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Preface

These notes are not comprehensive; they cover some of the issues concern-

ing over-the-counter markets that I plan to address in PIMS Summer School

lectures. I am aiming for the interests of an audience whose core consists of

doctoral-level students who may wish to obtain a sense of the key technical

modeling approaches as well as some sense of the substantive issues. I as-

sume a graduate-level knowledge of probability theory. Some of this content

is based on my Princeton lectures, titled Dark Markets.

Rather than trading through a centralized mechanism such as an auc-

tion, specialist, or broadly accessible limit-order book, participants in an

over-the-counter (OTC) market negotiate terms privately with other market

participants, often pairwise. OTC investors, other than major dealers, may

be largely unaware of prices that are currently available elsewhere in the

market, or of recent transactions prices. In this sense, OTC markets are rel-

atively opaque; investors are somewhat in the dark about the most attractive

available terms and about who might offer them. I will focus attention on

search and bargaining with counterparties.

The financial crisis of 2007-2009 brought significant concerns and reg-

ulatory action regarding the role of over-the-counter markets, particularly

from the viewpoint of financial instability. OTC markets for derivatives, col-

lateralized debt obligations, and repurchase agreements played particularly

important roles in the crisis and in subsequent legislation. The modeling of

OTC markets, however, is still undeveloped by comparison with the available

research on central market mechanisms.

Chapter 1 familiarizes readers with the basic techniques used to model

search and random matching in economies with many agents. The exact

law of large numbers for random matching, stated rigorously in Appendix

A, is used to calculate the cross-sectional distribution of types of matches

across the population. This is then extended to treat multi-period search
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in both discrete-time and continuous-time frameworks. The optimal search

intensity of a given agent, given the cross-sectional distribution of types in

the population, is formulated and characterized with Bellman’s Principle.

The chapter ends with a brief formulation of equilibrium search and a short

review of the early history of the literature.

Chapter 2, from work by Duffie, Gârleanu, and Pedersen (2005) and

Duffie, Gârleanu, and Pedersen (2007), presents a simple introduction to

asset pricing in over-the-counter markets with symmetric information. In-

vestors search for opportunities to trade and bargain with counterparties.

Each of two negotiating investors is aware that a failure to complete a trade

could lead to a potentially costly delay in order to search for a different coun-

terparty. In equilibrium, the two investors agree to trade whenever there are

potential gains from trade. The equilibrium asset price that they negotiate

reflects the degree of search frictions, among other aspects of the market.

Appendix A provides needed results for dynamic random matching from

Duffie and Sun (2007), Duffie and Sun (2012), and Duffie, Qiao, and Sun

(2014b). Appendix B reviews the basics of counting processes with an inten-

sity, such as Poisson processes. Appendix C covers the essentials of bar-

gaining theory in settings related to OTC markets, with a focus on the

alternating-offers bargaining protocol of Rubinstein (1982a).

Portions of these notes are updated from earlier notes prepared for the

2008 Nash Lecture, hosted by Steven Shreve, at Carnegie-Mellon University;

for a doctoral course at the University of Lausanne in the summer of 2009; for

the Distinguished Lecture Series at the Mathematics Department of Hum-

boldt University hosted in Berlin by Ulrich Horst in June 2010; for the 2010

Tinbergen Lectures at the Duisenberg Institute, hosted in Amsterdam by

André Lucas and Ton Vorst; and for the Minerva Foundation Lectures in the

Mathematics Department at Columbia University in March, 2011, hosted by

Ioannis Karatzas and Johannes Ruf. I am grateful for many discussions with

students and faculty during my visits to present these lecture series.

I have a large debt is to many collaborators in this topic area: Adam
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Ashcraft, Nicolae Gârleanu, Gaston Giroux, Semyon Malamud, Gustavo

Manso, Lasse Heje Pedersen, Lei Qiao, Martin Scheicher, David Skeel, Bruno

Strulovici, Yeneng Sun, Guillaume Vuillemy, Chaojun Wang, and Haoxiang

Zhu. I am especially grateful to PIMS Director Alejandro Adem and to

the Summer School organizers, René Carmona, Ivar Ekeland, and George

Papanicolaou, for the opportunity to give these lectures.

This draft is for the use of those attending the PIMS Lectures, only, and

is not otherwise for distribution.

Darrell Duffie

Stanford University

July, 2014



Chapter 1

Search for Counterparties

This chapter introduces the modeling of search and random matching in

large over-the-counter markets. The objective is to build intuition and tech-

niques for later chapters. After some mathematical prerequisites, the notion

of random matching is defined. The law of large numbers is then invoked

to calculate the cross-sectional distribution of types of matches. This is ex-

tended to multi-period search, first in discrete-time settings, and then in

continuous time. The optimal search intensity of a given agent, given the

cross-sectional distribution of types in the population, is characterized with

Bellman’s Principle. We then briefly take up the issue of equilibrium search

efforts.

1.1 Preliminaries

We fix some mathematical preliminaries, beginning with a probability space

(Ω,F ,P). The elements of Ω are the possible states of the world. The

elements of F are events, sets of states to which we can assign a probability.

The probability measure P assigns a probability in [0, 1] to each event. We

also fix a measure space (G,G, γ) of agents, so that γ(B) is the quantity of

agents in a measurable subset B of agents. The total quantity γ(G) of agents

is positive, but need not be 1.

1



2 CHAPTER 1. SEARCH FOR COUNTERPARTIES

We suppose that the measure γ is atomless, meaning that there is an

infinite number of agents, none of which has a positive mass. The set of agents

is therefore sometimes described as a “continuum.” For example, agents

could be uniformly distributed on the unit interval G = [0, 1]. Combining

the continuum property with a notion of the independence of search across

agents will lead in this chapter to an exact law of large numbers, by which the

the cross-sectional distribution of search outcomes is deterministic (almost

surely). For example, with two types of investors, A and B, we will see that

independent random matching implies that the fraction of the population of

type-A investors that are matched to type-B investors in a given period is

almost surely equal to the probability that a given type-A investor is matched

to some type-B investor.

Search delays are typical in over-the-counter markets, but also proxy for

delays associated with reaching an awareness of trading opportunities, ar-

ranging financing and meeting suitable legal restrictions, negotiating trades,

executing trades, and so on. As indicated in Chapter 1 and theoretically

modeled in Chapters 4 and 5, these delays have important implications for

optimal investment behavior, the dynamics of returns, and the distribution

of information held across the population of investors.

1.2 Random Matching

In the simplest and most common models of random matching, a typical

agent α, whom we shall call “Al,” is randomly assigned to at most one other

agent, and not to himself. If Al is assigned to a particular agent β, whom we

shall call “Beth,” then Beth is also assigned to Al. We suppose for now that

the probability p of being matched to someone is the same for all agents, and

that the probability that an agent is matched to some agent in a particular

measurable subset B of agents is proportional to the quantity γ(B) of agents

in that subset. This is a natural implementation of the idea that all agents

are “equally likely” to be Al’s counterparties. Thus, the probability that Al
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gets matched to someone in the set B must be pγ(B)/γ(G).

In order to later rely on a law of large numbers for the independent

random matching of agents, we assume a notion of joint measurability of

match assignments, as functions on Ω×G, that is stated in Appendix A. We

will use the phrase “almost surely” to describe an event of probability one,

and use “for almost every agent” to describe a relationship that applies to

every agent in G, except those in some subset of measure zero.

We take the indicator random variable 1α,β to have the outcome 1 in the

event that Al is matched to Beth, and zero otherwise. By adding up, the

indicator of the event that Al is matched to someone in a measurable set B

of agents is the random variable

1α,B =

∫

β∈B

1α,β dγ(β).

The quantity of matches of agents in A to agents in B is then

∫

α∈A

1α,B dγ(α).

By interchanging expectation and summation over agents (joint measurabil-

ity justifies this application of Fubini’s Theorem), the expected quantity of

these matches is

E

[
∫

α∈A

1α,B dγ(α)

]

=

∫

α∈A

E(1α,B) dγ(α) = γ(A)p
γ(B)

γ(G)
. (1.1)

Similarly, the expected quantity of matches of agents in B to agents in A is

pγ(B)γ(A)/γ(G). Thus, if A and B are disjoint, the total expected quantity

of matches between agents in B and agents in A is 2pγ(A)γ(B)/γ(G).

For now, we suppose there is a finite number K of types of agents. For a

two-type example, suppose that 60% of the agents are potential buyers of an

asset and the remaining 40% are potential sellers. The total quantity γ(G)

of agents is, say, 10. Only buyer-to-seller or seller-to-buyer matches result
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in trade. Suppose that the probability p that a given agent is matched to

someone is 0.5. From (1.1), the expected quantity of buyer-to-buyer matches

is 0.5 × 6 × 0.6 = 1.8, the expected quantity of seller-to-seller matches is

0.5 × 4 × 0.4 = 0.8, and the expected quantity of buyer-to-seller matches is

0.5× 6× 0.4 = 1.2, which is equal to the quantity of seller-to-buyer matches.

