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PreamblePreamble

In Winter 2009 I visited Michael; during a party at Courant, I
asked Michael how to obtain extremal perturbations associated
to a boundary point in theε-pseudospectrum. . .

This is his answer on a receipt of Whole Foods.
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Summary

• Problem and literature.

• Low-rank odes and extremal pseudo-eigenvalues.

• Theoretical properties and examples.

• Extension to structured problems.
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Problem

Framework:LetA ∈ K
n,n (K = C orK = R) a matrix with all

distinct eigenvalues. We denote byΛ(A) the spectrum ofA.
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Problem

Framework:LetA ∈ K
n,n (K = C orK = R) a matrix with all

distinct eigenvalues. We denote byΛ(A) the spectrum ofA.

Thedistance to defectivityis defined as

wK(A) = inf
{
‖A− B‖ : B ∈ K

n,n is defective
}

where, in this talk,‖ · ‖ denotes here theFrobenius norm.
If K = C the2-norm is equivalent, that meanswK(A) is the
same number; but this not true in general forK = R.
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Problem

Framework:LetA ∈ K
n,n (K = C orK = R) a matrix with all

distinct eigenvalues. We denote byΛ(A) the spectrum ofA.

Thedistance to defectivityis defined as

wK(A) = inf
{
‖A− B‖ : B ∈ K

n,n is defective
}

where, in this talk,‖ · ‖ denotes here theFrobenius norm.
If K = C the2-norm is equivalent, that meanswK(A) is the
same number; but this not true in general forK = R.

Generically we expect that an extremizerBopt ∈ K
n,n (if

exists) has acoalescent defective pairof eigenvalues.
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Some literature

FirstwC(A) was introduced byDemmel (1983) in his very
well-known PhD thesis under the namediss(A, path), path
referring to the path traveled by the eigenvalues in the
complex plane under a smoothly varying perturbation toA.
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The problem was investigated at the same time byWilkinson
(1984), who referred to it as a problem of primary interest.

The very interesting recent article byAlam, Byers, Bora &
Overton (2011) shows that forK = C theinfimum is indeed a
minimum. For approximatingwC(A), they also proposed an
algorithm which is well-suited to problems of moderate size.
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Some literature

FirstwC(A) was introduced byDemmel (1983) in his very
well-known PhD thesis under the namediss(A, path), path
referring to the path traveled by the eigenvalues in the
complex plane under a smoothly varying perturbation toA.

The problem was investigated at the same time byWilkinson
(1984), who referred to it as a problem of primary interest.

The very interesting recent article byAlam, Byers, Bora &
Overton (2011) shows that forK = C theinfimum is indeed a
minimum. For approximatingwC(A), they also proposed an
algorithm which is well-suited to problems of moderate size.

Apparently the caseK = R is unexplored. Similarly there
seem to be no methods to approximate any structured distance.
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Methodology: two steps
(i) For a givenε we aim to approximate the quantity

r(ε) = min
{
y∗x : y andx left/right eigenvectors to

λ ∈ Λ (A+ εE) for someE : ‖E‖ ≤ 1
}
,

with x andy normalizedas:‖x‖ = ‖y‖ = 1, y∗x ≥ 0.

Connection: ε-pseudospectrum (Trefethen & Embree (2005))
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}
,

with x andy normalizedas:‖x‖ = ‖y‖ = 1, y∗x ≥ 0.

Connection: ε-pseudospectrum (Trefethen & Embree (2005))

(ii) In order to approximate

wK(A) = ε∗ = min{ε : r(ε) = 0},

we look forlocally minimal solutionsε to r(ε) = 0.
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Methodology: two steps
(i) For a givenε we aim to approximate the quantity

r(ε) = min
{
y∗x : y andx left/right eigenvectors to

λ ∈ Λ (A+ εE) for someE : ‖E‖ ≤ 1
}
,

with x andy normalizedas:‖x‖ = ‖y‖ = 1, y∗x ≥ 0.

Connection: ε-pseudospectrum (Trefethen & Embree (2005))

(ii) In order to approximate

wK(A) = ε∗ = min{ε : r(ε) = 0},

we look forlocally minimal solutionsε to r(ε) = 0.

