z^d SFT has the following property:

For any finite S and $T \supset \partial S$ for which $S \cap T = \emptyset$, and for any $\delta \in L_T(X)$, $\mu(x|_S : x|_T = \delta)$ is uniform over all $x \in L_S(X)$ for which $x\delta \in L(X)$.

• Example: X the \mathbb{Z}^2 hard square shift: (no 11, $\frac{1}{1}$)

Properties of MMEs on SFTs

Theorem: (Burton-Steif/Lanford-Ruelle) Any MME μ on a n.n. Z^d SFT has the following property:

For any finite S and $T \supset \partial S$ for which $S \cap T = \emptyset$, and for any $\delta \in L_T(X)$, $\mu(x|_S : x|_T = \delta)$ is uniform over all $x \in L_S(X)$ for which $x\delta \in L(X)$.

• Example: X the \mathbb{Z}^2 hard square shift: (no 11, $\frac{1}{1}$) conditioned on $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$

Properties of MMEs on SFTs

Theorem: (Burton-Steif/Lanford-Ruelle) Any MME μ on a n.n. Z^d SFT has the following property:

For any finite S and $T \supset \partial S$ for which $S \cap T = \emptyset$, and for any $\delta \in L_T(X)$, $\mu(x|_S : x|_T = \delta)$ is uniform over all $x \in L_S(X)$ for which $x\delta \in L(X)$.

• Example: X the \mathbb{Z}^2 hard square shift: (no 11, $\frac{1}{1}$) conditioned on $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$, fillings $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, equally probable.

伺 ト イ ヨ ト イ ヨ

Properties of MMEs on SFTs

- Theorem: (Burton-Steif/Lanford-Ruelle) Any MME μ on a n.n. Z^d SFT has the following property: For any finite S and T ⊃ ∂S for which S ∩ T = Ø, and for any δ ∈ L_T(X), μ(x|_S : x|_T = δ) is uniform over all x ∈ L_S(X) for which xδ ∈ L(X).
- Example: X the \mathbb{Z}^2 hard square shift: (no 11, $\frac{1}{1}$)
 - conditioned on $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, fillings $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$, equally probable.
- Same conditional probabilities if $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ changed to $\begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

伺 ト イヨト イヨト

Properties of MMEs on SFTs

Theorem: (Burton-Steif/Lanford-Ruelle) Any MME μ on a n.n. Z^d SFT has the following property:

For any finite S and $T \supset \partial S$ for which $S \cap T = \emptyset$, and for any $\delta \in L_T(X)$, $\mu(x|_S : x|_T = \delta)$ is uniform over all $x \in L_S(X)$ for which $x\delta \in L(X)$.

• Example: X the \mathbb{Z}^2 hard square shift: (no 11, $\frac{1}{1}$)

conditioned on $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$, fillings $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$, equally probable.

- Same conditional probabilities if $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$ changed to $\begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$
- Examples of **Markov Random Fields** ("conditional independence of inside and outside"); more in Nishant's talk

Multiple MMEs

• Despite the fact that these conditional measures are completely determined for MMEs for any n.n. SFT, there can be more than one MME.

→ Ξ →

Multiple MMEs

• Despite the fact that these conditional measures are completely determined for MMEs for any n.n. SFT, there can be more than one MME.

• Easy example:
$$d = 1$$
, $X = \{0, 1\}^{\mathbb{Z}} \cup \{2, 3\}^{\mathbb{Z}}$.

→ Ξ →

Multiple MMEs

- Despite the fact that these conditional measures are completely determined for MMEs for any n.n. SFT, there can be more than one MME.
- Easy example: d = 1, $X = \{0, 1\}^{\mathbb{Z}} \cup \{2, 3\}^{\mathbb{Z}}$.

•
$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log 2^{n+1} = \log 2$$

伺 ト イ ヨ ト イ ヨ

Multiple MMEs

- Despite the fact that these conditional measures are completely determined for MMEs for any n.n. SFT, there can be more than one MME.
- Easy example: d = 1, $X = \{0,1\}^{\mathbb{Z}} \cup \{2,3\}^{\mathbb{Z}}$.

•
$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log 2^{n+1} = \log 2$$

• Two MMEs; $(\frac{1}{2}, \frac{1}{2})$ -Bernoulli measure on $\{0, 1\}$ and $(\frac{1}{2}, \frac{1}{2})$ -Bernoulli measure on $\{2, 3\}$.