Thus, the total expected quantity of matches is 1.8+2×1.2+0.8 = 5, which

is indeed the same as the total quantity of agents multiplied by the 50%

probability that any agent is matched.

By “independent random matching,” we mean that, for almost every

agent α, the matching result for α (the event of remaining unmatched or the

agent to whom α is matched) is independent of the matching result for β,

for almost every agent β. An implication of independent random matching

is that, for almost every agent α, the type of agent to whom α is matched

is independent of the type to whom another agent β is matched, for almost

every other agent β. This independence property will allow us to apply the

exact law of large numbers for random matching, stated in Appendix A, to

calculate the total quantity of matches of pairs of agents that are of given

respective types.

The conventional law of large numbers is applied to a sequence X1, X2, . . .

of independent random variables, all with the same probability distribution

ν. By this law, for any measurable subset B of outcomes of Xi, the empirical

fraction

νn(B) =
1

n

n
∑

j=1

1{Xj∈B} (1.2)

of outcomes in B converges with increasing sample size n to P(Xi ∈ B),

almost surely. That is, the empirical distribution νn converges (almost surely)

to the underlying probability distribution ν.

The exact law of large numbers treats a family {Xα : α ∈ G} of random

variables, one for each agent, satisfying measurability conditions provided

in Appendix A. These random variables need not be identically distributed.
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We are interested in characterizing the cross-sectional empirical distribution

µ of these random variables, defined at some subset B of outcomes as

µ(B) =
1

γ(G)

∫

G

1{Xα ∈B} dγ(α),

the fraction of the outcomes that are in B, which is analogous to (1.2).

Absent independence assumptions, this fraction µ(B) is a non-trivial random

variable. Under the independence and technical conditions of the exact law

of large numbers of Sun (2006b) (see Appendix A), we have, almost surely,

µ(B) =
1

γ(G)

∫

G

P(Xα ∈ B) dγ(α), (1.3)

which is the cross-sectional average probability that Xα is in B. That is,

with independence, the empirical distribution is almost surely the same as

the average probability distribution.

When later modeling equilibrium investor behavior, our task is dramati-

cally simplified if agents correctly assume that the empirical cross-sectional

distribution of matches is not merely approximated by its probability distri-

bution, but is actually equal to it. This is known as the exact law of large

numbers for random matching, conditions for which are given by Duffie and

Sun (2007) and Duffie and Sun (2012), and re-stated in Appendix A. By

this exact law, letting Ai denote the subset of type-i agents, the quantity

of matches of type-i agents to type-j agents is almost surely equal to the

expected quantity, pγ(Ai)γ(Aj)/γ(G).

Thus, in our previous example, with independent random matching, the

quantity of buyer-to-seller matches is almost surely equal to the expected

quantity, 0.5× 6× 0.4 = 1.2.
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1.3 Dynamic Search Models

In dynamic search models, random matching occurs period after period. In

many applications, when agents meet, the matching activity could change

the agent’s types, perhaps randomly. For example, a prospective seller and a

prospective buyer could meet at random and, if they successfully negotiate a

trade, become a prospective buyer and prospective seller, respectively. This

is the basis of the dynamics described in Chapter 2. Through their bids

and offers, agents could also exchange information with each other when

they meet, which changes their types with respect to posterior beliefs, as

in Duffie, Malamud, and Manso (2010). Agents’ types could also change

for exogenous reasons, such as changes in preferences, exogenous investment

opportunities, or new private information.

For now, we suppose that, at integer times, agents are randomly matched,

as in the previous section, and that the probabilities of matching assignments

and of exogenous type changes for each agent depend only on that agent’s

current type and on the cross-sectional distribution of types in the popula-

tion. As before, we assume independence of these events across almost every

pair of agents, as defined precisely in Appendix A.

For a warm-up illustrative calculation, suppose that there are two types

of agents, buyers and sellers. Before entering the market in a given period, a

change in preferences (or endowments, or trading constraints, for example)

could, at random, cause a buyer to become a seller with probability 0.4, and

a seller to become a buyer with probability 0.5. For almost every pair of

traders, these exogenous changes are assumed to be independent. The exact

law of large numbers implies that these exogenous changes, in the aggregate,

cause 40% of the buyers to become sellers, and 50% of the sellers to become

buyers, almost surely.

An agent is randomly matched to another with probability 0.2. Whenever

a buyer and a seller are matched, they leave the market. They otherwise stay.

The initial quantities of buyers and sellers are b and s, respectively. In

each period, after mutation and matching, the quantity of new buyers en-
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tering the market is assumed to be 10% of the quantity of buyers in the

previous period plus 4. The quantity of new sellers entering is 20% of the

previous-period quantity of sellers plus 2. These entries occur after trade.

This example is contrived merely as an instructive numerical illustration.

An application of the exact law of large numbers implies that the new

quantity of buyers is almost surely

b′ = (0.6b+ 0.5s)− 2× 0.2× (0.6b+ 0.5s)
0.4b+ 0.5s

b+ s
+ (0.1b+ 4).

Similarly, the new quantity of sellers is almost surely

s′ = (0.4b+ 0.5s)− 2× 0.2× (0.4b+ 0.5s)
0.6b+ 0.5s

b+ s
+ (0.2s+ 2).

The first-time reader should review each term in these expressions as a check

on understanding.

One often simplifies with a “steady-state” model, in which the quantities

b and s of buyers and sellers are stationary, that is, b′ = b and s′ = s. In

order for this to be the case, the net quantity Qb = −0.4b+0.5s+0.1b+4 of

additional new buyers arising from exogenous type changes and fresh arrivals

must be equal to the quantity of buyer departures caused by trade. Because

this is also the case for sellers, and because the quantity of trades is of course

the same for buyers and sellers, we have Qb = Qs. We therefore have the

linear equation

−0.4b+ 0.5s+ 0.4b+ 4 = 0.4b− 0.5s+ 0.2s+ 2,

which implies that

s =
7

8
b−

5

2
.
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We can substitute this result for s into the steady-state equation

b = 0.6b+ 0.5s− 2× 0.2× (0.6b+ 0.5s)
0.4b+ 0.5s

b+ s
+ 0.1b+ 4,

and arrive at the quadratic equation

359

2500
b2 −

46

5
b+ 12 = 0,

whose unique positive real solution is b ≃ 62.73. We then find that s ≃ 52.39.

If the market starts with these quantities of buyers and sellers, then these

quantities will persist at all future times, almost surely.

This notion of stationarity under dynamic random matching and muta-

tion has been used for almost a century to model stability in population

genetics, as discussed in Section 1.8, which provides a brief outline of the

development of the literature. This approach became popular in economics,

mainly in order to simplify modeling or study the effect of independence, in

the latter half of the twentieth century.

1.4 Markov Chain for Type

We now model the evolution of the cross-sectional distribution of agents’

types as a dynamic system, letting µit denote the fraction of the population

that is of type i at period t.

For simplicity, we take the total quantity γ(G) of agents to be 1, and

assume no entry or exit. Simplifying from the previous example, we assume

that at each period, mutually exclusively, a given agent is (i) matched, (ii)

mutates type, or (iii) is unaffected.

Each period, agents of type i are matched with probability pi, and are

matched with equal likelihood to sets of agents of equal measure. Appendix

A extends to the case of “directed search,” by which the likelihood of a match

with a type j agent is of the form θintµjt, for a per-capita matching rate θijt

that can vary, as opposed to the uniform case.
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Under the uniform-matching-rate assumption, an agent of type i is there-

fore matched to an agent of type j with probability piµjt. Immediately after

such a match, we suppose that the type-i agent changes to type k with prob-

ability qijk. For instance, if agents are either owners (i = 1) or non-owners

(i = 2) of an asset, and if non-owners and owners trade the asset when-

ever they meet (the non-owner becoming an owner, and vice versa), then

q122 = q211 = 1, and all other qijk are 1 for k = i and zero for k 6= i. The

probability that a particular agent makes a one-period transition from type

i to type k through matching is therefore piµjtqijk.

A type-i agent becomes a type-k agent in the next period with an exoge-

nous “mutation” probability Φik. Thus, we have pi+
∑

k Φik = 1. In order to

apply the exact law of large numbers, we assume that these type changes are

pairwise independent, as stated precisely in Appendix A. The parameters of

the model are (p, q,Φ) and the initial cross-sectional distribution µ0 of types.

A result stated in Appendix A implies that quantity of type-k agents

satisfies (almost surely)

µk,t+1 =
K
∑

i=1

µit

(

Φik + pi
∑

j

µjtqijk

)

.

Letting µt = (µ1t, . . . , µKt)
′ denote the vector of fractions of each type of

agent, we have (almost surely)

µt+1 = (Φ +Q(p, q, µt))µt, (1.4)

where Q(p, q, µt) is the K × K matrix whose (i, k)-element is pi
∑

j µjtqijk.

Details are given by Duffie and Sun (2012).

We can similarly model the probability transitions of a particular agent’s

type. For any particular agent, the probability πit that this agent is of type

i at time t satisfies, as a vector,

πt+1 = (Φ +Q(p, q, µt))πt. (1.5)
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This means that the agent’s type is a Markov chain, with deterministic

but time-varying transition probabilities that depend on the current cross-

sectional type distribution µt.