Meaning.If K=C at alocally minimal solution two discs in
ε-pseudospectrum have a contact point (Alam & Bora (2005))
Also interesting to considerr(ε) = δ for a small thresholdδ.
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Constructing a path for the eigenvalues
Part (i): we construct a smooth matrix valued function

A+ εE(t) where ‖E(t)‖ = 1.

Normalization:any selected pair of left/right eigenvectors of
A+ εE(t) is such that‖x(t)‖ = ‖y(t)‖ = 1, y(t)∗x(t) > 0.
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Constructing a path for the eigenvalues
Part (i): we construct a smooth matrix valued function

A+ εE(t) where ‖E(t)‖ = 1.

Normalization:any selected pair of left/right eigenvectors of
A+ εE(t) is such that‖x(t)‖ = ‖y(t)‖ = 1, y(t)∗x(t) > 0.

Desired properties

(a) the functiony(t)∗x(t) is decreasing:

(b) lim
t→∞

E(t) = E∞

(c) y∗∞x∞ local minimum of the functiony∗x(E) : Kn,n→ R
+
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Constructing a path for the eigenvalues
Part (i): we construct a smooth matrix valued function

A+ εE(t) where ‖E(t)‖ = 1.

Normalization:any selected pair of left/right eigenvectors of
A+ εE(t) is such that‖x(t)‖ = ‖y(t)‖ = 1, y(t)∗x(t) > 0.

Desired properties

(a) the functiony(t)∗x(t) is decreasing:

(b) lim
t→∞

E(t) = E∞

(c) y∗∞x∞ local minimum of the functiony∗x(E) : Kn,n→ R
+

Idea:look for steepest descent direction
.
E for y(t)∗x(t), using

d

dt
(y(t)∗x(t)) =

.
y(t)∗x(t) + y(t)∗

.
x(t).
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Derivatives of eigenvectors

Proposition(Meyer & Stewart (1988))

Let the matrixM(t) be smooth w.r.t.t ∈ R, λ(t) a simple
eigenvalue withnormalizedleft/right eigenvectorsy(t), x(t).
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Proposition(Meyer & Stewart (1988))

Let the matrixM(t) be smooth w.r.t.t ∈ R, λ(t) a simple
eigenvalue withnormalizedleft/right eigenvectorsy(t), x(t).

LetG(t) be thegroup-inverseof M(t)− λ(t)I, i.e. the
inverse ofM(t)− λ(t)I in the maximal multiplicative
subgroup containingM(t)− λ(t)I.
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Derivatives of eigenvectors

Proposition(Meyer & Stewart (1988))

Let the matrixM(t) be smooth w.r.t.t ∈ R, λ(t) a simple
eigenvalue withnormalizedleft/right eigenvectorsy(t), x(t).

LetG(t) be thegroup-inverseof M(t)− λ(t)I, i.e. the
inverse ofM(t)− λ(t)I in the maximal multiplicative
subgroup containingM(t)− λ(t)I.

Then the following hold:

.
x = x∗G

.
Mxx−G

.
Mx

.
y∗ = y∗

.
MGyy∗ − y∗

.
MG

where we omit the explicit dependence ont.
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Steepest descent direction lemma
Let y andx left and right eigenvectors ofA+ εE associated to
λ andG the group-inverse ofA+ εE − λI. Then set

S = yy∗G∗ +G∗xx∗ .

LetB the unit ball of the Frobenius norm.
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Steepest descent direction lemma
Let y andx left and right eigenvectors ofA+ εE associated to
λ andG the group-inverse ofA+ εE − λI. Then set

S = yy∗G∗ +G∗xx∗ .

LetB the unit ball of the Frobenius norm.
Then (1) for any smooth pathE(t) ∈ B , we have

d

dt
(y∗x) = ε y∗xRe

〈 .
E, S

〉
.

where〈A,B〉 = trace (A∗B) is the Frobenius inner product.
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Steepest descent direction lemma
Let y andx left and right eigenvectors ofA+ εE associated to
λ andG the group-inverse ofA+ εE − λI. Then set

S = yy∗G∗ +G∗xx∗ .

LetB the unit ball of the Frobenius norm.
Then (1) for any smooth pathE(t) ∈ B , we have

d

dt
(y∗x) = ε y∗xRe

〈 .
E, S

〉
.

where〈A,B〉 = trace (A∗B) is the Frobenius inner product.

