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Motivation

The Golub-Kahan orthogonal bidiagonalization of A ∈ Rm×n gives
us freedom to choose 1 starting vector b ∈ Rm and solve sparse
systems Ax ≈ b (as in LSQR)

But orthogonal tridiagonalization gives us freedom to choose
2 starting vectors b ∈ Rm and c ∈ Rn and solve two sparse systems
systems Ax ≈ b and ATy ≈ c (as in USYMQR ≡ GMINRES)

Reichel and Ye (2008) chose c to speed up the computation of x

Golub, Stoll and Wathen (2008) wanted cTx = bTy
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Abstract

A general matrix A can be reduced to tridiagonal form by orthogonal
transformations on the left and right: UTAV = T . We can arrange that the
first columns of U and V are proportional to given vectors b and c. An iterative
form of this process was given by Saunders, Simon, and Yip (SINUM 1988) and
used to solve square systems Ax = b and ATy = c simultaneously. (One of the
resulting solvers becomes MINRES when A is symmetric and b = c.)

The approach was rediscovered by Reichel and Ye (NLAA 2008) with emphasis
on rectangular A and least-squares problems Ax ≈ b. The resulting solver was
regarded as a generalization of LSQR (although it doesn’t become LSQR in
any special case). Careful choice of c was shown to improve convergence.

In his last year of life, Gene Golub became interested in “GLSQR” for
estimating cTx = bTy without computing x or y . Golub, Stoll, and Wathen
(ETNA 2008) revealed that the orthogonal tridiagonalization is equivalent to a
certain block Lanczos process. This reminds us of Golub, Luk, and Overton
(TOMS 1981): a block Lanczos approach to computing singular vectors.
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Meeting for Michael (MXO)

First thought:

Block Lanczos process

(for eigenvectors)
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Orthogonal matrix reductions

Direct: V = product of Householder transformations n × n

Iterative: Vk =
(
v1 v2 . . . vk

)
n × k

Mostly short-term recurrences
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Tridiagonalization of symmetric A

Direct:

(
1

V T

)(
0 bT

b A

)(
1

V

)
=


0 x
x x x

x x x
x x x

x x



Iterative: Lanczos process(
b AVk

)
= Vk+1

(
βe1 Tk+1,k

)
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Bidiagonalization of rectangular A

Direct:

UT
(
b A

)(1
V

)
=



x x
x x
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Iterative: Golub-Kahan process(
b AVk

)
= Uk+1

(
βe1 Bk+1,k

)
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Tridiagonalization of rectangular A
Direct:

(
1
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

Iterative: S-Simon-Yip (1988), Reichel-Ye (2008)(
b AVk

)
= Uk+1

(
βe1 Tk+1,k

)(
c ATUk

)
= Vk+1

(
γe1 TT

k,k+1

)
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MINRES-type solvers

based on

Lanczos, Arnoldi, Golub-Kahan, orth-tridiag
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MINRES-type solvers for Ax ≈ b

A Process Solver

symmetric Lanczos Paige-S 1975 MINRES
Choi-Paige-S 2011 MINRES-QLP

rectangular Golub-Kahan Paige-S 1982 LSQR
Fong-S 2011 LSMR

unsymmetric Arnoldi Saad-Schultz 1986 GMRES
unsymmetric orth-tridiag S-Simon-Yip 1988 USYMQR
rectangular orth-tridiag Reichel-Ye 2008 GLSQR

⇒ xk = Vkwk where we choose wk from min ‖βe1 − Hkwk‖
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Symmetric methods for unsymmetric Ax ≈ b

Lanczos on

(
I A
AT −δ2I

)(
r
x

)
=

(
b
0

)
gives Golub-Kahan

CG-type subproblem gives LSQR
MINRES-type subproblem gives LSMR

Lanczos on

(
A

AT

)(
y
x

)
=

(
b
c

)
(square A)

is not equivalent to orthogonal tridiagonalization
(but seems worth a try!)
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Tridiagonalization of general A
using orthogonal matrices

Some history
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Orthogonal tridiagonalization

1988 Saunders, Simon, and Yip, SINUM 25
“Two CG-type methods for unsymmetric linear equations”

Focus on square A

USYMLQ and USYMQR (GSYMMLQ and GMINRES)

2008 Reichel and Ye
“A generalized LSQR algorithm”

Focus on rectangular A

GLSQR

2008 Golub, Stoll, and Wathen
“Approximation of the scattering amplitude”

Focus on Ax = b, ATy = c and estimation of cTx = bTy without x , y

2012 Patrick Küschner, Max Planck Institute, Magdeburg
Eigenvalues

Need to solve Ax = b and ATy = c

GMINRES or GLSQR? MXO60 Aug 8–10, 2013 14/28
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Original motivation (S 1981)

CG, SYMMLQ, MINRES work well for symmetric Ax = b

Tridiagonalization of unsymmetric A is no more than twice the
work and storage per iteration

If A is symmetric, we get Lanczos and MINRES etc

If A is nearly symmetric, total itns should be not much more (??)