The transition matrices of (1.4) and (1.5) are the same. Thus, if the

agent’s initial type is drawn at random from the initial cross-sectional type

distribution µ0, it follows that πt = µt for all t (almost surely). That is, the

probability distribution of the given agent’s type at any time t is identical to

the deterministic cross-sectional distribution of types at that time.

From (1.4), a stationary vector µ∞ of quantities of agents satisfies the

algebraic Riccati (linear-quadratic polynomial) equation

0 = (Φ− I +Q(p, q, µ∞))µ∞. (1.6)

Duffie and Sun (2012) show that a stationary equilibrium exists. The same

equation characterizes a stationary probability distribution π∞ of a given

agent’s type.

1.5 Continuous-Time Search and Matching

In many cases, calculations are simplified in a continuous-time setting. For

this, we use the notion of an intensity process λ for the arrival of events of a

particular type. The intensity λt of a given event is defined as the conditional

mean arrival rate of the event given all of the information available up until

time t. For example, an intensity of 2 means an expected arrival rate of

2 events per unit of time. The mathematical foundations are reviewed in

Appendix B. A special case is a constant intensity λ, the Poisson-process

model by which the times between arrivals are independent and exponentially

distributed with mean 1/λ.

Now, suppose that an agent of type i is randomly matched to other agents

at a constant intensity λi. Taking our typical assumption that the selection

of a counterparty is uniform across the population, the intensity of matches
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to agents of type j is λiµjt. When such a match occurs, we suppose that the

agent of type i becomes an agent of type k with probability qijk, as in the

discrete-time model of the previous section. The type of an agent can also

mutate from i to k for other reasons, at a fixed intensity of ηik. For example,

Chapter 4 discusses mutation over time of an investor’s preferences for the

asset or the investor’s liquidity needs.

Assuming, for almost every pair of agents, that these type transitions are

independent and that the exact law of large numbers applies, the quantity µkt

of type-k agents satisfies (almost surely) the ordinary differential equation

d

dt
µkt =

∑

i

ηikµit − λkµkt +
∑

i

∑

j

λiµitµjtqijk, (1.7)

where we define ηkk = −1 to capture the expected rate of change of mutation

out of type k. The dynamic equation for µt = (µ1t, . . . , µKt)
′ is thus

d

dt
µt = (η +Q(λ, q, µt))µt, (1.8)

for the same matrix-valued function Q( · ) defined in the previous section.

This type of equation has long been relied upon, by assumption, in economics

and physics. In particle physics, Boltzmann referred to this form of appli-

cation by assumption of the continuous-time exact law of large numbers for

random matching as the “Stosszahlansatz.” A rigorous justification of (1.8)

based on independent random matching is now available in Duffie, Qiao, and

Sun (2014a). Ferland and Giroux (2008) have shown in some settings that

the type distributions of discrete-time or finite-agent models converge to the

solution of (1.8) as the number of agents converges to infinity and the length

of a time period converges to zero.

The algebraic Riccati equation corresponding to the stationary quantities

of each type is

0 = (η +Q(λ, q, µ∞))µ∞, (1.9)
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which is identical to the discrete-time equation (1.6), after replacing Φ − I

and p with their continuous-time counterparts η and λ, respectively. The

discrete-time model, however, was restricted by assuming that, at each time

period, the events of being matched and of having an exogenous type change

are mutually exclusive. Without such a restriction, the discrete-time model

would be slightly more complicated than the corresponding continuous-time

model.

1.6 Optimal Search

Continuing in this continuous-time framework, suppose that an agent of type

i collects utility at the rate u(i) whenever of type i, and generates an addi-

tional utility (or expected utility) of w(i, j) when matched to an agent of type

j. The dynamics of type changes are determined by the meeting intensities

of agents and by the parameters η and qijk whose roles are explained in the

previous section. As opposed to the previous section, however, each agent

chooses some search intensity process λ. Search with intensity process λ gen-

erates costs at the rate c(λt) at time t, for some continuous c : [0,∞) → R.

The search intensity process is bounded above by some constant λ. The

agent’s search intensity process λ must be based only on information that

the agent has available. More precisely, the intensity process is assumed to

be predictable with respect to the agent’s information filtration, as defined

in Appendix B.

To simplify, suppose that the agent conjectures that the population cross-

sectional type distribution µ is constant. The agent’s type process associated

with a chosen intensity process λ is denoted φλ.

For a discount rate r > 0, the agent’s lifetime expected discounted utility

is then

U(λ) = E

(

∫ ∞

0

e−rt[u(φλ
t )− c(λt)] dt+

∞
∑

k=1

e−r Tk w(φλ(Tk−), θk)

)

,
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where Tk is the time of the k-th match of that agent to some other agent,

φλ(Tk−) is the type of the agent immediately before any type change occurs

at time Tk, and θk is the type to whom the agent is matched at time Tk.

We are interested in solving the stochastic control problem

sup
λ

U(λ). (1.10)

A search intensity process λ∗ is optimal if it solves this problem, that is, if

U(λ∗) ≥ U(λ) for all λ.

Letting V = (V (1), . . . , V (K)) denote the supremum utilities associated

with the respective types, the Hamilton-Jacobi-Bellman (HJB) equation for

optimal choice of intensity is

0 = sup
ℓ∈ [ 0, λ ]

B(i, V, ℓ), i ∈ {1, . . . , K}, (1.11)

where

B(i, V, ℓ) = −rV (i) + u(i)− c(ℓ) +

K
∑

k=1

ηik(V (k)− V (i))

+ ℓ
K
∑

j=1

µj

[

w(i, j) +
K
∑

k=1

qijk(V (k)− V (i))

]

.

There is a unique V solving the HJB equation (1.11). Fixing a solution V

of the HJB equation, the continuity of B(i, V, ℓ) with respect to ℓ implies that

the supremum defined by (1.11) is attained by some intensity level denoted

by Λ(i). We conjecture that optimality is achieved by an intensity process

that has the outcome Λ(i) whenever the agent is of type i. We let φ∗ denote

a type process for the agent with this property. The corresponding search

intensity process λ∗ is then defined by λ∗
t = Λ(φ∗

t−). We thus conjecture that

λ∗ solves (1.10).

Proposition 1.1 Problem (1.10) is solved by the search intensity process λ∗.
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This result follows from a standard verification argument, as follows. For

an arbitrary search intensity process λ, let φλ be the associated type process

and let

Yt = e−rtV (φλ
t ) +

∫ t

0

e−rs[u(φλ
s )− c(λs)] ds +

∑

{k :Tk≤t}

e−rTkw(φλ
Tk−

, θk).

A calculation shows that a martingale Z is defined by

Zt = Yt −

∫ t

0

e−rsB(φλ
s , V (φλ

s ), λs) ds. (1.12)

To check that Z is indeed a martingale, we let Nt be the number of type

changes the agent has experienced by time t. Proposition B.2 implies that a

martingale N̂ is defined by

N̂t = Nt −

∫ t

0

[

ηϕλ
s ,k

+ λs

∑

j

µjqϕλ
s ,j,k

]

ds.

The fact that Z is a martingale now follows from another application of

Proposition B.2 and the fact that

dZt = dYt − e−rtB(φλ
t , V (φλ

t ), λt) dt = Ht dN̂t,

where H is a bounded process that can be calculated.

From the HJB equation, B(φλ
s , V (φλ

s ), λs) ≤ 0, so Y is a super-martingale.

Thus, for an agent of initial type i, and for any time t,

V (i) = Y0 ≥ E(Yt).

Because e−rtmaxi |V (i)| converges with t to zero, E(Yt) → U(λ), and we

have

V (φλ
0) ≥ U(λ).
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For the particular case of λ = λ∗, the HJB equation (1.11) implies that

B(φ∗
s, V (φ∗

s), λ
∗
s) = 0, so Y is a martingale, and again taking a limit,

V (φ∗
0) = U(λ∗).

Because φ∗
0 = φλ

0 is an arbitrary initial type, U(λ∗) ≥ U(λ), proving optimal-

ity of λ∗, and confirming that V (i) is the optimal utility U(λ∗) of an agent

of initial type i.

1.7 Equilibrium Search Intensities

Continuing in the setting of the previous section, an equilibrium is a cross-

sectional distribution µ of types with the property that, when µ is taken as

given by each agent, the optimal search intensities of agents are in aggre-

gate consistent with µ. In order to formulate this precisely, suppose that

for each cross-sectional type distribution µ, the dependence of an optimal

search intensity policy function Λ( · ), characterized in the last section, on

the assumed cross-sectional distribution µ is indicated by writing Λµ = Λ.

So, an equilibrium can be viewed as a solution µ (in the set ∆K−1 of

non-negative vectors in R
K that sum to one) of the equilibrium equation

0 = (η +Q(Λµ, q, µ))µ. (1.13)

It would be enough for the existence of an equilibrium to have continuity

of the map from a conjectured distribution ν ∈ ∆K−1 to the corresponding

solution µ of the stationary-measure equation

0 = (η +Q(Λν , q, ν))µ. (1.14)

Because ∆K−1 is compact and convex, Schauder’s Theorem would then imply

at least one equilibrium.

