Communication-Avoiding Algorithms
for Linear Algebra and Beyond

Jim Demmel
EECS & Math Departments
UC Berkeley

Why avoid communication? (1/3)

Algorithms have two costs (measured in time or energy):
1. Arithmetic (FLOPS)
2. Communication: moving data between

— levels of a memory hierarchy (sequential case)
— processors over a network (parallel case).

1

Why avoid communication? (2/3)

* Running time of an algorithm is sum of 3 terms:
— #flops * time_per_flop
— # words moved / bandwidth

" communication
— # messages * latency

* Time_per_flop << 1/ bandwidth << latency
e Gaps growing exponentially with time [FOSC]

Annual improvements
Time_per_flop Bandwidth Latency
Network 26% 15%
59%
DRAM 23% 5%

 Avoid communication to save time

Why Minimize Communication? (3/3)

Minimize communication to save energy

10000
1000 Off-chip
v
L
3
L, 100 -
<)
=
[-W ® now (45nm)
10 - ® 2018 (11nm in this case)
1 -
Q < . .
RONPC N Q@ &é é&("\
Q & & & ¥ & &
& & N & &
o @ Source: John Shalf, LBL

Goals

* Redesign algorithms to avoid communication
e Between all memory hierarchy levels
e [1 < L2 <> DRAM <= network, etc
e Attain lower bounds if possible
e Current algorithms often far from lower bounds
e Large speedups and energy savings possible

President Obama cites Communication-Avoiding Algorithms in
the FY 2012 Department of Energy Budget Request to Congress:

“New Algorithm Improves Performance and Accuracy on Extreme-Scale
Computing Systems. On modern computer architectures, communication
between processors takes longer than the performance of a floating
point arithmetic operation by a given processor. ASCR researchers have
developed a new method, derived from commonly used linear algebra
methods, to minimize communications between processors and the
memory hierarchy, by reformulating the communication patterns
specified within the algorithm. This method has been implemented in the
TRILINOS framewollk, a highly-regarded suite of software, which provides
functionality for regearchers around the world to solve large scale,
complex multi-physjcs problems.”

FY 2010 Congressional Buidget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD) Research (ASCR), pages 65-67.
“Tall-Skinny” QR (Grigori, Hoemmen, Langou, JD)

Outline

e Survey state of the art of CA (Comm-Avoiding)
algorithms

— CA O(n3) 2.5D Matmul
— CA Strassen Matmul

* Beyond linear algebra
— Extending lower bounds to any algorithm with arrays
— Communication-optimal N-body algorithm

Outline

e Survey state of the art of CA (Comm-Avoiding)
algorithms

— CA O(n3) 2.5D Matmul
— CA Strassen Matmul

* Beyond linear algebra
— Extending lower bounds to any algorithm with arrays
— Communication-optimal N-body algorithm

Summary of CA Linear Algebra

* “Direct” Linear Algebra

 Lower bounds on communication for linear algebra
problems like Ax=Db, least squares, Ax = Ax, SVD, etc

 Mostly not attained by algorithms in standard libraries

* New algorithms that attain these lower bounds

» Being added to libraries: Sca/LAPACK, PLASMA,
MAGMA

* Large speed-ups possible
e Autotuning to find optimal implementation

* Ditto for “Iterative” Linear Algebra

Lower bound for all “n3-like” linear algebra
* Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M/2)

#fmessages_sent 2 #twords_moved / largest_message_size

Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg A¥)

— Dense and sparse matrices (where #flops << n3)
— Sequential and parallel algorithms
— Some graph-theoretic algorithms (eg Floyd-Warshall)

Lower bound for all “n3-like” linear algebra
* Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M/2)

#messages_sent (per processor) = Q(#flops (per processor) / M3/2)

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg A¥)

SIAM SIAG/Linear Algebra Prize, 2012
Ballard, D., Holtz, Schwartz

Summary of dense algorithms
attaining communication lower bounds

Do LAPACK and ScaLAPACK attain these bounds? Often not
Assume nxn matrices on P processors
Minimum Memory per processor = M = O(n?/ P)
Recall lower bounds:
#words_moved = Q((n3/P) /M¥Y2) = Q(n2/ PV2)
#messages = Q((n3/P) /M32) = Q(PYV2)
When does ScaLAPACK attain these bounds?
* For #words_moved: mostly, except Nonsym. Eigenproblem
* For #messages: asymptotically worse, except Cholesky
New algorithms attain all bounds, up to polylog(P) factors
* Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD
 New numerical properties, new ways to encode answers,
new data structures, not just loop transformations

Can we do Better?