GMINRES or GLSQR? MXO60 Aug 8–10, 2013 15/28
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Elizabeth Yip’s SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary
nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal
tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed
by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

We apply a preconditioned version (Fast Poisson) to the difference equation of

unsteady transonic flow with small disturbances. (Compared with ORTHOMIN(5))

GMINRES or GLSQR? MXO60 Aug 8–10, 2013 16/28
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Numerical results
with orthogonal tridiagonalization
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Numerical results (SSY 1988)

A =


B −I
−I B −I

. . .
. . .

. . .

−I B −I
−I B

 B = tridiag
(
−1−δ 4 −1+δ

)

400× 400 20× 20

Megaflops to reach ‖r‖ ≤ 10−6 ‖b‖:

δ 0.0 0.01 0.1 1.0 10.0 100.0

ORTHOMIN(5) 0.31 0.57 0.75 0.83 2.55 2.11
LSQR 0.28 1.38 1.48 0.80 0.57 0.27
GMINRES 0.30 1.88 1.98 1.41 0.99 0.64

Bottom line:
ORTHOMIN sometimes good, can fail. LSQR always better than GMINRES

GMINRES or GLSQR? MXO60 Aug 8–10, 2013 18/28
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Numerical results (Reichel and Ye 2008)

Focused on rectangular A and least-squares
(Forgot about SSY 1988 and USYMQR — hence GLSQR)

Three numerical examples (all square!)

Remember x1 ∝ v1 ∝ c (since xk = Vkwk and c = γv1)

Focused on choice of c
stopping early
looking at xk =

(
xk1 xk2 . . . xkn

)

GMINRES or GLSQR? MXO60 Aug 8–10, 2013 19/28
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Numerical results (Reichel and Ye 2008)
Example 1 (Fredholm equation)∫ π

0

κ(s, t)x(t)dt = b(s), 0 ≤ s ≤ π

2

Discretize to get Ax̂ = b̂, n = 400 Solve Ax = b, ‖b − b̂‖ = 10−3 ‖b̂‖

Among {xLSQR
k }, xLSQR

3 is closest to x̂

GLSQR: choose c =
(
1 1 . . . 1

)T
because true x ≈ 100c

99

101

true x

xLSQR
3

xGLSQR
1

GMINRES or GLSQR? MXO60 Aug 8–10, 2013 20/28
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Numerical results (Reichel and Ye 2008)
Example 2 (Star cluster)

470 stars, x̂ = 256× 256 pixels, b̂ = Ax̂ , n = 65536

Solve Ax = b, ‖b − b̂‖ = 10−2 ‖b̂‖

Choose c = b (because b ≈ x)

Compare error in xLSQR
k and xGLSQR

k for 40 iterations

LSQR

GLSQR

-

6

0 20 40 k0.1

0.9

‖xk − x̂‖ / ‖x̂‖
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Numerical results (Reichel and Ye 2008)

Example 3 (Fredholm equation)∫ 1

0

k(s, t)x(t)dt = exp(s) + (1− e)s − 1, 0 ≤ s ≤ 1

k(s, t) =

{
s(t − 1), s < t

t(s − 1), s ≥ t

Discretize to get Ax̂ = b̂, n = 1024

Solve Ax = b, ‖b − b̂‖ = 10−3 ‖b̂‖
xLSQR
22 has smallest error, but oscillates around x̂

Discretize coarsely to get Acxc = bc , n = 4

Prolongate xc to get xprl ∈ R1024 and starting vector c = xprl

xGLSQR
4 is very close to x̂
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Conclusions
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Subspaces

Unsymmetric Lanczos generates two Krylov subspaces:

Uk ∈ span{b Ab A2b . . . Ak−1b}
Vk ∈ span{c ATc (AT)2c . . . (AT)k−1c}

Orthogonal tridiagonalization generates

U2k ∈ span{b AATb . . . (AAT)k−1b Ac (AAT)Ac . . .}
V2k ∈ span{c ATAc . . . (ATA)k−1c ATb (ATA)ATb . . .}

Reichel and Ye 2008:

Richer subspace for ill-posed Ax ≈ b (can choose c ≈ x)
A can be rectangular
Check for early termination of {uk} or {vk} sequence
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Functionals cTx = bTy

Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with
QMR to solve Ax = b and ATy = c simultaneously and to
estimate cTx = bTy at a superconvergent rate:

|cTxk − cTx | ≈ |bTyk − bTy | ≈ ‖b − Axk‖ ‖c − ATyk‖
σmin(A)

Golub, Stoll and Wathen (2008) use orthogonal
tridiagonalization with GLSQR to do likewise

Matrices, moments, and quadrature
Golub, Minerbo and Saylor 1998
Nine ways to compute the scattering amplitude

(1): Estimating cTx iteratively
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Block Lanczos

Orthogonal tridiagonalization is equivalent to

block Lanczos on ATA with starting block
(
c ATb

)
Parlett 1987

block Lanczos on

(
A

AT

)
with starting block

(
b

c

)
Golub, Stoll, and Wathen 2008

There are two ways of spreading light.
To be the candle

or the mirror that reflects it.

– Edith Wharton
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Gene is with us every day
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