
PLQ Modeling and Optimization
with applications to machine learning, system identification, and

Kalman Smoothing

James V. Burke
University of Washington

jvburke@uw.edu

Aleksandr Y. Aravkin Gianluigi Pillonetto
Numerical Analysis and Optimization Department of Information Engineering

IBM T.J. Watson Research Center University of Padova
saravkin@us.ibm.com giapi@dei.unipd.it

Vancouver Workshop and Michael Overton Fest 2013

Outline

Piecewise linear quadratic penalties
Examples and formulations
Dual representation
Representation calculus
Quadratic support functions

Building a general interior point solver for the PLQ class
KKT system and IP strategy
Exploiting structure
Performance on simple problems

Kalman smoothing
Brief introduction
PLQ formulation and efficiency
Numerical results

2 / 21

PLQ Examples

−κ +κ −ε +ε

-1 1 −ε +ε

3 / 21

PLQ Examples

−κ +κ −ε +ε

-1 1 −ε +ε

3 / 21

PLQ Examples

−κ +κ −ε +ε

-1 1 −ε +ε
3 / 21

PLQ penalties in practice

Application Objective PLQs

Regression ‖Ax − b‖2 L2

Robust regression ρH (Ax − b) Huber

Quantile regression Q(Ax − b) Asymmetrical L1

Lasso ‖Ax − b‖2 + λ‖x‖1 L2 + L1

Robust lasso ρH (Ax − b) + λ‖x‖1 Huber + L1

SVM 1
2‖w‖

2 + H (1−Ax) L1 + hinge loss

SVR ρV (Ax − b) Vapnik loss

Kalman smoother ‖Gx − w‖2
Q−1 + ‖Hx − z‖2

R−1 L2 + L2

Robust trend smoothing ‖Gx − w‖1 + ρH (Hx − z) L1 + Huber
4 / 21

Dual representation of PLQs

1
2x2 = sup

u∈R
〈u, x〉 − 1

2u2

Q0.8(x) = sup
u∈[−0.8,0.2]

〈u, x〉

−κ +κ ρh(x) = sup
u∈[−κ,κ]

〈u, x〉 − 1
2u2

5 / 21

Dual representation of PLQs II

−0.5 0.5 H (x) = sup
u∈[0,1]

〈u, x〉

ε ε+ κ ρs(x) = sup
u∈[0,κ]

〈u, x − ε〉 − 1
2u2

−ε +ε ρv(x) = sup
u∈[0,1]2

{〈[
y − ε
−y − ε

]
, u
〉}

6 / 21

PLQ Penalties

Definition: Piecewise Linear Quadratic Penalties (Rockafellar and Wets)

Define ρ(U ,M , b,B; ·) : Rn → R as

ρ(U , b,B,M ; y) = sup
u∈U

{
〈u, b + By〉 − 1

2 〈u,Mu〉
}

1 M ∈ Rm×m is a symmetric positive semidefinite matrix.
2 b + By is an injective affine transformation with B ∈ Rm×n.
3 U ⊂ Rm is a nonempty polyhedral set containing the origin.

Since U is polyhedral, it can be represented with a matrix and a vector:

U = {u : Cu ≤ c} .

Fully represented PLQ object is given by

ρ(c,C , b,B,M ; y) = sup
Cu≤c

{
〈u, b + By〉 − 1

2 〈u,Mu〉
}

7 / 21

PLQ Penalties

Definition: Piecewise Linear Quadratic Penalties (Rockafellar and Wets)

Define ρ(U ,M , b,B; ·) : Rn → R as

ρ(U , b,B,M ; y) = sup
u∈U

{
〈u, b + By〉 − 1

2 〈u,Mu〉
}

1 M ∈ Rm×m is a symmetric positive semidefinite matrix.
2 b + By is an injective affine transformation with B ∈ Rm×n.
3 U ⊂ Rm is a nonempty polyhedral set containing the origin.
Since U is polyhedral, it can be represented with a matrix and a vector:

U = {u : Cu ≤ c} .