伺下 イヨト イヨ
Multiple MMEs

- Despite the fact that these conditional measures are completely determined for MMEs for any n.n. SFT, there can be more than one MME.
- Easy example: d = 1, $X = \{0,1\}^{\mathbb{Z}} \cup \{2,3\}^{\mathbb{Z}}$.

•
$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log 2^{n+1} = \log 2$$

- Two MMEs; $(\frac{1}{2}, \frac{1}{2})$ -Bernoulli measure on $\{0, 1\}$ and $(\frac{1}{2}, \frac{1}{2})$ -Bernoulli measure on $\{2, 3\}$.
- Only such examples for d = 1; any irreducible \mathbb{Z} SFT has unique MME

同 ト 4 ヨ ト 4 ヨ

Multiple MMEs

• Harder example: **iceberg model** \mathcal{I}_M of Burton-Steif: d = 2, $A = \{-M, \ldots, -1, 1, \ldots, M\}$, $\mathcal{F} = \{ij, j : ij < -1\}$.

伺 ト く ヨ ト く ヨ ト

Multiple MMEs

- Harder example: iceberg model \mathcal{I}_M of Burton-Steif: d = 2, $A = \{-M, \ldots, -1, 1, \ldots, M\}$, $\mathcal{F} = \{ij, j : ij < -1\}$.
 - $\bullet\,$ Only allowed adjacent integers with opposite signs are $\pm 1.$

A 3 3 4 4

Multiple MMEs

- Harder example: iceberg model \mathcal{I}_M of Burton-Steif: d = 2, $A = \{-M, \dots, -1, 1, \dots, M\}$, $\mathcal{F} = \{ij, j : ij < -1\}$.
 - Only allowed adjacent integers with opposite signs are ± 1 .
 - For M > 3136e, \mathcal{I}_M has exactly two MMEs.

A 3 3 4 4

Multiple MMEs

- Harder example: **iceberg model** \mathcal{I}_M of Burton-Steif: d = 2, $A = \{-M, \ldots, -1, 1, \ldots, M\}$, $\mathcal{F} = \{ij, j : ij < -1\}$.
 - $\bullet\,$ Only allowed adjacent integers with opposite signs are $\pm 1.$
 - For M > 3136e, \mathcal{I}_M has exactly two MMEs.
- *I_M* is strongly irreducible, an extremely strong topological mixing property; used often to prove properties of Z^d SFTs.

白 ト イ ヨ ト イ ヨ

Multiple MMEs

- Harder example: **iceberg model** \mathcal{I}_M of Burton-Steif: d = 2, $A = \{-M, \ldots, -1, 1, \ldots, M\}$, $\mathcal{F} = \{ij, j : ij < -1\}$.
 - $\bullet\,$ Only allowed adjacent integers with opposite signs are $\pm 1.$
 - For M > 3136e, \mathcal{I}_M has exactly two MMEs.
- *I*_M is strongly irreducible, an extremely strong topological mixing property; used often to prove properties of Z^d SFTs.
- There are several conditions guaranteeing that a nearest neighbor Z^d SFT has a unique MME.

伺 ト イ ヨ ト イ ヨ ト

Uniqueness conditions

Theorem: (Markley-Paul, 1981) If X is a n.n. Z^d SFT with alphabet A and ∃G ⊂ A, |G| > (1 - 1/2d) |A|, so that every g ∈ G can legally appear next to every a ∈ A in any direction, then X has a unique MME.

Uniqueness conditions

- Theorem: (Markley-Paul, 1981) If X is a n.n. Z^d SFT with alphabet A and ∃G ⊂ A, |G| > (1 1/2d) |A|, so that every g ∈ G can legally appear next to every a ∈ A in any direction, then X has a unique MME.
 - "Most letters can appear next to all letters"

Uniqueness conditions

- Theorem: (Markley-Paul, 1981) If X is a n.n. Z^d SFT with alphabet A and ∃G ⊂ A, |G| > (1 1/(2d)) |A|, so that every g ∈ G can legally appear next to every a ∈ A in any direction, then X has a unique MME.
 - "Most letters can appear next to all letters"
- **Theorem:** (Haggstrom, 1996) If X is a n.n. \mathbb{Z}^d SFT with alphabet A and every $a \in A$ has at least $(1 \frac{1}{4d^2})|A|$ allowed neighbors in any direction, then X has a unique MME.

