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Preamble

In Winter 2009 | visited Michael; during a party at Courant, |
asked Michael how to obtain extremal perturbations associated
to a boundary point in the-pseudospectrum .

This i‘s his answer on a receipt of Whole Foods. :



Summary

e Problem and literature.

e Low-rank odes and extremal pseudo-eigenvalues.

e Theoretical properties and examples.

e EXxtension to structured problems.
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FrameworkiLet A € K" (K = C or K = R) a matrix with all
distinct eigenvalues. We denote hyA) the spectrum ofi.

Thedistance to defectivitys defined as
wi(A) = inf{HA _B||: BEK"™is defective}

where, in this talk|| - || denotes here thiérobenius norm

If K = C the2-norm is equivalent, that meansg (A) is the
same number; but this not true in generallfo= R.

Generically we expect that an extremizgy,, € K™" (if
exists) has @oalescent defective paof eigenvalues.
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Someliterature

Firstwe(A) was introduced bypemmel (1983) in his very

well-known PhD thesis under the namt&s( A, path), path
referring to the path traveled by the eigenvalues in the
complex plane under a smoothly varying perturbatiord o

The problem was investigated at the same tim#&\bikinson
(1984), who referred to it as a problem of primary interest.

The very interesting recent article Byam, Byers, Bora &
Overton (2011) shows that foK = C theinfimum s indeed a
minimum For approximatinguc(A), they also proposed an
algorithm which is well-suited to problems of moderate size.

Apparently the caskK = R Is unexplored. Similarly there
seem to be no methods to approximate any structured distance.
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(1) For a givere we aim to approximate the quantity

r(e) = min{y*aj:yandaz left/right eigenvectors to

A€ A(A+eE) for someE : ||E| < 1} |

with  andy normalizedas: ||z|| = ||y|| = 1, y*x > 0.
Connection e-pseudospectrunT(efethen & Embree (2005))
() In order to approximate

wg(A) =" = min{e : r(e) = 0},

we look forlocally minimal solutionse to r(¢) = 0.

Meaning.lf K=C at alocally minimal solution two discs In
e-pseudospectrum have a contact pofliain & Bora (2005))

Also interesting to considet(¢) = ¢ for a small threshold.
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Constructing a path for the eigenvalues

Part (1): we construct a smooth matrix valued function
A+ cE(t) where [[E(1)|| = 1.

Normalization:any selected pair of left/right eigenvectors of
A+ eE(t)issuchthat/z(t)|| = |ly(t)| =1, y(t)"z(t) > 0.

Desired properties

(a) the functiony(t)*z(t) is decreasing:

(b) lim E(t) = Ex

() ! xs local minimum of the functiony*z(F) : K" R™

Idea:look for steepest descent directidéhfor y(t)*z(t), using

 ((t)"2(0)) = §(0)"2(t) + y(0)"3(0)
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Derivatives of eilgenvectors

Proposition(Meyer & Stewart (1988))

Let the matrix)M (¢) be smooth w.r.tt € R, A(¢) a simple
eigenvalue witmormalizedeft/right eigenvectorg(t), ().

Let G(t) be thegroup-inversef M (t) — A(t)I, i.e. the
inverse of M (t) — A(¢)] in the maximal multiplicative
subgroup containingV/ (t) — A(t)1.

Then the following hold:
i = 2*GMzxr — GMz
Jt = y"MGyy" —y"MG

where we omit the explicit dependenceion
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Stegpest descent direction lemma

Let y andz left and right eigenvectors of + < E associated to
A andd the group-inverse ofl + ¢ £ — A\I. Then set

S=yy'G"+ G xzx" .

Let B the unit ball of the Frobenius norm.
Then (1) for any smooth patl¥(t) € B, we have

d * * ;
E(yx) = cy"rRe(E,S) .
where(A, B) = trace (A*B) is the Frobenius inner product.

Moreover (2) the steepest descent direction §ox in the
tangent hyperplané; B is given by

E=D=—u(S—Re(F,S)E) with u normalizing factor
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We consider the ODE

E=—(S—-Re(E,S)E), E(0)€B.

Letce(t) = y(t)*x(t), y(t), z(t) being the normalized left/right
eigenvectors associated to an eigenvallte of A + cE(1).