Can we do better?

 Aren’t we already optimal?
* Why assume M = O(n?/p), i.e. minimal?

— Lower bound still true if more memory
— Can we attain it?

Outline

e Survey state of the art of CA (Comm-Avoiding)
algorithms

— CA O(n3) 2.5D Matmul
— CA Strassen Matmul

* Beyond linear algebra
— Extending lower bounds to any algorithm with arrays
— Communication-optimal N-body algorithm

2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, c > 1
* Processors form (P/c)¥2 x (P/c)¥? x ¢ grid

(P/c)
s\

Q\c,\ _
\ @;{? Example: P= 32, c=2
C

2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, c > 1
* Processors form (P/c)¥2 x (P/c)¥? x ¢ grid

J

Initially P(i,j,0) owns A(i,j) and Bi,j)
each of size n(c/P)Y/2 x n(c/P)Y/?

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of Z_ A(i,m)*B(m,j)
(3) Sum-reduce partial sums Z . A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,;j)

Thm: Works up to c = P1/3, then stops

2.5D Matmul on BG/P, 16K nodes / 64K cores

Matrix multiplication on 16,384 nodes of BG/P

100 I I
[2.5D MM s
2D MM

80 [2.7X faster]

60 — Using c=16 matrix copies

40 b

Percentage of machine peak

12X faster
o - :
o ;

8192 131072

2.5D Matmul on BG/P, 16K nodes / 64K cores

c = 16 copies
Matrix multiplication on 16,384 nodes of BG/P

=) 1.4 | | 1]
Al X communication —
3 12F idle 3
5 = 95% reduction in comm computation ==
N 1 F -
© X .
E 08F 3
®) L i
c N N
) 6 F ~
R :
c 04F 2.7x faster -
ke) '

3 -

n :

0
/7\(979 /7\(979 \73
0 '50 "D ’ QS

%
Distinguished Paper Award, EuroPar’11 (Solomonik, D.)

SC’11 paper by Solomonik, Bhatele, D.

Perfect Strong Scaling —in Time and Energy (1/2)

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?
Increase P by a factor of c =» total memory increases by a factor of c
Notation for timing model:
— V1, By, a; = secs per flop, per word_moved, per message of size m
T(cP) = n3/(cP) [y+ Br/M¥2 + ar/(mM¥2) |
=T(P)/c
Notation for energy model:
— Ve, Be, a¢ = joules for same operations
— O = joules per word of memory used per sec
— & = joules per sec for leakage, etc.
E(cP) = cP { n3/(cP) [v+ Be/MY2 + o/ (mMY/2) | + §.MT(cP) + €.T(cP) }
= E(P)

Perfect Strong Scaling —in Time and Energy (2/2)

T(cP) = n3/(cP) [yr+ B/MY¥2 + a/(mM¥2)] = T(P)/c
E(cP) = cP { n3/(cP) [v+ Be/MY2 + a/(mMY/2)] + 6 MT(cP) + £.T(cP) } = E(P)

Perfect scaling extends to N-body, Strassen, ...
We can use these models to answer many questions, including:

What is the minimum energy required for a computation?

Given a maximum allowed runtime T, what is the minimum energy E
needed to achieve it?

Given a maximum energy budget E , what is the minimum runtime T that
we can attain?

The ratio P = E/T gives us the average power required to run the algorithm.
Can we minimize the average power consumed?

Given an algorithm, problem size, number of processors and target energy
efficiency (GFLOPS/W), can we determine a set of architectural parameters
to describe a conforming computer architecture?

Outline

e Survey state of the art of CA (Comm-Avoiding)
algorithms

— CA O(n3) 2.5D Matmul
— CA Strassen Matmul

* Beyond linear algebra
— Extending lower bounds to any algorithm with arrays
— Communication-optimal N-body algorithm

Communication Lower Bounds for
Strassen-like matmul algorithms

Classical Strassen’s Strassen-like
O(n3) matmul: O(n'87) matmul: O(n“) matmul:
#words _moved = #words _moved = #words _moved =
Q (M(n/M¥2)3/P) | | Q (M(n/MY2)'67/P) | | Q (M(n/M¥/2)*/P)

Proof: graph expansion (different from classical matmu
— Strassen-like: DAG must be “regular” and connected

Extends up to M = n2 / p2/®
Best Paper Prize (SPAA’11), Ballard, D., Holtz, Schwartz,
also in JACM

Is the lower bound attainable?