Moreover (2) the steepest descent direction fory∗x in the
tangent hyperplaneTEB is given by

.
E = D = −µ

(
S − Re〈E, S〉E

)
with µ normalizing factor.
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Steepest descent ode
We consider the ODE

.
E = −

(
S − Re〈E, S〉E

)
, E(0) ∈ B .

Let c(t) = y(t)∗x(t), y(t), x(t) being the normalized left/right
eigenvectors associated to an eigenvalueλ(t) of A+ εE(t).
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Steepest descent ode
We consider the ODE

.
E = −

(
S − Re〈E, S〉E

)
, E(0) ∈ B .

Let c(t) = y(t)∗x(t), y(t), x(t) being the normalized left/right
eigenvectors associated to an eigenvalueλ(t) of A+ εE(t).

Propertiesof ODE

(1) Norm conservation:‖E(t)‖ = 1 for all t;

(2) Monotonicity: c(t) decreasing along solutions of ODE;

(3) Stationary points: the matrixS does never vanish and the
following statements are equivalent:

.
c = 0 ⇐⇒

.
E = 0 ⇐⇒ E is real multiple ofS.

– p.10/18



Steepest descent ode
We consider the ODE

.
E = −

(
S − Re〈E, S〉E

)
, E(0) ∈ B .

Let c(t) = y(t)∗x(t), y(t), x(t) being the normalized left/right
eigenvectors associated to an eigenvalueλ(t) of A+ εE(t).

Propertiesof ODE

(1) Norm conservation:‖E(t)‖ = 1 for all t;

(2) Monotonicity: c(t) decreasing along solutions of ODE;

(3) Stationary points: the matrixS does never vanish and the
following statements are equivalent:

.
c = 0 ⇐⇒

.
E = 0 ⇐⇒ E is real multiple ofS.

The associatedλ represents anextremalε-pseudo-eigenvalue.– p.10/18



Projection onto the tangent space of M2

Key property:stationary points have rank-2.

Consider a new ODEon the manifoldM2 of rank-2 matrices
by F-orthogonal projectionPE to tangent spaceTEM2:

.
E = −PE

(
S − Re〈E, S〉E

)
.

– p.11/18



Projection onto the tangent space of M2

Key property:stationary points have rank-2.
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.
E = −PE

(
S − Re〈E, S〉E

)
.

Propertiesof projected ODE:

(1) Monotonicity: .
c ≤ 0;

(2) Stationary points: same as unprojected ODE.
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Projection onto the tangent space of M2

Key property:stationary points have rank-2.

Consider a new ODEon the manifoldM2 of rank-2 matrices
by F-orthogonal projectionPE to tangent spaceTEM2:

.
E = −PE

(
S − Re〈E, S〉E

)
.

Propertiesof projected ODE:

(1) Monotonicity: .
c ≤ 0;

(2) Stationary points: same as unprojected ODE.

Writing
E = UTV ∗

whereU, V ∈ C
n×2 have orthonormal columns andT ∈ C

2×2

invertible, we are able to write a system of ODEs forU, V, T .– p.11/18



Example 1

A =




0 1 + i 2 + i 1 + 2i 1

−1 −1− i 1− i −i 0

1− i −1− 2i 1 + 2i −2i 0

1− 2i 1− i −1 + 2i −1− i 0

1 −1− i 2i −1− i −2i




Pseudospectrum
(ε = 0.075)

−4 −3 −2 −1 0 1 2

−2.5
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−1.5

−1

−0.5

0

0.5

1

1.5

2
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Trajectory of the ODE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.5

1

1.5

Trajectory Zoom close
in theε-pseudospectrum to boundary– p.13/18



Approximating the distance to defectivity
Part (ii). Let δ ≥ 0. In order to find an approximate solution of
the minimization problem (slight generalization ofδ = 0)

εδ,∗ −→ min{ε : r(ε) = δ}

we look for locally minimal solutionsεδ of equationr(ε) = δ.
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Approximating the distance to defectivity
Part (ii). Let δ ≥ 0. In order to find an approximate solution of
the minimization problem (slight generalization ofδ = 0)

εδ,∗ −→ min{ε : r(ε) = δ}

we look for locally minimal solutionsεδ of equationr(ε) = δ.