Uniqueness conditions

- Theorem: (Markley-Paul, 1981) If X is a n.n. Z^d SFT with alphabet A and ∃G ⊂ A, |G| > (1 1/2d) |A|, so that every g ∈ G can legally appear next to every a ∈ A in any direction, then X has a unique MME.
 - "Most letters can appear next to all letters"
- **Theorem:** (Haggstrom, 1996) If X is a n.n. \mathbb{Z}^d SFT with alphabet A and every $a \in A$ has at least $(1 \frac{1}{4d^2})|A|$ allowed neighbors in any direction, then X has a unique MME.
 - "All letters can appear next to most letters"

Uniqueness conditions

- Theorem: (Markley-Paul, 1981) If X is a n.n. Z^d SFT with alphabet A and ∃G ⊂ A, |G| > (1 1/2d) |A|, so that every g ∈ G can legally appear next to every a ∈ A in any direction, then X has a unique MME.
 - "Most letters can appear next to all letters"
- **Theorem:** (Haggstrom, 1996) If X is a n.n. \mathbb{Z}^d SFT with alphabet A and every $a \in A$ has at least $(1 \frac{1}{4d^2})|A|$ allowed neighbors in any direction, then X has a unique MME.
 - "All letters can appear next to most letters"
- **Theorem:** (P., 2013) For any d, $\exists \epsilon_d > 0$ so that if X is a n.n. \mathbb{Z}^d SFT with alphabet A and $\exists G \subset A$, $|G| > (1 \epsilon_d) |A|$, so that every $g \in G$ has at least $(1 \epsilon_d)|A|$ allowed neighbors in any direction, then X has a unique MME.

・ 戸 ト ・ ヨ ト ・ ヨ

Uniqueness conditions

- Theorem: (Markley-Paul, 1981) If X is a n.n. Z^d SFT with alphabet A and ∃G ⊂ A, |G| > (1 1/2d) |A|, so that every g ∈ G can legally appear next to every a ∈ A in any direction, then X has a unique MME.
 - "Most letters can appear next to all letters"
- **Theorem:** (Haggstrom, 1996) If X is a n.n. \mathbb{Z}^d SFT with alphabet A and every $a \in A$ has at least $(1 \frac{1}{4d^2})|A|$ allowed neighbors in any direction, then X has a unique MME.

• "All letters can appear next to most letters"

- **Theorem:** (P., 2013) For any d, $\exists \epsilon_d > 0$ so that if X is a n.n. \mathbb{Z}^d SFT with alphabet A and $\exists G \subset A$, $|G| > (1 \epsilon_d) |A|$, so that every $g \in G$ has at least $(1 \epsilon_d)|A|$ allowed neighbors in any direction, then X has a unique MME.
 - "Most letters can appear next to most letters"

・ 同 ト ・ ヨ ト ・ ヨ ト

Uniqueness conditions

• Call SFTs satisfying hypothesis of the last theorem ϵ -full.

★ Ξ →

- Call SFTs satisfying hypothesis of the last theorem ϵ -full.
- In fact, can state a version of ε-fullness without any mention of legal adjacencies

- Call SFTs satisfying hypothesis of the last theorem ϵ -full.
- In fact, can state a version of *ϵ*-fullness without any mention of legal adjacencies
- **Proposition:** (P.) For X a n.n. \mathbb{Z}^d SFT, (1) $\forall \epsilon, \exists \alpha \text{ s.t. } h(X) > (\log |A|) - \alpha \Longrightarrow X$ is ϵ -full, and (2) $\forall \alpha', \exists \epsilon' \text{ s.t. } X$ is ϵ' -full $\Longrightarrow h(X) > (\log |A|) - \alpha'$.

- Call SFTs satisfying hypothesis of the last theorem ϵ -full.
- In fact, can state a version of *ϵ*-fullness without any mention of legal adjacencies
- **Proposition:** (P.) For X a n.n. \mathbb{Z}^d SFT, (1) $\forall \epsilon, \exists \alpha \text{ s.t. } h(X) > (\log |A|) - \alpha \Longrightarrow X \text{ is } \epsilon\text{-full, and}$ (2) $\forall \alpha', \exists \epsilon' \text{ s.t. } X \text{ is } \epsilon'\text{-full} \Longrightarrow h(X) > (\log |A|) - \alpha'.$
- Corollary: (P.) For any d, there exists α_d so that any n.n. Z^d SFT with entropy at least (log |A|) − α_d has a unique MME.