The purpose of this section is merely to explain the notion of equilibrium
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search intensities. We do not apply this notion here. An example is the model

of equilibrium search intensities of Duffie, Malamud, and Manso (2009).

Our reliance on the exact law of large numbers for random matching is

evident in the formulation of an agent’s conjectures about the equilibrium

market environment. In the proposed equilibrium, the agent correctly con-

jectures a deterministic distribution µ of types in the population. If µ is

only a limiting approximation of the distribution of types as the number of

agents gets larger and larger, then it could be substantially more difficult

to characterize the agent’s optimal search policy in a particular finite-agent

setting. Moreover, it would not be assured that as the actual cross-sectional

distribution of types converges to the limit distribution µ, the agent’s optimal

policy converges to the optimal policy associated with the limit distribution.

For both of these reasons, the exact law of large numbers drastically simpli-

fies our modeling. This tractability, however, is achieved at a cost in realism.

Real market environments are much more complicated than our simple model

suggests.

1.8 Development of the Search Literature

Historically,1 reliance on the exact law of large numbers for independent

random matching dates back at least to 1908, when G.H. Hardy and W.

Weinberg2 independently proposed that random mating over time in a large

population leads to constant and easily calculated fractions of each allele in

the population. Hardy wrote: “suppose that the numbers are fairly large,

so that the mating may be regarded as random,” and then used, in effect,

an exact law of large numbers for random matching to deduce his results.

Consider, for illustration, a continuum population of gametes consisting of

two alleles, A and B, in initial proportions p and q = 1− p. Then, following

the Hardy-Weinberg approach, the new population would have a fraction p2

1These historical remarks are based in part on Duffie and Sun (2007).
2See Hardy (1908) and Cavalli-Sforza and Bodmer (1971).
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whose parents are both of type A, a fraction q2 whose parents are both of

type B, and a fraction 2pq whose parents are of mixed type (heterozygotes).

These genotypic proportions asserted by Hardy and Weinberg are already,

implicitly, based on the exact law of large numbers for independent random

matching in a large population.

In the field of economics, Hellwig (1976) is the first, to my knowledge,

to have relied on the effect of the exact law of large numbers for random

pairwise matching in a market, in a 1976 study of a monetary exchange

economy. (Diamond (1971) had earlier assumed random matching of a large

population with finitely many employers, but not pairwise matching among

a continuum of agents.)

Since the 1970s, a large economics literature has routinely relied on an

exact law of large numbers for independent random matching in a continuum

population. This implicit use of this result occurs in general equilibrium the-

ory (e.g. Gale (1986a), Gale (1986b), McLennan and Sonnenschein (1991),

Wolinsky (1990)), game theory (e.g. Binmore and Samuelson (1999), Bur-

dzy, Frankel, and Pauzner (2001), Dekel and Scotchmer (1999), Fudenberg

and Levine (1993), Harrington (1998)), monetary theory (e.g. Diamond and

Yellin (1990), Green and Zhou (2002), Hellwig (1976), Kiyotaki and Wright

(1993)), labor economics (e.g. Diamond (1982), Hosios (1990), Mortensen

(1982), Mortensen and Pissarides (1994)), and financial market theory, (e.g.

Duffie, Gârleanu, and Pedersen (2007), Krainer and LeRoy (2002)).

In almost all of this literature, dynamics are crucial. For example, in

the monetary and finance literature cited above, each agent in the economy

solves a dynamic programming problem that is based on the conjectured

dynamics of the cross-sectional distribution of agent types. An equilibrium

has the property that the combined effect of individually optimal dynamic

behavior is consistent with the conjectured population dynamics. In order

to simplify the analysis, much of the literature relies on equilibria with a

stationary distribution of agent types, as in the previous section.
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Chapter 2

A Simple OTC Pricing Model

This chapter, based entirely on Duffie, Gârleanu, and Pedersen (2005) and

Duffie, Gârleanu, and Pedersen (2007), presents a simple introduction to

asset pricing in over-the-counter markets. Investors search for opportunities

to trade and bargain with counterparties, each counterparty being aware that

failure to conduct a trade could lead to a costly new search for a counterparty.

In equilibrium, whenever there is gain from trade, the opportunity to search

for a new counterparty is dominated by trading at the equilibrium asset price.

The asset price reflects the degree of search frictions.

Under conditions, illiquidity premia are higher when counterparties are

harder to find, when sellers have less bargaining power, when the fraction

of qualified owners is smaller, and when risk aversion, volatility, or hedging

demand is larger. Supply shocks cause prices to jump, and then “recover”

over time, with a pattern that depends on the degree of search frictions.

We show how the equilibrium bargaining powers of the counterparties

are determined by search opportunities, using the approach of Rubinstein

and Wolinsky (1985). This approach has an axiomatic foundation based on

Nash bargaining, as shown by Binmore, Rubinstein, and Wolinsky (1986), as

discussed in Appendix C.

Here, traders have the same information. The case of OTC trading

with asymmetric information is considered by Duffie, Malamud, and Manso

19
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(2014).

2.1 Basic OTC Pricing Model

This section introduces a simple model of asset pricing in an over-the-counter

market, with risk-neutral investors. The effects of risk aversion is considered

in Duffie, Gârleanu, and Pedersen (2007).

We fix a non-atomic measure space of investors. Each investor is infinitely

lived, with a constant time-preference rate β > 0 for consumption of a single

non-storable numéraire good. A probability space and a common information

filtration are also fixed. A cumulative consumption process C is one that

can be represented as the difference between an increasing adapted process

and a decreasing adapted process, with Ct denoting the total amount of

consumption that has occurred through time t. The agent is restricted to a

consumption process C whose utility

U(C) = E

(
∫ ∞

0

e−βt dCt

)

is well defined. This allows for positive or negative consumption, “smoothly”

over time, or in sudden “lumps.”

An agent can invest at any time in a liquid security with a risk-free interest

rate of r. As a natural form of credit constraint, the agent must enforce some

lower bound on the liquid wealth process W . (Otherwise, the agent could

borrow without limit and get unbounded utility.) We take r = β in this

baseline model.

Agents may trade a long-lived asset in an over-the-counter (OTC) market

in which trade may be negotiated bilaterally whenever two counterparties are

matched. We begin for simplicity by taking the traded asset to be a consol,

a bond that continually pays one unit of consumption per unit of time. We

later allow random dividend processes in order to examine the effects of risk

aversion.
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An agent has an intrinsic preference for asset ownership that is “high”

or “low.” A low-type agent, when owning the asset, has an asset holding

cost of δ per time unit. A high-type agent has no such holding cost. We

could imagine this holding cost to be a shadow price for ownership due, for

example, to a pressing need for cash or a relatively low personal use for the

asset, as may happen for certain durable consumption goods. When we later

allow for risk aversion, the low-type agent will be one whose endowments are

adversely correlated with the asset dividends.

The agent’s intrinsic type is a Markov chain, switching from low to high

with intensity λu, and back to low with intensity λd. The intrinsic-type

processes of almost every pair of agents are independent. These occasional

preference shocks will generate incentives to trade because, in equilibrium,

low-type owners want to sell and high-type non-owners want to buy.

The per-capita supply s of the asset is initially endowed to a subset of the

agents. As a simplification, investors can hold at most one unit of the asset

and cannot shortsell. This restriction is relaxed by Gârleanu (2009) and by

Lagos and Rocheteau (2009). Because agents have linear utility, it is without

much loss of generality that we restrict attention to equilibria in which, at

any given time and state of the world, an agent holds either 0 or 1 unit of

the asset. The set of K = 4 agent types is then T = {ho, hn, lo, ln}, with

the letters “h” and “l” designating the agent’s current intrinsic preference

state as high or low, respectively, and with “o” or “n” indicating whether

the agent currently owns the asset or not, respectively.

We next consider a continuous-time search and bargaining framework

adapted from Trejos and Wright (1995). We let µσ(t) denote the fraction at

time t of agents of type σ ∈ T , so that

1 = µho(t) + µhn(t) + µlo(t) + µln(t). (2.1)

Equating the per-capita supply s with the fraction of owners gives

s = µho(t) + µlo(t). (2.2)
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Any agent is matched to some counterparty with a constant intensity

of λ, a parameter reflecting the efficiency of the market technology, and

perhaps also reflecting individual inattention to trading. We assume that

the counterparty found is randomly selected from the pool of other agents,

so that the probability that the counterparty is of type σ is µσ(t). Thus,

the total intensity of being matched to a type-σ investor at time t is λµσ(t).

Based on the Stosszollansatz outlined in Chapter 1, hn investors thus meet

lo investors at an aggregate (almost sure) rate of λµlo(t)µhn(t).

In keeping with the modeling convention used in other chapters, we are

departing here from the notion of contact intensity of Duffie, Gârleanu, and

Pedersen (2005) and Duffie, Gârleanu, and Pedersen (2007), which measures

the intensity with which an agent contacts other agents (in a transitive-verb

sense) separately from the intensity with which other agents contact the

agent in question. The total intensity of being matched is the sum of these

two. Thus, the intensity parameter used by Duffie, Gârleanu, and Pedersen

(2005) and Duffie, Gârleanu, and Pedersen (2007) is half of that used here.