Fully represented PLQ object is given by

ρ(c,C , b,B,M ; y) = sup
Cu≤c

{
〈u, b + By〉 − 1

2 〈u,Mu〉
}

7 / 21

PLQ Calculus I: Addition

Given two PLQ penalties

ρ(c1,C1,B1, b1,M1; y) and ρ(c2,C2,B2, b2,M2; y)

their sum is also a PLQ penalty ρ(c,C ,B, b,M ; y) with

c =
[

c1
c2

]
, C =

[
C1 0
0 C2

]
, b =

[
b1
b2

]
, B =

[
B1
B2

]
, M =

[
M1 0
0 M2

]
,

Vapnik:

(y − ε)+ := sup
u∈[0,1]

〈u, y − ε〉 , B1 = 1, b1 = −ε

(−y − ε)+ := sup
u∈[0,1]

〈u,−y − ε〉 , B2 = −1, b2 = −ε

ρv(x) = sup
u∈[0,1]2

{〈[
y − ε
−y − ε

]
, u
〉}

, B =
[

1
−1

]
, b =

[
−ε
−ε

]

8 / 21

PLQ Calculus II: Affine composition

Given a PLQ penalty ρ(c,C , b,B,M ; y), consider ρ(Px − p).

For example, given the penalty ‖ · ‖2, consider ‖Px − p‖2.

ρ(c,C , b,B,M ; Px − p) = sup
Cu≤c

{
〈u, b + B(Px − p)〉 − 1

2 〈u,Mu〉
}

The composite penalty is ρ(c,C , b̃, B̃,M ; y), where

b̃ = b − Bp, B̃ = BP .

Bottom line: PLQ penalties are closed under addition and affine
composition, and have a straightforward representation calculus.

9 / 21

Quadratic Support Functions

ρ(U , b,B,M ; y) = sup
u∈U

{
〈u, b + By〉 − 1

2 〈u,Mu〉
}

Relax the assumption that U is polyhedral, and let U be an arbitrary
closed convex set containing the origin.

This class contains
All PLQ penalties (obviously).
Support functions (let M = 0) to all convex sets containing the origin. In
particular, we get all norms and gauges.
If M = LLT with rank(L) = k,

ρ(U , 0, I ,M ; y) = inf
s∈Rk

[1
2‖s‖

2
2 + γ (y − Ls |U ◦)

]
.

If M−1 exists,

ρ(U , 0, I ,M ; y) = 1
2‖PM (M−1y|U)‖2

M +
〈
M−1y − PM (M−1y|U), PM (M−1y|U)

〉
M
.

ρ is the negative log-likelihood of a density with known mean and variance if

[BT cone(U)]◦ = {0} .

10 / 21

Quadratic Support Functions

ρ(U , b,B,M ; y) = sup
u∈U

{
〈u, b + By〉 − 1

2 〈u,Mu〉
}

Relax the assumption that U is polyhedral, and let U be an arbitrary
closed convex set containing the origin.
This class contains

All PLQ penalties (obviously).
Support functions (let M = 0) to all convex sets containing the origin. In
particular, we get all norms and gauges.
If M = LLT with rank(L) = k,

ρ(U , 0, I ,M ; y) = inf
s∈Rk

[1
2‖s‖

2
2 + γ (y − Ls |U ◦)

]
.

If M−1 exists,

ρ(U , 0, I ,M ; y) = 1
2‖PM (M−1y|U)‖2

M +
〈
M−1y − PM (M−1y|U), PM (M−1y|U)

〉
M
.

ρ is the negative log-likelihood of a density with known mean and variance if

[BT cone(U)]◦ = {0} .

10 / 21

Generalized Huber and Vapnik loss functions

Generalized Huber
Given covariance matrix V , take M = V−1, and U = κBM :

ρ(y) =
{

1
2‖y‖

2
M , if ‖y‖M ≤ κ

κ‖y‖M − κ2

2 , if ‖y‖M > κ .