50

W H
o o

Effective GFLOPS per node
N
o

10

Performance Benchmarking, Strong Scaling Plot

Franklin (Cray XT4) n = 94080

ﬁ-\'/.r

Speedups: 24%-184%

(over previous Strassen-based algorithms)

CAPS
2.5D-Strassen
2D-Strassen
Strassen-2D
2.5D Classical
ScalLAPACK

Invited to appear as Research
Highlight in CACM

P=49

P=343

Ongoing Work

e |Lots more work on

— Algorithms:
 BLAS, LDLT, QR with pivoting, other pivoting schemes, eigenproblem:s, ...
e All-pairs-shortest-path, ...
e Both 2D (c=1) and 2.5D (c>1)
e But only bandwidth may decrease with c>1, not latency
— New lower bound on bandwidth*latency

— Platforms:
* Multicore, cluster, GPU, cloud, heterogeneous, low-energy, ...

— Software:
* Integration into Sca/LAPACK, PLASMA, MAGMA, ...

* Integration into applications (on IBM BG/Q)
— CTF (with ANL): symmetric tensor contractions

Outline

e Survey state of the art of CA (Comm-Avoiding)
algorithms

— CA O(n3) 2.5D Matmul
— CA Strassen Matmul

* Beyond linear algebra
— Extending lower bounds to any algorithm with arrays
— Communication-optimal N-body algorithm

Recall optimal sequential Matmul

Naive code
fori=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,;j)

“Blocked” code
foril =1:b:n, forjl=1:b:n, forkl=1:b:n
fori2 =0:b-1, forj2 =0:b-1, for k2 =0:b-1"
i=il+i2, j=jl1+j2, k=kl+k2 - b xbmatmul
C(i,j)+=A(i,k)*B(k,j) i

Thm: Picking b = MY/2 attains lower bound:
#twords_moved = Q(n3/M*/2)
Where does 1/2 come from?

New Thm applied to Matmul
for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)

Record array indices in matrix A

i j k
1 0 1)
A=lo 1 1

1 1 0

A
B
C

Solve LP for x = [xi,xj,xk]": max1'™x s.t. Ax<1
—Result: x=1[1/2, 1/2,1/2]",1'x =3/2 = 5,45,

Thm: #words moved = Q(n3/MSHet1)= Q(n3/M1/2)
Attained by block sizes M, M* Mk = M1/2 \M1/2 \M1/2

New Thm applied to Direct N-Body
for i=1:n, for j=1:n, F(i) += force(P(i) , P(j))

Record array indices in matrix A

|
(1

A = 1

_0

J
0)

0

1)

F
P(i)
P(j)

Solve LP for x = [xi,xj]": max1'™x s.t. Ax<1
—Result: x=[1,1], 1™x =2 =545,
Thm: #words_moved = Q(n%Z/M>"81-1)= Q(n2/M1)
Attained by block sizes M¥ MY = M1, M?!

N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor

g 0.25 T T T T J ! . J :

@ mm Communication (Reduce)

a Communication (Shift)

Q 0.2 - mm Computation -
@

=

= 0.15 |- =
o)

o

(b] - — =
£ 0.1

|_

-

S 0.05 | =
>

o I

% s i § §1 1 § § 1 B
L 0

c=1 c=1 c=2 c=4 c=8 c¢c=16 =32 c=64

(tree) (no-tree) Replication Factor

< >
11.8x speedup

New Thm applied to Random Code

foril=1:n, fori2=1:n, ..., fori6=1:n
A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))
A5(i2,i6) += func2(A6(il,i4,i5),A3(i3,i4,i6))

Record array indices 12 B M5
1 0 1 0 0 1 Al
In matrix A /1 L e 1 o 0\ ;
A= 0 1 1 0 1 0 A3
0 0 1 1 0 1 A3,A4
0 0 1 1 0 1 A5
_! 0 0 1 1 0/ As

Solve LP for x = [x1,...,x7]": max1'x s.t. Ax<1

— Result: x=1[2/7,3/7,1/7,2/7,3/7,4/7], 1'x = 15/7 = s,
Thm: #words_moved = Q(né/MSHeL1)= Q(né/M8/7)
Attained by block sizes M2/7, M3/7 M7 M2/7 \3/7 \4/7

Approach to generalizing lower bounds

e Matmul
for i=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)
=> for (i,j,k) in S = subset of 73
Access locations indexed by (i,j), (i,k), (k,j)
* General case
foril=1:n, fori2=il:m, ... for ik =i3:i4
C(i1+2*i3-i7) = func(A(i2+3%*i4,i1,i2,i1+i2,...),B(pnt(3*i4)),...)
D(something else) = func(something else), ...
=> for (i1,i2,...,ik) in S = subset of ZX
Access locations indexed by group homomorphisms, eg
b (i1,i2,...,ik) = (i1+2*i3-i7)
b, (i1,i2,...,1K) = (12+3%14,i1,i2,i1+i2,...), ..
 Can we bound #loop _iterations (= |S|)
given bounds on #points in its images, i.e. bounds on |b, (S)], |d, (S)], ... ?