To solve the model, we proceed in two steps. First, we exploit the fact that

the only form of encounter that provides gains from trade is one in which low-

type owners meet high-type non-owners. In any equilibrium of the bargaining

game that is played at each such encounter, trade occurs immediately. We

can therefore determine the asset allocations without reference to prices.

Given the time-dynamics of the cross-sectional type distribution µ(t), we

then consider equilibrium asset pricing.

In equilibrium, the rates of change of the fractions of the respective in-

vestor types satisfy the special case of (1.8) given by

µ̇lo(t) = −λµhn(t)µlo(t)− λuµlo(t) + λdµho(t)

µ̇hn(t) = −λµhn(t)µlo(t)− λdµhn(t) + λuµln(t)

µ̇ho(t) = λµhn(t)µlo(t)− λdµho(t) + λuµlo(t) (2.3)

µ̇ln(t) = λµhn(t)µlo(t)− λuµln(t) + λdµhn(t),
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where µ̇(t) denotes the time derivative of µ(t).

The intuition for, say, the first equation in (2.3) is straightforward: When-

ever an lo agent meets an hn investor, he sells his asset and is no longer an

lo agent. This explains the first term on the right-hand side of (2.3). The

second term is due to intrinsic type changes in which lo investors become ho

investors, and the last term is due to intrinsic type changes from ho to lo.

Duffie, Gârleanu, and Pedersen (2005) show that there is a unique stable

stationary solution for {µ(t) : t ≥ 0}, that is, a constant solution defined

by µ̇(t) = 0. The steady state is computed by using (2.1)-(2.2) and the fact

that µlo + µln = λd/(λu + λd) in order to write the first equation in (2.3) as

a quadratic equation in µlo.

Having determined the stationary fractions of investor types, we compute

the investors’ equilibrium intensities of finding counterparties of each type

and, hence, their utilities for remaining lifetime consumption, as well as the

bargained price P . The utility of a particular agent depends on the agent’s

current type, σ(t) ∈ T , and the wealth Wt held in the liquid “bank-account”

asset. Specifically, an agent’s continuation utility is Wt + Vσ(t), where, for

each investor type σ in T , Vσ is a constant to be determined.

In steady state, the Bellman principle implies that the rate of growth of

any agent’s expected indirect utility must be the discount rate r, which yields

the steady-state equations

0 = rVlo − λu(Vho − Vlo)− λµhn(P − Vlo + Vln)− (1− δ)

0 = rVln − λu(Vhn − Vln)

0 = rVho + λd(Vho − Vlo)− 1 (2.4)

0 = rVhn + λd(Vhn − Vln)− λµlo(Vho − Vhn − P ).

2.2 Bargaining over the Price

The asset price is determined through bilateral bargaining. A high-type non-

owner pays at most his reservation value ∆Vh = Vho − Vhn for obtaining the
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asset, while a low-type owner requires a price of at least ∆Vl = Vlo − Vln. In

any equilibrium of the bargaining game, trade must occur at an in-between

price of the form

P = ∆Vl(1− q) + ∆Vh q , (2.5)

where q ∈ [0, 1] is called the “bargaining power” of the seller. Because we

are characterizing stationary equilibrium, we take the bargaining power q to

be constant.

While a Nash equilibrium in the bargaining game is consistent with any

exogenously assumed bargaining power, we can use the device of Rubinstein

and Wolinsky (1985) to calculate the unique bargaining power that repre-

sents the limiting price of a sequence of economies in which, once a pair of

counterparties meets to negotiate, one of the pair is selected at random to

make an offer to the other, at each of a sequence of offer times separated by

intervals that shrink to zero.

Specifically, suppose that when an owner who wishes to sell and a non-

owner who wishes to buy find each other, one of them is chosen randomly,

the seller with probability q̂ and the buyer with probability 1− q̂, to suggest

a trading price. The counterparty either rejects or accepts the offer, immedi-

ately. If the offer is rejected, the owner receives the dividend from the asset

during the current period. At the next period, T later, one of the two agents

is chosen at random, independently, to make a new offer. The bargaining

may, however, break down before a counteroffer is made. A breakdown may

occur because, during the interim, at least one of the agents may change his

intrinsic valuation type, or one of the agents may meet yet another agent

and leave his or her current trading partner. (The opportunity to continue

to search for alternative counterparties while engaged in negotiation will also

be considered below.)

This bargaining setting is a slight extension of our basic model, in that

once a pair of agents meet, they are given the opportunity to interact at

discretely separated moments in time, T apart. Later, we return to our
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original continuous-time framework by letting T go to zero, and adopt the

limiting behavior of their bargaining game as T → 0.

We consider first the case in which agents can search for alternative coun-

terparties during their bargaining encounter. We assume that, given contact

with an alternative partner, they leave the present partner in order to ne-

gotiate with the newly found one. The offerer suggests the price that leaves

the other agent indifferent between accepting and rejecting it. In the unique

subgame perfect equilibrium, the offer is accepted immediately, as shown by

Rubinstein (1982b). The value of rejecting is that associated with the as-

sumption by agents that the equilibrium strategies are to be played from then

onwards. Letting Pσ be the price suggested by the agent of type σ ∈ {lo, hn},

letting P̄ = q̂Plo+(1− q̂)Phn, and making use of the dynamic equations gov-

erning Vlo and Vhn, we have

Phn −∆Vl = e−(r+λd+λu+λµlo+λµhn)T (P̄ −∆Vl) +O(T 2) (2.6)

−Plo +∆Vh = e−(r+λd+λu+λµlo+λµhn)T (−P̄ +∆Vh) +O(T 2) . (2.7)

These prices, Phn and Plo, have the same limit P = limT→0 Phn = limT→0 Plo.

The limit price P and a limit type-dependent value Vσ satisfy

P = ∆Vl (1− q) + ∆Vh q, (2.8)

with

q = q̂. (2.9)

Thus, the limiting bargaining power q = q̂ does not depend on the model

parameters, beyond the likelihood that the seller is chosen to make an offer.

In particular, an agent’s intensity of meeting other trading partners does not

influence q. This is because one’s own ability to meet an alternative trading

partner makes oneself more impatient, and also increases the partner’s risk

of breakdown. These two effects happen to cancel each other.
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Other bargaining procedures lead to other outcomes. For instance, if

agents are unable to search for alternative trading partners during negotia-

tion, then, as shown by Duffie, Gârleanu, and Pedersen (2005),

q =
q̂(r + λu + λd + λµlo)

q̂(r + λu + λd + λµlo) + (1− q̂)(r + λu + λd + λµhn)
. (2.10)

The linear system of equations defined by (2.4)-(2.5) has a unique solu-

tion, with

P =
1

r
−

δ

r

r(1− q) + λd + λµlo(1− q)

r + λd + λµlo(1− q) + λu + λµhnq
. (2.11)

This price (2.11) is the present value 1/r of dividends, reduced by an

illiquidity discount. The discount is larger (other effects held constant) if the

distressed owner has less hope of switching type (lower λu), if the quantity

µhn of other buyers to be found is smaller, if the buyer may more suddenly

need liquidity himself (higher λd), if it is easier for the buyer to find other

sellers (higher µlo), or if the seller has less bargaining power (lower q).

These intuitive results are based on partial derivatives of the right-hand

side of (2.11). In other words, they hold when a parameter changes without

influencing any of the others. It is the case, however, that the steady-state

type fractions µ themselves depend on λd, λu, and λ, an equilibrium effect

that must also be considered. The following proposition offers a characteri-

zation of the equilibrium steady-state effect of changing each parameter.

Proposition 2.1 The steady-state equilibrium price P is decreasing in δ, s,

and λd, and is increasing in λu and q. Further, if s < λu/(λu + λd), then

P → 1/r as λ → ∞, and P is increasing in λ for all λ ≥ λ̄, for a constant

λ̄ depending on the other parameters of the model.

The condition that s < λu/(λu + λd) means that, in steady state, there

is less than one unit of asset per agent of high intrinsic type. Under this

condition, the Walrasian frictionless price is equal to the present value of
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dividends 1/r because the marginal owner is always a high-type agent who

incurs no holding costs. Naturally, as the search intensity increases towards

infinity and frictions vanish, the OTC price approaches the Walrasian price

(that is, the liquidity discount vanishes). The proposition also states that the

price decreases with the ratio s of assets to qualified owners, with reductions

in the mean arrival rate λd of a liquidity shock, and with increases in the

speed at which agents can “recover” by becoming of high type again. It can

easily be seen that if agents can easily recover (that is, as λu → ∞), the price

also approaches the Walrasian price.