Generalized Vapnik
K ⊂ Rn be a non-empty symmetric convex cone (K◦ = −K).
w <K v ⇐⇒ v − w ∈ intr(K).
Set

U = (B◦∩K)×(B◦∩K◦), M =
[
0 0
0 0

]
, b = −

(
v
w

)
, and B =

[
I
I

]
.

Then
ρ(y) = dist (y | [w, v]K) ,

where [w, v]K is the order interval {y |w ≤K y ≤K v }.
Taking ‖ · ‖ = ‖ · ‖1, K = Rn

+, and v = ε1=-w, returns the multivariate
Vapnik loss function

11 / 21

PLQ Optimization

Consider now the minimization problem

min
y
ρ(c,C , b,B,M ; y) s.t. Ay ≤ a.

Introduce slack variables s and r :

Cu + s = c, Ay + r = a .

Let q,w be dual variables corresponding to these constraints.

The
KKT system is given by

0 = BTu + ATw
0 = By −Mu − C Tq + b
0 = Cu + s − c
0 = Ay + r − a
0 = qisi ∀i , q, s ≥ 0
0 = wiri ∀i , w, r ≥ 0 .

We have an interior point toolbox to work directly with such KKT
systems available through github/saravkin/ipSolver.

12 / 21

PLQ Optimization

Consider now the minimization problem

min
y
ρ(c,C , b,B,M ; y) s.t. Ay ≤ a.

Introduce slack variables s and r :

Cu + s = c, Ay + r = a .

Let q,w be dual variables corresponding to these constraints. The
KKT system is given by

0 = BTu + ATw
0 = By −Mu − C Tq + b
0 = Cu + s − c
0 = Ay + r − a
0 = qisi ∀i , q, s ≥ 0
0 = wiri ∀i , w, r ≥ 0 .

We have an interior point toolbox to work directly with such KKT
systems available through github/saravkin/ipSolver.

12 / 21

Code and performance

We compared the IP approach with ADMM for a small set of test
problems. We used Stephen Boyd’s Lasso implementation, and wrote
code for the other examples following this template.

Problem AD Iter AD Inner IP Iter tAD (s) tIP (s) ObjDiff
Lasso

A : 1500× 5000 15 — 18 2.0 58.3 0.0025
SVM

κ(A) = 7.7× 1010

A : 32561× 123 653 — 77 41.2 23.9 0.17
Huber Lasso

ADMM/ADMM
κ(A) = 5.8; A : 1000× 2000 26 100 20 14.1 10.5 0.00006
κ(A) = 1330; A : 1000× 2000 27 100 24 40.0 13.0 0.0018

ADMM/L-BFGS
κ(A) = 5.8; A : 1000× 2000 18 — 20 2.8 10.3 1.02
κ(A) = 1330; A : 1000× 2000 22 — 24 21.2 13.1 1.24

L1 Lasso
ADMM/ADMM

κ(A) = 2.2; A : 500× 2000 104 100 29 57.4 5.9 0.06
κ(A) = 1416; A : 500× 2000 112 100 29 81.4 5.6 0.21

13 / 21

PLQ Kalman Smoothing

Graphical Overview of Dynamic Systems

Goal: to obtain estimates on states {xk} given measurements {zk}
State evolution models xk = gk(xk−1) + wk .
Initialization: x1 = x0 + w1.
Measurement model: zk = hk(xk) + vk

X0

Z1 Z2

XN

ZN

hN

X1

h1

X2g1 g2

h2

gN States

Measurements

14 / 21

PLQ Smoothers

X0

Z1 Z2

XN

ZN

hN

X1

h1

X2g1 g2

h2

gN

We consider the entire class of PLQ smoothers
[
µ = g(x)− w
z = h(x) + v

]
,

where both w and v PLQ densities.
When g(x) = Gx and h(x) = Hx are linear, this corresponds to the
optimization problem

min
x
ρw[µ−Gx] + ρv[z −Hx] .

where ρw and ρv are PLQ penalties.

15 / 21

Block tridiagonal systems

In the classic formulation, ρw, ρv are quadratics, and above objective
reduces to

min
x
‖[µ−Gx]‖2

Q−1 + ‖[z −Hx]‖2
R−1 .