白 ト イ ヨ ト イ ヨ

- Call SFTs satisfying hypothesis of the last theorem ϵ -full.
- In fact, can state a version of *ϵ*-fullness without any mention of legal adjacencies
- **Proposition:** (P.) For X a n.n. \mathbb{Z}^d SFT, (1) $\forall \epsilon, \exists \alpha \text{ s.t. } h(X) > (\log |A|) - \alpha \Longrightarrow X \text{ is } \epsilon\text{-full, and}$ (2) $\forall \alpha', \exists \epsilon' \text{ s.t. } X \text{ is } \epsilon'\text{-full} \Longrightarrow h(X) > (\log |A|) - \alpha'.$
- Corollary: (P.) For any d, there exists α_d so that any n.n. Z^d SFT with entropy at least (log |A|) − α_d has a unique MME.
 - Informally we say such SFTs have nearly full entropy.

伺 ト イ ヨ ト イ ヨ

- Call SFTs satisfying hypothesis of the last theorem ϵ -full.
- In fact, can state a version of *ϵ*-fullness without any mention of legal adjacencies
- **Proposition:** (P.) For X a n.n. \mathbb{Z}^d SFT, (1) $\forall \epsilon, \exists \alpha \text{ s.t. } h(X) > (\log |A|) - \alpha \Longrightarrow X$ is ϵ -full, and (2) $\forall \alpha', \exists \epsilon' \text{ s.t. } X$ is ϵ' -full $\Longrightarrow h(X) > (\log |A|) - \alpha'$.
- Corollary: (P.) For any d, there exists α_d so that any n.n. Z^d SFT with entropy at least (log |A|) − α_d has a unique MME.
 - Informally we say such SFTs have nearly full entropy.
 - In fact, we get more than just unique MME, also we know that h(X) is computable to tolerance n^{-1} in time $e^{O(n^d)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Call SFTs satisfying hypothesis of the last theorem ϵ -full.
- In fact, can state a version of ϵ -fullness without any mention of legal adjacencies
- **Proposition:** (P.) For X a n.n. \mathbb{Z}^d SFT, (1) $\forall \epsilon, \exists \alpha \text{ s.t. } h(X) > (\log |A|) - \alpha \Longrightarrow X \text{ is } \epsilon\text{-full, and}$ (2) $\forall \alpha', \exists \epsilon' \text{ s.t. } X \text{ is } \epsilon'\text{-full} \Longrightarrow h(X) > (\log |A|) - \alpha'.$
- Corollary: (P.) For any d, there exists α_d so that any n.n. Z^d SFT with entropy at least (log |A|) − α_d has a unique MME.
 - Informally we say such SFTs have nearly full entropy.
 - In fact, we get more than just unique MME, also we know that h(X) is computable to tolerance n^{-1} in time $e^{O(n^d)}$.
- Our proof gives $\alpha_d = d^{-17+o(1)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

SFTs with nearly full entropy (d = 1)

 In d = 1, the only way to have multiple MMEs is to have multiple irreducible components of maximal entropy

4 3 b

- In *d* = 1, the only way to have multiple MMEs is to have multiple irreducible components of maximal entropy
 - Recall example $X = \{0,1\}^{\mathbb{Z}} \cup \{2,3\}^{\mathbb{Z}}$

伺 ト イ ヨ ト イ ヨ

- In *d* = 1, the only way to have multiple MMEs is to have multiple irreducible components of maximal entropy
 - Recall example $X = \{0,1\}^{\mathbb{Z}} \cup \{2,3\}^{\mathbb{Z}}$
- X has multiple MMEs

- - E - - E

- In *d* = 1, the only way to have multiple MMEs is to have multiple irreducible components of maximal entropy
 - Recall example $X = \{0,1\}^{\mathbb{Z}} \cup \{2,3\}^{\mathbb{Z}}$
- X has multiple MMEs

 \implies A contains two components of size at least $e^{h(X)}$

.

- In *d* = 1, the only way to have multiple MMEs is to have multiple irreducible components of maximal entropy
 - Recall example $X = \{0,1\}^{\mathbb{Z}} \cup \{2,3\}^{\mathbb{Z}}$
- X has multiple MMEs

 $\implies A \text{ contains two components of size at least } e^{h(X)}$ $\implies |A| > 2e^{h(X)}$

/□ ▶ < 글 ▶ < 글

- In *d* = 1, the only way to have multiple MMEs is to have multiple irreducible components of maximal entropy
 - Recall example $X = \{0,1\}^{\mathbb{Z}} \cup \{2,3\}^{\mathbb{Z}}$
- X has multiple MMEs
 - \implies A contains two components of size at least $e^{h(X)}$

$$\implies |A| \ge 2e^{h(X)}$$

$$\Longrightarrow (\log |A|) - h(X) \ge \log 2$$

.