While the proposition above captures the intuitively anticipated increase

in market value with increasing search intensity λ, the alternative is also

possible. With s > λu/(λu+λd), the marginal investor in perfect markets has

the relatively lower reservation value, and search frictions lead to a “scarcity

value.” For example, a high-type investor in an illiquid OTC market could

pay more than the Walrasian price for the asset because it is hard to find, and

given no opportunity to exploit the effect of immediate competition among

many sellers. This scarcity value could, for example, contribute to the widely

studied on-the-run premium for Treasuries, or to the elevation of prices of

bonds that are difficult to find for physical settlement of credit derivatives or

futures contracts. Absent search delays, it is difficult to explain these pricing

phenomena.
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Appendix A

Foundations for Random

Matching

This appendix summarizes the results of Duffie, Qiao, and Sun (2014b) pro-

viding for an exact law of large numbers for random matching of a “contin-

uum” of investors in a static setting. The results generalize those suggested

in Chapter 1, based on Duffie and Sun (2007), by allowing for directed search.

A.1 Mathematical Preliminaries

We fix an atomless probability space (I, I, λ) representing the space of agents

and a sample probability space (Ω,F , P ) representing the states of the world,

and we let (I ×Ω, I ⊠ F , λ⊠P ) be a Fubini extension1 of the usual product

probability space. This Fubini extension includes a sufficiently rich collection

1A formal definition of Fubini extension was introduced by (Sun 2006a). A probability
space (I × Ω,W , Q) extending the usual product space (I × Ω, I ⊗ F , λ ⊗ P ) is said
to be a Fubini extension of (I × Ω, I ⊗ F , λ ⊗ P ) if for any real-valued Q-integrable
function g on (I × Ω,W), the functions gi = g(i, · ) and gω = g( · , ω) are integrable
respectively on (Ω,F , P ) for λ-almost all i ∈ I and on (I, I, λ) for P -almost all ω ∈ Ω;
and if, moreover,

∫

Ω
gi dP and

∫

I
gω dλ are integrable, respectively, on (I, I, λ) and on

(Ω,F , P ), with
∫

I×Ω
g dQ =

∫

I

(∫

Ω
gi dP

)

dλ =
∫

Ω

(∫

I
gω dλ

)

dP . To reflect the fact that
the probability space (I × Ω,W , Q) has (I, I, λ) and (Ω,F , P ) as its marginal spaces, as
required by the Fubini property, it is denoted by (I × Ω, I ⊠ F , λ⊠ P ).

29



30 APPENDIX A. FOUNDATIONS FOR RANDOM MATCHING

of measurable sets to allow applications of the exact law of large numbers

that we shall need.

We begin with a static model of directed random matching, and then a

dynamic model that incorporates random changes over time in agents’ types

that are caused by matching and mutation.

A.2 The static model

Let S be a finite or countably infinite agent type space and α : I → S be a

measurable type function, mapping individual agents to their types. For any

k in S, we let pk = λ({i : α(i) = k} denote the fraction of agents that are

of type k. We can view (pk)k∈S as an element of the space ∆ of probability

measures on S.

A function θ : S × S → R+ is a matching rate function for the type

distribution p if θkl = θlk for any k and l in S, and if
∑

l∈S plθkl ≤ 1 for each

k ∈ S. The matching rate θkl specifies the “per-capita” rate of matching of

agents of type k with agents of type l, in the sense that qkl = plθkl is the

probability that a given agent of type k is matched to an agent of type l.

Thus, qk = 1−
∑

l∈S plθkl is the associated probability of no matching for an

agent of type k.

A mapping π from (I × Ω, I ⊠ F , λ⊠ P ) to I is defined to be a random

matching if it satisfies the two conditions:

(i) For each ω ∈ Ω, πω is a bijection between I and itself. Letting Bω =

{i ∈ I : πω(i) = i} denote the agents that not matched by πω to a

distinct agent, the restriction of πω to I\Bω is one-to-one and satisfies

πω(πω(i)) = i.

(ii) Letting J denote the event of no matching, an I ⊠F -measurable type
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assignment function g for π is defined by

g(i, ω) =







α(π(i, ω)), i /∈ Bω

J, i ∈ Bω.

We say that a random matching π with type assignment function g has

parameters (p, θ) if, for λ-almost every agent i ∈ I of type k, we have P (gi =

J) = qk and P (gi = l) = qkl, where gi denotes the random variable g(i, · ).

The following is a direct application of the exact law of large numbers.

We say that π is pairwise independent in types if its type assignment function

g is essentially pairwise independent.2

Proposition 1 Let π be a random matching with type assignment function

g and parameters (p, θ). If π is pairwise independent in types then, for P -

almost every ω ∈ Ω:

(i) λ({i ∈ I : α(i) = k, gω(i) = J}) = pkqk.

(ii) For any (k, l) ∈ S2, λ({i : α(i) = k, gω(i) = l}) = pkqkl = pkθklpl.

Proposition 2 For any type distribution p on S and any matching rate

function θ for p, there exists a random matching π with parameters (p, θ)

that is essentially pairwise independent in types.

A.3 Dynamic directed random matching

In this section, we consider a dynamical system with random mutation, ran-

dom matching with directed probabilities, and match-induced random type

2An I ⊠F -measurable process f from I ×Ω to a complete separable metric space X is
said to be essentially pairwise independent if for λ-almost all i ∈ I, the random variables
fi and fj are independent for λ-almost all j ∈ I. Two random variables φ and ψ from
(Ω,F , P ) to X are said to be independent if the σ-algebras σ(φ) and σ(ψ) generated
respectively by φ and ψ are independent.
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changes. We also allow for time-dependent parameters. We first define such

a dynamical system. Then we formulate the key property of being Markovian

and conditional independence in types. We then state a result providing for

the existence and an exact law of large numbers for such a dynamical sys-

tem. For time-independent parameters and with finitely many types, we also

characterize stationarity.

A.3.1 Definitions for dynamic random matching

Here, we define a discrete-time random process for agent types with the

property that at each integer time period n ≥ 1, agents first experience a

random mutation and then a random matching with directed probability.

Finally, any pair of matched agents are randomly assigned new types whose

probabilities depend on the prior types of the two agents in a manner to be

defined.

A random type function is a measurable mapping from (I×Ω, I ⊠ F , λ⊠

P ) to S. The initial random type function α0 is assumed to be essentially

pairwise independent with a cross-sectional type distribution p0 defined by

p0k = λ({i : α0
i = k}).

We will characterize a dynamical system with, at each period n, a random

type function hn, assigning to agent i the type hn
i after mutation but before

matching. At period n after matching, the types of agents are likewise spec-

ified by a random type function αn. A key objective is to show the existence

and properties of a random type process (h, α) = {(h1, α1), (h2, α2), . . .} that

respects specified properties and parameters for mutation, directed random

matching, and match-induced random type change.

At period n, before random matching, any agent of type k mutates so as

to become an agent of type l with some specified probability bnkl, where for

each k, (bnk1, b
n
k2, . . .) is in ∆. We thus require that for λ almost-every agent

i,

P (hn
i = l |αn−1

i = k) = bnkl. (A.1)
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For n ≥ 1 and for each (k, l) ∈ S2, let θnkl be a continuous function on ∆

into R+ with the property that, for all k and all p in ∆,

∑

l∈S

θnkl(p)pl ≤ 1.

An agent of type k is matched at period n to an agent with type l at the per-

capita matching rate θnkl(p̂
n), where p̂n is the type distribution of hn, defined

by p̂nk = λ({i : hn
i = k}).

When an agent of type k is matched at time n to an agent of type l, the

agent of type k becomes an agent of type r with a specified probability νn
kl(r).

The parameters of the model are (p0, b, θ, ν).

At each period n, agents are to be matched according to a random match-

ing πn with a type assignment function gn that respects the property that

for every type k and λ-almost every agent i,

P (gni = l | hn
i = k) = q̂nkl , θnkl(p̂

n)p̂nl , (A.2)

and

P (gni = J | hn
i = k) = q̂nk = 1−

∞
∑

l=1

q̂nkl. (A.3)

We also require that the type function αn
i after match-induced type

changes satisfies, for λ-almost all agent i ∈ I,

P (αn
i = r | hn

i = k, gni = J) = δk(r) (A.4)

and

P (αn
i = r | hn

i = k, gni = l) = νn
kl(r), (A.5)

where δk(r) is one if r = k, and zero otherwise.

For any given model parameters (p0, b, θ, ν), by induction in the period n,
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we will rely on Duffie, Qiao, and Sun (2014b) for the existence of (h, α, π, g),

determining agent types with random mutation, random matching with di-

rected probability, and match-induced type changing, respecting the defini-

tional transition probabilities (A.1)-(A.4)-(A.5) and matching probabilities

(A.2). In this case, we say that D = (h, α, π, g) is a dynamical system with

parameters (p0, b, θ, ν). Under the assumption that random mutation, match-

ing, and match-induced type changes are essentially pairwise independent,

an application of the exact law of large numbers implies that the cross sec-

tional type distributions are almost surely deterministic, a property that is

frequently used in applications.

A.3.2 Markov conditional independence in types

In this section we define Markovian and cross-sectional independence prop-

erties for a dynamical system D = (h, α, π, g). The idea of the property is

that each agent’s type process is Markovian and, moreover, that the random

mutation, random matching, and match-induced type changes that occur in

any period n are probabilistically independent across almost all agents.