G =


I 0

−G2 I
. . .

. 0
−GN I

, H =

H1
. . .

HN


To recover x, we must solve a system of form(

GTQ−1G + H TR−1H
)

x = r .

This system is block tridiagonal positive definite, and can be solved in
O(n3N) operations.

For any PLQ ρw, ρv, the general IP approach preserves the structure of
the problem, and inherits the O(n3N) efficiency per iteration.

16 / 21

Block tridiagonal systems

In the classic formulation, ρw, ρv are quadratics, and above objective
reduces to

min
x
‖[µ−Gx]‖2

Q−1 + ‖[z −Hx]‖2
R−1 .

G =


I 0

−G2 I
. . .

. 0
−GN I

, H =

H1
. . .

HN


To recover x, we must solve a system of form(

GTQ−1G + H TR−1H
)

x = r .

This system is block tridiagonal positive definite, and can be solved in
O(n3N) operations.

For any PLQ ρw, ρv, the general IP approach preserves the structure of
the problem, and inherits the O(n3N) efficiency per iteration.

16 / 21

Functional recovery

Goal: to recover a representation of exp(8 sin(t)) from noisy
measurements.
Process model: integrated brownian noise. For ∆t = 1/2000,

Gk(xk−1) =
[

1 0
∆t 1

]
xk−1 , Qk = λ2

[
∆t ∆t2/2

∆t2/2 ∆t3/3

]
.

where λ2 is an unknown scale factor to be estimated from the data by
cross-validation (efficiency essential!)
Direct observation of function values: Hk(xk) = [0 1]xk .

In the smoother, we model w as Gaussian, and v as Vapnik with
unknown ε (also estimated by cross-validation).
Vapnik plays two important roles:

Measurements are contaminated by large N (0, 25) outliers and
The function we recover has a sparser representation in terms of the
data, since only ‘active’ data points are used to evaluate the function.

17 / 21

Functional Recovery Results

! !"# !"$!"% !"& '

!#

!'

!

'

#

(

$

)*+,

-./+.012+3345,617*4518
#
1/3221

! !"# !"$!"% !"& '

!#

!'

!

'

#

(

$

)*+,

-./+.012+3345,617*4519.:0*;1/32211

L2 Result

1300 support vectors

Vapnik Result

400 support vectors

18 / 21

Training and cross validation for parameter selection

200 mesh points each with 1300 training and 700 validation points.
“Optimal” L2 + ρV fitting values λ2 = 2.15× 103 and ε = 0.45.

0
2000

4000
6000

8000
10000

0
0.2

0.4
0.6

0.8
1

1.236

1.238

1.24

1.242

1.244

1.246

1.248

1.25

2

Average prediction error on the validation set

19 / 21

Sparse and Robust PLQ Regression

HBPσ: min
0≤x

‖x‖1 st ρ(b −Ax) ≤ σ

Problem Specification

x 20-sparse spike train in R512
+

b measurements in R120

A Measurement matrix satisfying RIP

ρ Huber function

σ error level set at .01
5 outliers

Results
In the presence of outliers, the robust
formulation recovers the spike train, while the
standard formulation does not.

0 100 200 300 400 500 600
2

1

0

1

2

3

4

Huber

LS

Truth

Signal Recovery

0 20 40 60 80 100 120
2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

Huber

Truth

LS

Residuals

20 / 21

Thank you!

Papers:
A.Y. Aravkin, J.V. Burke, G. Pillonetto, Sparse/Robust Estimation and
Kalman Smoothing with Nonsmooth Log-Concave Densities: Modeling,
Computation, and Theory, to appear in the Journal of Machine
Learning, 2013.

A.Y. Aravkin, J.V. Burke, G. Pillonetto, System Identification with
PLQ Penalties, to appear in Conference on Decision and Control
Proceedings 2013.

Software:
CKBS, (Robust & constrained Kalman smoothing).
https://projects.coin-or.org/CoinBazaar/wiki/Projects/ckbs

IPsolver: github/saravkin/IPsolver.

21 / 21