Modelingr(ε)
Undergeneric assumptionswe get the expansion forε ≤ ε0,

r(ε) = γ
√
ε0 − ε

+ O
(
(ε0 − ε)3/2

)
.

ε0 ε
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Approximating the distance to defectivity
First order expansion

r(ε) = γ
√
ε0 − ε+ . . . , aim to solver(ε) = δ
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Approximating the distance to defectivity
First order expansion

r(ε) = γ
√
ε0 − ε+ . . . , aim to solver(ε) = δ

Algorithm
Computer(ε) by solving the ODE anddr(ε)/dε by anexact
inexpensiveformula. Estimateγ andε0 and solver(ε) = δ.
This yields aquadratically convergentmethod toεδ.
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Approximating the distance to defectivity
First order expansion

r(ε) = γ
√
ε0 − ε+ . . . , aim to solver(ε) = δ

Algorithm
Computer(ε) by solving the ODE anddr(ε)/dε by anexact
inexpensiveformula. Estimateγ andε0 and solver(ε) = δ.
This yields aquadratically convergentmethod toεδ.

Example 1(δ = 10−4)

k εδ
k

r(εδ
k
)

7 0.082876946962636 0.000910106101987

8 0.082876706789675 0.000999989689847

9 0.082876706760826 0.000999999999761
– p.15/18



Example 1: ε0-pseudospectrum
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Real-structured distance

Step (ii) is unaltered. Step (i): the modified ODE
It is sufficient to replaceS by Re(S) in the complex ODE and
observe that stationary points are now real rank-4 matrices. We
also prove that Re(S) does never vanish ifA is not normal.
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Real-structured distance

Step (ii) is unaltered. Step (i): the modified ODE
It is sufficient to replaceS by Re(S) in the complex ODE and
observe that stationary points are now real rank-4 matrices. We
also prove that Re(S) does never vanish ifA is not normal.

Projected ODE
By F-orthogonal projectioñPE to tangent spaceTEM4 of the
manifold of real4× 4-matrices, we get

.
E = − P̃E

(
Re(S)− Re〈E,Re(S)〉E

)
.
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Real-structured distance

Step (ii) is unaltered. Step (i): the modified ODE
It is sufficient to replaceS by Re(S) in the complex ODE and
observe that stationary points are now real rank-4 matrices. We
also prove that Re(S) does never vanish ifA is not normal.

Projected ODE
By F-orthogonal projectioñPE to tangent spaceTEM4 of the
manifold of real4× 4-matrices, we get

.
E = − P̃E

(
Re(S)− Re〈E,Re(S)〉E

)
.

Properties

(1) Monotonicity: .
c ≤ 0;

(2) Stationary points: same as unprojected ODE:E ∝ Re(S).
– p.17/18



Sparsity pattern (P) structure
The sparsity preserving ODE
Is sufficient an F-orthogonal projecton ofS ontoP i.e. setting
to zero all elements ofScorresponding to zero elements ofP.
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Sparsity pattern (P) structure
The sparsity preserving ODE
Is sufficient an F-orthogonal projecton ofS ontoP i.e. setting
to zero all elements ofScorresponding to zero elements ofP.

Example 2(Grcar matrix)

A =




1 1 1 1 0 0

−1 1 1 1 1 0

0 −1 1 1 1 1

0 0 −1 1 1 1

0 0 0 −1 1 1

0 0 0 0 −1 1




Distances

wC(A) ≈ 0.2151857

wR(A) ≈ 0.3007253

wC,P(A) ≈ 0.6845324

wR,P(A) ≈ 0.9423366
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Sparsity pattern (P) structure
The sparsity preserving ODE
Is sufficient an F-orthogonal projecton ofS ontoP i.e. setting
to zero all elements ofScorresponding to zero elements ofP.

Example 2(Grcar matrix)

A =




1 1 1 1 0 0

−1 1 1 1 1 0

0 −1 1 1 1 1

0 0 −1 1 1 1

0 0 0 −1 1 1

0 0 0 0 −1 1




Distances

wC(A) ≈ 0.2151857

wR(A) ≈ 0.3007253

wC,P(A) ≈ 0.6845324

wR,P(A) ≈ 0.9423366

Large sparse problemsmay exploit the low rank-structure and
computing efficiently the group-inverse(project with Michael).

– p.18/18
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