We say that D has random mutation that is Markovian and conditionally

independent in types if, for λ-almost all i ∈ I and λ-almost all j ∈ I,

P (hn
i = k, hn

j = l |α0
i , . . . , α

n−1
i ;α0

j , . . . , α
n−1
j ) = P (hn

i = k |αn−1
i )P (hn

j = l |αn−1
l ),

for every period n and for all types k and l in S.

We say that D has random matching that is Markovian and conditionally

independent in types if, for λ-almost all i ∈ I and λ-almost all j ∈ I,

P (gni = c, gnj = d |α0
i , . . . , α

n−1
i , hn

i ;α
0
j , . . . , α

n−1
j , hn

j ) = P (gni = c | hn
i )P (gnj = d | hn

j )

for every period n and for all c and d in S ∪ {J}.

We say that D has match-induced random type change that is Markovian

and conditionally independent in types if for λ-almost all i ∈ I, and λ-almost



A.3. DYNAMIC DIRECTED RANDOM MATCHING 35

all j ∈ I,

P (αn
i = c, αn

j = d |α0
i , . . . , α

n−1
i , hn

i , g
n
i ;α

0
j , . . . , α

n−1
j , hn

j , g
n
j ) = P (αn

i = c | hn
i , g

n
i )P (αn

j = d | hn
j , g

n
j )

for every period n and for all k and l in S.

Finally, we say that D is Markovian and conditionally independent in

types if its random mutation, random matching, and match-induced type

change is Markovian and independent in types.

Our main result, from Duffie, Qiao, and Sun (2014b), is the following.

Proposition 3 For any parameters (p0, b, θ, ν), there exists a dynamical sys-

tem D = (h, α, π, g) with these parameters that is Markovian and condition-

ally independent in types.

A.3.3 Exact law of large numbers and stationarity

We now define a sequence Γn of mappings from ∆ to ∆ such that, for each

p = (p1, . . . , pk, . . . ) in ∆,

Γn
r (p1, . . . , pk, . . . ) = q̃nr

∞
∑

l=1

plb
n
lr +

∞
∑

k,l=1

q̃nklν
n
kl(r)p̃k,

where p̃k =
∑∞

k=1 plb
n
lk, q̃

n
kl = θnkl(p̃)p̃l and q̃nk = 1−

∑∞
l=1 q̃

n
kl.

The following proposition from Duffie, Qiao, and Sun (2014b) provides

an exact law of large numbers for agent type processes allowing for random

mutation, random matching with directed probability, and match-induced

random type changing that is Markov conditionally independent in types.

The proposition also gives a recursive calculation of the the cross-sectional

type distribution pn.

Proposition 4 If D = (h, α, π, g) is a dynamical system with parameters

(p0, b, θ, ν) that is Markovian and conditionally independent in types, then:



36 APPENDIX A. FOUNDATIONS FOR RANDOM MATCHING

(1) For each time n ≥ 1, the expectation p̄n = E(pn) of the cross-sectional

type distribution is given by

p̄nr = Γn
r (p̄

n−1) = q̃nr

∞
∑

l=1

p̄n−1
l bnlr +

∞
∑

k,l=1

q̃nklν
n
kl(r)p̃

n
k ,

where p̃nk =
∑∞

l=1 b
n
lkp̄

n−1
l , q̃nkl = θnkl(p̃

n)p̃nl and q̃nk = 1−
∑K

l=1 q̃
n
kl.

(2) For λ-almost all i ∈ I, {αn
i }

∞
n=0 is a Markov chain with transition

matrix zn at time n− 1 defined by

znkl = qnl b
n
kl +

∞
∑

r,j=1

νn
rj(l)b

n
krq

n
rj.

(3) For λ-almost all i ∈ I and λ-almost all j ∈ I, the Markov chains

{αn
i }

∞
n=0 and {αn

j }
∞
n=0 are independent.

(4) For P-almost all ω ∈ Ω, at each time period n ≥ 1, the realized cross-

sectional type distribution after random mutation λ(hn
ω)

−1 is p̃n and

the realized cross-sectional type distribution at the end of the period n,

pn(ω) = λ(αn
ω)

−1, is equal to its expectation p̄n.
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Counting Processes

This appendix reviews intensity-based models of counting processes. Brémaud

(1981) is a standard source.

All properties below are with respect to a probability space (Ω,F ,P) and

a given filtration {Ft : t ≥ 0} satisfying the usual conditions unless otherwise

indicated. We say that some X : Ω× [0,∞) → R is adapted if, for each time

t, the function X( · , t) : Ω → R, also denoted Xt or X(t), is Ft-measurable.

For market applications, Ft corresponds to the information held by a given

set of agents at time t. To say that a process X is adapted can be interpreted

as a statement that Xt is observable at time t, or could be chosen by agents

at time t, on the basis of the information represented by Ft.

A process Y is predictable if Y : Ω× [0,∞) → R is measurable with re-

spect to the σ-algebra on Ω×[0,∞) generated by the set of all left-continuous

adapted processes. The idea is that one can “foretell” Yt based on all of the

information available up to, but not including, time t. Of course, any left-

continuous adapted process is predictable, as is, in particular, any continuous

process.

A counting process N is defined via an increasing sequence {T0, T1, . . .} of

random variables valued in [0,∞], with T0 = 0 and with Tn < Tn+1 whenever

37
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Tn < ∞, according to

Nt = n, t ∈ [Tn, Tn+1), (B.1)

where we define Nt = +∞ if t ≥ limn Tn. We may treat Tn as the n-th

jump time of N , and Nt as the number of jumps that have occurred up to

and including time t. The counting process is nonexplosive if limTn = +∞

almost surely.

Definitions of “intensity” vary slightly from place to place. One may

refer to Section II.3 of Brémaud (1981), in particular Theorems T8 and T9,

to compare other definitions of intensity with the following. Let λ be a

nonnegative predictable process such that, for all t, we have
∫ t

0
λs ds < ∞

almost surely. Then a nonexplosive adapted counting process N has λ as its

intensity if {Nt −
∫ t

0
λs ds : t ≥ 0} is a local martingale.

From Brémaud’s Theorem T12, without an important loss of generality

for our purposes, we can require an intensity to be predictable, as above, and

we can treat an intensity as essentially unique, in that: If λ and λ̃ are both

intensities for N , as defined above, then

∫ ∞

0

|λs − λ̃s|λs ds = 0 a.s. (B.2)

We note that if λ is strictly positive, then (B.2) implies that λ = λ̃ almost

everywhere.

We can get rid of the annoying “localness” of the above local-martingale

characterization of intensity under the following technical condition, which

can be verified from Theorems T8 and T9 of Brémaud (1981).

Proposition B.1 Suppose that N is an adapted counting process and λ is a

nonnegative predictable process such that, for all t, E(
∫ t

0
λs ds) < ∞. Then

the following are equivalent:

(i) N is nonexplosive and λ is the intensity of N .
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(ii) {Nt −
∫ t

0
λs ds : t ≥ 0} is a martingale.

Proposition B.2 Suppose that N is a nonexplosive adapted counting pro-

cess with intensity λ, with
∫ t

0
λs ds < ∞ almost surely for all t. Let M be

defined by Mt = Nt −
∫ t

0
λs ds. Then, for any predictable process H such

that
∫ t

0
|Hs|λs ds is finite almost surely for all t, a local martingale Y is well

defined by

Yt =

∫ t

0

Hs dMs =

∫ t

0

Hs dNs −

∫ t

0

Hsλs ds.

If, moreover, E
[

∫ t

0
|Hs|λs ds

]

< ∞ for all t, then Y is a martingale.

In order to define a Poisson process, we first recall that a random variable

K with outcomes {0, 1, 2, . . .} has the Poisson distribution with parameter β

if

P(K = k) = e−β β
k

k!
,

noting that 0! = 1. A Poisson process is an adapted nonexplosive counting

process N with deterministic intensity λ such that
∫ t

0
λs ds is finite almost

surely for all t, with the property that, for all t and s > t, conditional on Ft,

the random variable Ns − Nt has the Poisson distribution with parameter
∫ s

t
λu du. (See Brémaud (1981), page 22.)
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Appendix C

Essentials of Bargaining Theory

This appendix explains some basic concepts of bargaining games due to Nash

(1950), Rubinstein (1982a), and Binmore, Rubinstein, and Wolinsky (1986).

Two players, 1 and 2, will bargain over some outcome in

X = {(x1, x2) ∈ R
2
+ : x1 + x2 ≤ 1}.

Player i has a utility ui(x) for outcome x, where ui : X → R is continuous,

concave, and strictly increasing in xi and does not depend on xj for j 6= i.

Failure to agree, a “breakdown,” results in a specified outcome b in X . We

suppose that there exists some x in X with ui(x) > ui(b) for both i = 1 and

i = 2. That is, there is a feasible outcome that both players prefer to a break-

down. The objective is to model how an outcome in X is determined through

bargaining between the two players. This setup is adaptable, via changes of

variables and minor modifications, to bargaining over other outcomes than

the choice depicted here, which amounts to “splitting a pie.”