- In *d* = 1, the only way to have multiple MMEs is to have multiple irreducible components of maximal entropy
 - Recall example $X = \{0,1\}^{\mathbb{Z}} \cup \{2,3\}^{\mathbb{Z}}$
- X has multiple MMEs
 - $\implies A \text{ contains two components of size at least } e^{h(X)}$ $\implies |A| \ge 2e^{h(X)}$ $\implies (\log |A|) h(X) \ge \log 2$
- So, $(\log |A|) h(X) < \log 2 \Longrightarrow X$ has unique MME.

伺 と く ヨ と く ヨ と

- In *d* = 1, the only way to have multiple MMEs is to have multiple irreducible components of maximal entropy
 - Recall example $X = \{0,1\}^{\mathbb{Z}} \cup \{2,3\}^{\mathbb{Z}}$
- X has multiple MMEs
 - $\implies A \text{ contains two components of size at least } e^{h(X)}$ $\implies |A| > 2e^{h(X)}$
 - $\Longrightarrow (\log |A|) h(X) \ge \log 2$
- So, $(\log |A|) h(X) < \log 2 \Longrightarrow X$ has unique MME.
- log 2 is optimal: $X = [1, n]^{\mathbb{Z}} \cup [n + 1, 2n]^{\mathbb{Z}}$ has two MMEs.

・ 同 ト ・ ヨ ト ・ ヨ ト

SFTs with nearly full entropy (d = 2)

• d = 2 more complicated; recall **iceberg model** \mathcal{I}_M :

A 3 3 4 4

- d = 2 more complicated; recall iceberg model \mathcal{I}_M :
- $A = \{-M, \ldots, -1, 1, \ldots, M\}, \ \mathcal{F} = \{ ij, j : ij < -1 \}.$

伺 ト イ ヨ ト イ ヨ ト

- d = 2 more complicated; recall **iceberg model** \mathcal{I}_M :
- $A = \{-M, \ldots, -1, 1, \ldots, M\}, \ \mathcal{F} = \{\ ij, \ j' : \ ij < -1\}.$
- For M > 3136e, \mathcal{I}_M has exactly two MMEs.

伺 ト イ ヨ ト イ ヨ

- d = 2 more complicated; recall **iceberg model** \mathcal{I}_M :
- $A = \{-M, \ldots, -1, 1, \ldots, M\}, \ \mathcal{F} = \{ ij, j : ij < -1 \}.$
- For M > 3136e, \mathcal{I}_M has exactly two MMEs.
- For any M, $h(\mathcal{I}_M) > \log M$:

伺 ト イ ヨ ト イ ヨ ト

- d = 2 more complicated; recall **iceberg model** \mathcal{I}_M :
- $A = \{-M, \ldots, -1, 1, \ldots, M\}, \ \mathcal{F} = \{\ ij \ , \ j \ : \ ij < -1\}.$
- For M > 3136e, \mathcal{I}_M has exactly two MMEs.
- For any M, $h(\mathcal{I}_M) > \log M$:
 - Assigning positive integers uniformly and independently would give entropy of $\log M$

伺 ト く ヨ ト く ヨ ト

- d = 2 more complicated; recall **iceberg model** \mathcal{I}_M :
- $A = \{-M, \ldots, -1, 1, \ldots, M\}, \ \mathcal{F} = \{\ ij, \ j \ : \ ij < -1\}.$
- For M > 3136e, \mathcal{I}_M has exactly two MMEs.
- For any M, $h(\mathcal{I}_M) > \log M$:
 - Assigning positive integers uniformly and independently would give entropy of $\log M$
 - $\bullet\,$ Can allow -1 occasionally to add slightly more entropy

伺 ト イ ヨ ト イ ヨ ト

- d = 2 more complicated; recall **iceberg model** \mathcal{I}_M :
- $A = \{-M, \ldots, -1, 1, \ldots, M\}, \ \mathcal{F} = \{\ ij \ , \ j \ : \ ij < -1\}.$
- For M > 3136e, \mathcal{I}_M has exactly two MMEs.
- For any M, $h(\mathcal{I}_M) > \log M$:
 - Assigning positive integers uniformly and independently would give entropy of $\log M$
 - $\bullet\,$ Can allow -1 occasionally to add slightly more entropy
- For large M, \mathcal{I}_M has multiple MMEs, but $(\log |A|) h(\mathcal{I}_M) < \log 2.$