General Communication Bound

Given S subset of Z¥, group homomorphisms ¢, ¢,, ...,
bound |S| in terms of |, (S)], [d,(S)], ..., Idy(S)]

Def: Holder-Brascamp-Lieb LP (HBL-LP) for s,,...,S .
for all subgroups H < 7%, rank(H) < 2; s;*rank(d,(H))
Thm (Christ/Tao/Carbery/Bennett): Given s,,...,S .
S| <1, [4S)|*

Thm: Given a program with array refs given by ¢,
choose s; to minimize s, g = 2, s; subject to HBL-LP. Then

#twords_moved = Q (#iterations/Ms+e-1)

Is this bound attainable (1/2)?

But first: Can we write it down?

Thm: (bad news) HBL-LP reduces to Hilbert’s 10t problem
over Q (conjectured to be undecidable)

Thm: (good news) Another LP with same solution is
decidable (but expensive, so far)

Thm: (better news) Easy to write down LP explicitly in
many cases of interest (eg all ¢, = {subset of indices})

Thm: (good news) Easy to approximate, i.e. get upper or
lower bounds on s,

Is this bound attainable (2/2)?

 Depends on loop dependencies
e Best case: none, or reductions (matmul)

e Thm: When all cbj = {subset of indices}, dual of
HBL-LP gives optimal tile sizes:

HBL-LP: minimize 1™s s.t. sT™*A>1"T
Dual-HBL-LP: maximize 1™*x s.t. A*x<1
Then for sequential algorithm, tile i; by M
e Ex: Matmul:s=[1/2,1/2,1/2]"=x
e Extends to unimodular transforms of indices

Ongoing Work

Accelerate decision procedure for lower bounds
— Ex: At most 3 arrays, or 4 loop nests

Have yet to find a case where we cannot attain
lower bound — can we prove this?

Extend “perfect scaling” results for time and
energy by using extra memory

— “n.5D algorithms”

Incorporate into compilers

For more details

* Bebop.cs.berkeley.edu

 CS267 — Berkeley’s Parallel Computing Course
— Live broadcast in Spring 2013

« www.cs.berkeley.edu/~demmel
* All slides, video available

— Prerecorded version broadcast in Spring 2013
 www.xsede.org
* Free supercomputer accounts to do homework
* Free autograding of homework

e Acta Numerica survey (in progress)

Collaborators and Supporters

James Demmel, Kathy Yelick, Michael Anderson, Grey Ballard, Erin Carson, Aditya
Devarakonda, Michael Driscoll, David Eliahu, Andrew Gearhart, Evangelos Georganas,

Nicholas Knight, Penporn Koanantakool, Ben Lipshitz, Oded Schwartz, Edgar Solomonik,
Omer Spillinger

Austin Benson, Maryam Dehnavi, Mark Hoemmen, Shoaib Kamil, Marghoob Mohiyuddin

Abhinav Bhatele, Aydin Buluc, Michael Christ, loana Dumitriu, Armando Fox, David
Gleich, Ming Gu, Jeff Hammond, Mike Heroux, Olga Holtz, Kurt Keutzer, Julien Langou,
Devin Matthews, Tom Scanlon, Michelle Strout, Sam Williams, Hua Xiang

Jack Dongarra, Dulceneia Becker, Ichitaro Yamazaki
Sivan Toledo, Alex Druinsky, Inon Peled

Laura Grigori, Sebastien Cayrols, Simplice Donfack, Mathias Jacquelin, Amal Khabou,
Sophie Moufawad, Mikolaj Szydlarski

Members of ParLab, ASPIRE, BEBOP, CACHE, EASI, FASTMath, MAGMA, PLASMA

Thanks to DOE, NSF, UC Discovery, INRIA, Intel, Microsoft, Mathworks, National
Instruments, NEC, Nokia, NVIDIA, Samsung, Oracle

bebop.cs.berkeley.edu

Summary

Time to redesign all linear algebra, n-body, ...

algorithms and software
(and compilers)

Don’t Communic...

With one exception:

Happy Birthday Michael!