Rubinstein (1982a) suggested the following dynamic bargaining protocol,

a particular alternating-offers extensive form game that is played in steps.

Bargaining begins with Step 1. For each positive integer k > 1, there is a

potential to reach bargaining Step k. If and when Step k ≥ 1 is reached, the

following sequence occurs.

41
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1. An offer xk ∈ X is made. If k is odd, Player 1 makes the offer. If k is

even, Player 2 makes the offer. Random offers are permitted.1

2. The counterparty to the offer accepts or rejects the offer. If the coun-

terparty accepts, xk is the outcome of the game and play ceases. The

agreement decision is also permitted to be random.2

3. If the counterparty does not accept, the agents observe an independent

Bernoulli trial Zk with outcomes B (for “breakdown”), which occurs

with probability η > 0, and A (for “advance”), which occurs with

probability 1− η.

4. In the event of breakdown (that is, Zk = B), bargaining ceases and

the outcome of the game is b. In the event that Zk = A, Step k + 1 is

reached.

Without loss of generality, the offer xk at Step k is determined by some

measurable fk : Xk−1 × [0, 1] → R, evaluated at the prior rejected offers

x1, . . . , xk−1 and (for randomization purposes) an independent random vari-

ableWk that is uniformly distributed on [0, 1].That is, xk = fk(x1, . . . , xk−1,Wk).

The decision to accept or not at Step k is similarly determined by some mea-

surable gk : Xk × [0, 1] → {A,B}, evaluated at the prior and current offers

x1, . . . , xk and (for randomization purposes) an independent random variable

Yk that is uniform [0, 1].

A strategy σ1 for Player 1 is a sequence (f1, g2, f3, g4, . . .) of such functions.

A strategy σ2 for Player 2 is likewise a sequence of such functions of the form

(g1, f2, g3, f4, . . .).

Because there is a strictly positive probability η of a breakdown after each

rejection of an offer, the game is completed in finitely many steps almost

1For this purpose, the offer can depend (measurably) on Wk, where Wk is revealed at
the beginning of Step k, and where W1,W2, . . . is iid and uniformly distributed on [0, 1].

2Again, the randomness can be based similarly on some iid sequence of uniformly
distributed Y1, Y2, . . ., independent of the sequence W1,W2, . . ..
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surely. For a given pair σ = (σ1, σ2), of strategies, at the completion of

the game the players obtain the random outcome J(σ) determined by these

strategies and the random draws (W1, Y1, Z1), (W2, Y2, Z2), . . ., in the manner

described above.

A Nash equilibrium is a pair σ∗ = (σ∗
1, σ

∗
2) of strategies with the property

that for each i, the strategy σ∗
i solves

max
σi

E[ui(J(σi, σ
∗
−i))],

where (σi, σ
∗
−i) refers to the strategy pair consisting of σi for Player i and σ∗

−i

for the counterparty.

There can in general be multiple Nash equilibrium, some of which are

not intuitively natural. In order to isolate a natural equilibrium, we restrict

attention to a perfect equilibrium, which is a Nash equilibrium whose strate-

gies are optimal for each player given the other player’s strategy, not only at

time 0 but also at each Step k, given the information that the players have

received by that step. Specifically, a Nash equilibrium (σ∗
1 , σ

∗
2) is a perfect

equilibrium if there does not exist some step number k, some player i, some

strategy σi for Player i, and some event Ck of strictly positive probability

that is measurable with respect to the information available3 to player i at

Step k with the property that

E[ui(J(σi, σ
∗
−i)) |Ck] > E[ui(J(σ

∗
i , σ

∗
−i)) |Ck].

Given the strict monotonicity of ui(x) with respect to xi, an outcome x

is Pareto efficient if x1 + x2 = 1.

Proposition C.1 [Rubinstein (1982)] There exist unique Pareto efficient

3That is, if Player i is making an offer at Step k, then Ck is in the σ-algebra generated
by {(f1, g1, Z1), . . . , (fk−1, gk−1, Zk−1)}, and if Player i is receiving an offer at Step k, then
Ck is in the σ-algebra generated by {(f1, g1, Z1), . . . , (fk−1, gk−1, Zk−1), fk}. If the event
Ck includes a prior breakdown, the strict inequality shown could never be achieved given
that the associated outcome is b for any strategy.
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outcomes x∗ and y∗ with the property that

u1(y
∗) = (1− η)u1(x

∗) + ηu1(b)

and

u2(x
∗) = (1− η)u2(y

∗) + ηu2(b).

There exists a unique perfect equilibrium. For this equilibrium:

• At any odd step, Player 1 offers x∗ and Player 2 rejects any offer strictly

inferior to x∗.

• At any even step, Player 2 offers y∗ and Player 1 rejects any offer

strictly inferior to y∗.

Thus, the game is completed at Step 1 when Player 1 offers x∗ and Player 2

accepts this offer.

This perfect equilibrium of the bargaining game has been shown by Bin-

more, Rubinstein, and Wolinsky (1986) to be closely related to the axiomatic

solution of Nash (1950), who proposed axioms under which the outcome xN

is the solution of the problem

max
x∈X

[u1(x)− u1(b)][u2(x)− u2(b)].

Proposition C.2 [Binmore, Rubinstein, and Wolinsky (1986)] As the

probability η of a single-step breakdown converges to zero, the unique perfect-

equilibrium outcomes x∗
η and y∗η proposed by Players 1 and 2, respectively,

both converge to the Nash solution xN .

For large η, Player 1 has a bargaining advantage, in that if Player 2

rejects the offer of Player 1, the lower-utility breakdown outcome is a serious

threat. The fact that both x∗
η and y∗η converge to the Nash solution xN as the
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breakdown probability becomes small implies that the relative advantage of

being Player 1 (the first to offer) is increasingly unimportant.

For completeness, we re-state the axioms of Nash (1950), as follows. A

bargaining problem consists of a pair (U, d), where

U = {(u1(x), u2(x)) : x ∈ X}

is the set of feasible utilities and d = (d1, d2) = (u1(b), u2(b)) is the pair of

breakdown utilities. Without loss of generality, we suppose that b = 0. We

can relax our earlier utility assumptions a bit, and require only that U is

compact and convex. We maintain the assumption that there exists v in U

with vi > di.

The set of bargaining problems is denoted B. A bargaining solution is a

function F : B → U . We denote Fi(U, d) = [F (U, d)]i. Consider the following

axioms for a bargaining solution F .

1. Pareto efficiency. For any (U, d), there is no v in U with v1 > F1(U, d)

and v2 > F2(U, d).

2. Symmetry. Suppose that (U, d) has d1 = d2 and satisfies (v2, v1) ∈ U

whenever (v1, v2) ∈ U . Then F1(U, d) = F2(U, d).

3. Invariance to equivalent utility representations. For a given

(U, d), let (U ′, d′) be given, for some scalars αi > 0 and βi, by the

transformations d′i = αidi + βi and

U ′ = {(α1u1 + β1, α2u2 + β2) : u ∈ U}.

Then Fi(U
′, d′) = αiF (U, d) + βi.

4. Independence of irrelevant alternatives. Given a bargaining game

(U, d) and some U ′ ⊂ U , suppose that F (U, d) ∈ U ′. Then F (U ′, d) =

F (U, d).
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Proposition C.3 [Nash (1950)] There exists a unique bargaining solution

F satisfying Axioms 1 through 4. For any bargaining problem (U, d), the

outcome F (U, d) of this bargaining solution is the Nash solution, that solving

max
v∈U

[v1 − d1][v2 − d2].

Various alternatives or re-characterizations of the Nash axioms have been

proposed, for example by Lensberg (1988). Network-based characteriza-

tions of the connection between alternating-offers extensive-form bargaining

games and axiomatic solutions of bargaining problems have been developed

by Navarro and Perea (2013), Stole and Zwiebel (1996), Duffie and Wang

(2014), and de Fontenay and Gans (2013).
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Brémaud, P., 1981, Point Processes and Queues: Martingale Dynamics. New

York: Springer-Verlag.

Burdzy, K., D. M. Frankel, and A. Pauzner, 2001, “Fast Equilibrium Selec-

tion by Rational Players Living in a Changing World,” Econometrica,

69, 163–189.

Cavalli-Sforza, L. L., and W. F. Bodmer, 1971, The Genetics of Human

Population. Freeman, San Francisco.

de Fontenay, C., and J. S. Gans, 2013, “Bilateral Bargaining with Externali-

ties,” working paper, Melbourne Business School Discussion Paper No.

2004-32.

Dekel, E., and S. Scotchmer, 1999, “On the Evolution of Attitudes towards

Risk in Winner-Take-All Games,” Journal of Economic Theory, 87,

125–143.

Diamond, P., 1971, “A Model of Price Adjustment,” Journal of Economic

Theory, 3, 156–168.

47



48 BIBLIOGRAPHY

, 1982, “Aggregate Demand Management in Search Equilibrium,”

Journal of Political Economy, 90, 881–894.

Diamond, P., and J. Yellin, 1990, “Inventories and Money Holdings in a

Search Economy,” Econometrica, 58, 929–950.
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