くほし くほし くほし

- d = 2 more complicated; recall **iceberg model** \mathcal{I}_M :
- $A = \{-M, \ldots, -1, 1, \ldots, M\}, \ \mathcal{F} = \{\ ij, \ j \ : \ ij < -1\}.$
- For M > 3136e, \mathcal{I}_M has exactly two MMEs.
- For any M, $h(\mathcal{I}_M) > \log M$:
 - Assigning positive integers uniformly and independently would give entropy of $\log M$
 - $\bullet\,$ Can allow -1 occasionally to add slightly more entropy
- For large *M*, *I*_M has multiple MMEs, but (log |*A*|) − *h*(*I*_M) < log 2.
- The two components of A inducing distinct MMEs can interact, unlike *d* = 1 case

SFTs with nearly full entropy (d > 2)

• Define $\widetilde{\alpha_d}$ to be optimal value of α_d

I ≡ ▶ < </p>
- Define $\widetilde{\alpha_d}$ to be optimal value of α_d
 - i.e. $\widetilde{\alpha_d}$ is maximum number for which $h(X) > (\log |A|) - \widetilde{\alpha_d} \Longrightarrow X$ has unique MME

A 3 b

Define α_d to be optimal value of α_d
i.e. α_d is maximum number for which h(X) > (log |A|) − α_d ⇒ X has unique MME
α₁ = log 2

- Define $\widetilde{\alpha_d}$ to be optimal value of α_d
 - i.e. $\widetilde{\alpha_d}$ is maximum number for which $h(X) > (\log |A|) - \widetilde{\alpha_d} \Longrightarrow X$ has unique MME
- $\widetilde{\alpha_1} = \log 2$
- $\widetilde{\alpha_2} < \log 2$ (iceberg model)

A 3 b

- Define $\widetilde{\alpha_d}$ to be optimal value of α_d
 - i.e. $\widetilde{\alpha_d}$ is maximum number for which $h(X) > (\log |A|) - \widetilde{\alpha_d} \Longrightarrow X$ has unique MME
- $\widetilde{\alpha_1} = \log 2$
- $\widetilde{\alpha_2} < \log 2$ (iceberg model)
- $\widetilde{\alpha_d} > d^{-17+o(1)}$

- - E - - E

- Define $\widetilde{\alpha_d}$ to be optimal value of α_d
 - i.e. $\widetilde{\alpha_d}$ is maximum number for which $h(X) > (\log |A|) - \widetilde{\alpha_d} \Longrightarrow X$ has unique MME
- $\widetilde{\alpha_1} = \log 2$
- $\widetilde{\alpha_2} < \log 2$ (iceberg model)
- $\widetilde{\alpha_d} > d^{-17+o(1)}$
- $\widetilde{\alpha_d} < d^{-0.25+o(1)}$

- - E - - E

Introduction Measures of maximal entropy on SFTs SFTs with nearly full entropy

Questions

• What is true decay rate for optimal entropy gap α_d ? (Have polynomial upper and lower bounds with different degrees)

/□ ▶ < 글 ▶ < 글

Introduction Measures of maximal entropy on SFTs SFTs with nearly full entropy

Questions

- What is true decay rate for optimal entropy gap α_d ? (Have polynomial upper and lower bounds with different degrees)
- One way to interpret main result: "perturbing" full shift yields unique MME.

伺 ト イ ヨ ト イ ヨ

Questions

- What is true decay rate for optimal entropy gap α_d ? (Have polynomial upper and lower bounds with different degrees)
- One way to interpret main result: "perturbing" full shift yields unique MME.
 - Can generalize to perturbations of other SFTs?

A 3 3 4 4

Questions

- What is true decay rate for optimal entropy gap α_d ? (Have polynomial upper and lower bounds with different degrees)
- One way to interpret main result: "perturbing" full shift yields unique MME.
 - Can generalize to perturbations of other SFTs?
- Ultimate goal: conjugacy-invariant checkable condition implying unique MME for all SFTs

Questions

- What is true decay rate for optimal entropy gap α_d ? (Have polynomial upper and lower bounds with different degrees)
- One way to interpret main result: "perturbing" full shift yields unique MME.
 - Can generalize to perturbations of other SFTs?
- Ultimate goal: conjugacy-invariant checkable condition implying unique MME for all SFTs
 - This result is "closer" in the sense that it makes no explicit reference to safe symbols/allowed adjacencies, but it is still restricted to nearest neighbor SFTs...