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@ Define social networks to be directed graphs,
e.g., Twitter posters and followers.

@ The network can be either deterministic (arcs
pass every message) or probabilistic (arcs flip
coins to determine whether to pass messages).

@ Maximizing influence means finding the set of
nodes (with a constraint or cost on the size of
the set) that reaches the largest number of
nodes through the network. Many variations of
the problem.
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Applications of maximizing influence

@ Influential nodes can be used to spread an
important announcement.

@ Advertisers wish to reach potential customers.

@ Epidemiologists can use social networks to
predict spread of a communicable disease.
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Unweighted deterministic case

@ Input: Digraph G = (V. A) and integer k.

@ Output: The subset V* C V, |V*| = k that
maximizes the number of vertices V' such that
there exists a directed path from a node in V*
to a node in V/

@ Deterministic case not widely used in literature

but serves as warm-up for probabilistic case.
But still NP-hard.
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IP formulation—setup

@ Let A be the |V| x |V/| matrix of 0’s and 1's
such that A(/,j) = 1 iff there is a directed path
from / to .

@ Let x be the 0 — 1 decision vector that indicates
membership in the influential subset, and let t
be the 0 — 1 vector that indicates whether a
node is reached by the influential subset.

@ Let e denote the vector of all 1's.



Integer LP formulation
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Convex formulation

max e't
s.t. t< ATx,
t <e,
e'x =k,
x € [0, 1]V,
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When does the convex relaxation solve the

original problem?

@ Since 2005, many papers have appeared in the
optimization literature showing that convex
relaxation can solve an NP-hard problem
assuming the problem data satisfies certain
assumptions.

@ Famous example: compressive sensing (Candes,
Romberg and Tao; Donoho).
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Rationale for this style of analysis

@ Many NP-hard data-mining problems are
routinely solved in practice using heuristics.

@ Users are happy with the results. How is this
possible?

@ Hypothesis: heuristic algorithms succeed
because real data has underlying structure that
algorithms can recover.

@ Leads to consideration of instances in which
the sought-after structure is present but hidden
by noise.
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Two-layer specialization

@ Assume that graph is bipartite, i.e.,
V = SUR, and all arcs are directed from S,
the senders, to R, the receivers.

@ This is WLOG: Replace original graph by two
copies of V; arcs denoted ‘reaches’ relation.

@ Problem is NP-hard since it is equivalent to the
set-cover problem: Given a universe
U={1,...,n} of objects and a collection T
of subsets of U, find the subcollection 7* C T
minimizing | 7| such that (J;_. T = U.
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Generative model: labeling the nodes

@ Assume the sender and receiver nodes are
partitioned into k interest groups:
S=5U---US;, R=RU---UR.

@ Assume S; has exactly one distinguished
influencer, | =1, ... k.

@ Remaining S;-nodes are called subordinates.

@ Sought-after IP solution: x; = 1 if / is an
influencer; x; = 0 if / is a subordinate.
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Theorem for simple deterministic case

@ Theorem. For this model, sought-after |P

solution is the unique solution of the LP
relaxation.

@ Proof: Use LP duality. Construct a specific
dual solution to prove uniqueness.
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Theorem for noise

@ Theorem. Convex relaxation exactly recovers
IP solution with probability exponentially close
to 1 assuming certain bounds on the noise.

@ Noise arcs and subordinate-receiver arcs
inserted at random according to rules to ensure
that that each receiver has degree
approximately o - min; |S;| where ¢ a fixed
scalar in (0, 1).

@ “Exponentially close to 1" means
1 — ¢ exp(—c(ming |Ry])).
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Probabilistic graph model

@ Each arc is labeled with a probability.

@ Each sender / passes its message to a receiver |
with specified probability p;; for all (i,)) € A.
Called the cascade model by Kempe, Kleinberg
and Tardos (2003).

@ Problem: given a digraph labeled with
probabilities and an integer k, select the k
nodes that reach the greatest expected number
of followers (expectation over random choices
of successful message transmission).

@ Algorithm for selecting influential nodes knows
the probabilities but not the ultimate coin flips.
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Stochastic integer program

@ Let ) denote the finite distribution of possible
networks resulting from coin-flips.

max E[e’t: Ac )]
st. t < A'x,
t<e,
e'x =k,
x € {0, 1}V,
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Two-layer assumption

@ For the probabilistic model, the two-layer
assumption (apparently) entails a loss of
generality.

@ Nonetheless, it is still somewhat realistic:
Bakshy et al. (2011) find that cascades on
Twitter are rarely deeper than 1.



Explicit calculation of expected value



Explicit calculation of expected value

@ In the two-layer case, the expected value can
be computed in closed form.



Explicit calculation of expected value

@ In the two-layer case, the expected value can
be computed in closed form.

o Ele"t] = 3, E[t].



Explicit calculation of expected value

@ In the two-layer case, the expected value can
be computed in closed form.

o Elet] = Zj E[ti].
@ t; is indicator if any arc incoming to j is chosen.



Explicit calculation of expected value

@ In the two-layer case, the expected value can
be computed in closed form.

EleTt] = Zj E[ti].
t; is indicator if any arc incoming to j is chosen.

Hence E[tj] =1 — []; jyea(l — py)*.



Rewritten stochastic |P

min ) icr H(i.,j)eA(l — pyj)"
s.t. e'x =k,
x € {0, 1},



Convex relaxation

min JjER H(i,j)eA(l - pij)xi
s.t. ex =k,
x € [0,1]!.

Not SDP-expressible.
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Convex solvers

@ Interior-point methods for SDP discovered by
Alizadeh; Nesterov & Nemirovsky, early 1990s

@ Primal-dual path-following proposed by
Alizadeh-Haeberly-Overton; H..K..M; and
Nesterov-Todd late 1990s.

@ Competition led to much software
development, early 2000s.

@ Software now almost trivial to use even for
non-SDP problems via CVX (Boyd-Grant).



Simplifying assumption

Assume all p; = p. Rewritten:

min 35 p(1 — p) A"
s.t. e'x=k,
x € [0, 1],
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@ Assume the noiseless model used earlier.

@ Even with this strong assumption, the convex
relaxation generally does not recover the

influencers. Indeed, they are not necessarily the
solution of the IP either.



Counterexample: influencers not the |IP

solution
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Recovery of influencers

o Theorem. Suppose that ™" > > /T~ and

maxXx; |5/‘ -
x is the solution to the convex relaxation.

Then round(x) contains 1 exactly in the
positions of the influencers.

@ Notation: round(-) means round each entry to
the nearest integer (0 or 1).

@ Proof is an elementary application of KKT
conditions but not a clean duality argument.



Including noise

@ Provided that the number of noise arcs coming
into R, is strongly dominated by the number of
nodes of R, that follow only the influencer,

I =1,...,k, asimilar result holds with a
weaker constant.



Application of convex relaxation to general

Instances

@ Obviously, cannot guarantee exact solution in
general case.

@ However, if convex relaxation succeeds, can
obtain a certificate that optimal integer
solution was found.



Future directions

@ Multilayer stochastic networks. Kempe et al.
have a guaranteed approximation algorithm.
Issue: how to evaluate objective function?
Sampling?

@ More realistic generative model, e.g., forest fire
model of Leskovec, Kleinberg, Faloutsos.