Propertief ODE
(1) Norm conservationf|E(t)|| = 1 for all ¢;
(2) Monotonicity. ¢(t) decreasing along solutions of ODE;

(3) Stationary pointsthe matrixS does never vanish and the
following statements are equivalent:

¢c=0 <= FE=0 <= FEisreal multipleofsS.

The associated represents aaxtremals-pseudo-eigenvalue
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Projection onto the tangent space of M5

Key property:stationary points have rank-

Consider a new ODEBn the manifoldM, of rank-2 matrices
by F-orthogonal projectiol ; to tangent spacép Ms:

E= — Py (S _Re(E, S>E).

Propertieof projected ODE:
(1) Monotonicity: ¢ < 0;
(2) Stationary pointssame as unprojected ODE.

Writing
E=UTV"

wherelU, V € C"*? have orthonormal columns afitle C?*?
Invertible, we are able to write a system of ODEs&oWV, T'.



Example 1

Pseudospectrul

(e = 0.075)
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Traectory of the ODE

15F

Trajectory Zoom close
INn thee-pseudospectrum to boundary
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Part (i). Leto > 0. In order to find an approximate solution of
the minimization problem (slight generalizationdof= 0)

e — min{e : r(e) = 6}

we look for locally minimal solutions® of equation-(g) = 4.



Approximating the distance to defectivity

Part (i). Leto > 0. In order to find an approximate solution of
the minimization problem (slight generalizationdof= 0)

e — min{e : r(e) = 6}
we look for locally minimal solutions® of equation-(g) = 4.

Modelingr(e)
Undergeneric assumptionse get the expansion far< &,

r(e) = /el —¢

+ O((g" —e)*?). ~ \

E E
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Approximating the distance to defectivity
First order expansion

r(e) =yVed —e+ ..., aim to solver(e) =9

Algorithm

Computer(e) by solving the ODE andr(¢)/de by anexact
inexpensiveformula. Estimatey and<" and solver(s) = 4.

This yields aquadratically convergemhethod to=°.
Example 1(6 = 107%)

k| e r(ch)

7 1 0.082876946962636 | 0.000910106101987
8 1 0.082876706789675 | 0.000999989689847
9 1 0.082876706760826 | 0.000999999999761




Example 1: £"-pseudospectrum
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Real-structured distance

Step (i) Is unaltered. Step (i): the modified ODE

It is sufficient to replace& by Re(S) in the complex ODE and
observe that stationary points are now real ramRatrices. We
also prove that ReS) does never vanish il is not normal.

Projected ODE

By F-orthogonal projectioﬁ) £ 1o tangent spacér. M, of the
manifold of reald x 4-matrices, we get

E=— f’E(Re(S) _Re(E, Re(S)>E).

Properties
(1) Monotonicity: ¢ < 0;
(2) Stationary pointssame as unprojected ODE:x Re(.5).




Spardity pattern (P) structure

The sparsity preserving ODE
Is sufficient an F-orthogonal projecton sfontoP I.e. setting
to zero all elements of corresponding to zero elements7of



Spardity pattern (P) structure

The sparsity preserving ODE
Is sufficient an F-orthogonal projecton sfontoP I.e. setting
to zero all elements of corresponding to zero elements7of

Example 2 Grcar matrix) Distances
(1 1 1 1 0 0\  ye(A) ~0.2151857
-1 1 1 1 1 0
i 01 1 1 11 wr(A) =~ 0.3007253
0 0 -1 1 1 1 we p(A) =~ 0.6845324
o 0 0 -1 1 1
\ 00 0 0 —1 1/ wg p(A) ~ 0.9423366



Spardity pattern (P) structure

The sparsity preserving ODE
Is sufficient an F-orthogonal projecton sfontoP I.e. setting
to zero all elements of corresponding to zero elements7of

Example 2 Grcar matrix) Distances
(1 1 1 1 0 0\  ye(A) ~0.2151857
-1 1 1 1 1 0
i 01 1 1 11 wr(A) =~ 0.3007253
0 0 -1 1 1 1 we p(A) =~ 0.6845324
0 0 0 -1 1 1
\ 00 0 0 —1 1/ wg p(A) ~ 0.9423366

Large sparse problenmsay exploit the low rank-structure and
computing efficiently the group-inverse (project with Michael).
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