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Motivation: Loss of Slater CQ/Facial reduction

optimization algorithms rely on the KKT system;
and require that some constraint qualification (CQ) holds
(Slater’s CQ/strict feasibility for convex conic optimization)

However, surprisingly many conic opt, SDP relaxations,
instances arising from applications (QAP, GP, strengthened MC, SNL,
POP, Molecular Conformation)
do not satisfy Slater’s CQ/are degenerate

lack of Slater’s CQ results in: unbounded dual solutions;
theoretical and numerical difficulties,
in particular for primal-dual interior-point methods.

solution:
- theoretical facial reduction (Borwein, W.’81)
- preprocess for regularized smaller problem (Cheung, Schurr, W.’11)
- take advantage of degeneracy (for SNL)

(Krislock, W.’10; )
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Background/Abstract convex program

(ACP) inf
x

f (x) s.t. g(x) �K 0, x ∈ Ω

where:

f : Rn → R convex; g : Rn → R
m is K -convex

K ⊂ R
m closed convex cone; Ω ⊆ R

n convex set
a �K b ⇐⇒ b − a ∈ K
g(αx + (1 − αy)) �K αg(x) + (1 − α)g(y),

∀x , y ∈ R
n, ∀α ∈ [0, 1]

Slater’s CQ: ∃ x̂ ∈ Ω s.t. g(x̂) ∈ − int K (g(x) ≺K 0)

guarantees strong duality

essential for efficiency/stability in primal-dual interior-point
methods
((near) loss of strict feasibility correlates with number of
iterations and loss of accuracy)
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Case of Linear Programming, LP

Primal-Dual Pair: A,m × n / P = {1, . . . ,n} constr. matrix/set

(LP-P)
max b⊤y
s.t. A⊤y ≤ c

(LP-D)
min c⊤x
s.t. Ax = b, x ≥ 0.

Slater’s CQ for (LP-P) / Theorem of alternative

∃ŷ s.t. c − A⊤ŷ > 0,
((

c − A⊤ŷ
)

i > 0,∀i ∈ P =: P<
)

iff
Ad = 0, c⊤d = 0, d ≥ 0 =⇒ d = 0 (∗)

implicit equality constraints: i ∈ P=

Finding solution 0 6= d∗ to (∗) with max number of non-zeros
determines (F y feasible set)

d∗
i > 0 =⇒ (c − A⊤y)i = 0,∀y ∈ F y (i ∈ P=)
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Rewrite implicit-equalities to equalities/ Regularize LP

Facial Reduction: A⊤y ≤f c; minimal face f E R
n
+

(LPreg -P)
max b⊤y
s.t. (A<)⊤y ≤ c<

(A=)⊤y = c=
(LPreg -D)

min (c<)⊤x< + (c=)⊤x=

s.t.
[

A< A=
]

(

x<

x=

)

= b

x< ≥ 0, x= free

Mangasarian-Fromovitz CQ (MFCQ) holds

(after deleting redundant equality constraints!)
(

i ∈ P< i ∈ P=

∃ŷ : (A<)⊤ŷ < c< (A=)⊤ŷ = c=

)

(A=)⊤ is onto

MFCQ holds iff dual optimal set is compact

Numerical difficulties if MFCQ fails; in particular for interior
point methods! Modelling issue?
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Facial Reduction/Preprocessing

Linear Programming Example, x ∈ R
2

max
(

2 6
)

y

s.t.









−1 −1
1 1
1 −1
−2 2









y ≤









1
2
1
−2









(

1
0

)

feasible; weighted last two rows
[

1 −1 1
−2 2 −2

]

sum to

zero. P< = {1,2},P= = {3,4}

Facial reduction to 1 dim; substit. for y
(

y1

y2

)

=

(

1
0

)

+ t
(

1
1

)

, −1 ≤ t ≤ 1
2 , t∗ = 1

2 , val∗ = 6
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Case of ordinary convex programming, CP

(CP) sup
y

b⊤y s.t. g(y) ≤ 0,

where

b ∈ R
m; g(y) =

(

gi(y)
)

∈ R
n, gi : R

m → R convex, ∀i ∈ P

Slater’s CQ: ∃ ŷ s.t. gi(ŷ) < 0,∀i (implies MFCQ)

Slater’s CQ fails implies implicit equality constraints exist,
i.e.:
P= := {i ∈ P : g(y) ≤ 0 =⇒ gi(y) = 0} 6= ∅
Let P< := P\P= and

g< := (gi)i∈P< ,g= := (gi)i∈P=
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Rewrite implicit equalities to equalities/ Regularize CP

(CP) is equivalent to g(y) ≤f 0, f is minimal face

(CPreg)
sup b⊤y
s.t. g<(y) ≤ 0

y ∈ F = or (g=(y) = 0)

where F= := {y : g=(y) = 0}. Then
F = = {y : g=(y) ≤ 0}, so is a convex set!

Slater’s CQ holds for (CPreg) ∃ŷ ∈ F = : g<(ŷ) < 0

modelling issue again?
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Faithfully convex case

Faithfully convex function f (Rockafellar’70 )

f affine on a line segment only if affine on complete line
containing the segment (e.g. analytic convex functions)

F= = {y : g=(y) = 0} is an affine set

Then:
F= = {y : Vy = Vŷ} for some ŷ and full-row-rank matrix V .
Then MFCQ holds for

(CPreg)
sup b⊤y
s.t. g<(y) ≤ 0

Vy = Vŷ
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Semidefinite Programming, SDP

K = Sn
+ = K ∗ nonpolyhedral cone!

(SDP-P) vP = sup
y∈Rm

b⊤y s.t. g(y) := A∗y − c �Sn
+

0

(SDP-D) vD = inf
x∈Sn

〈c, x〉 s.t. Ax = b, x �Sn
+

0

where:

PSD cone Sn
+ ⊂ Sn symm. matrices

c ∈ Sn , b ∈ R
m

A : Sn → R
m is a linear map, with adjoint A∗

Ax = (trace Aix) ∈ R
m

A∗y =
∑m

i=1 Aiyi ∈ Sn
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Slater’s CQ/Theorem of Alternative

(Assume feasibility: ∃ ỹ s.t. c −A ∗ỹ � 0.)

∃ ŷ s.t. s = c −A∗ŷ ≻ 0 (Slater)

iff

Ad = 0, 〈c,d〉 = 0, d � 0 =⇒ d = 0 (∗)
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Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of K , denoted F E K , if
x , y ∈ K and x + y ∈ F =⇒ x , y ∈ F
(F ⊳ K proper face)

Minimal Faces

fP := faceF s
P E K , F s

P is primal feasible set

fD := faceF x
D E K ∗, F x

D is dual feasible set

where: K ∗ denotes the dual (nonnegative polar) cone;
face S denotes the smallest face containing S.
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Regularization Using Minimal Face

Borwein-W.’81 , fP = faceF s
P

(SDP-P) is equivalent to the regularized

(SDPreg-P) vRP := sup
y

{〈b, y〉 : A ∗y �fP c}

(slacks: s = c −A
∗y ∈ fp )

Lagrangian Dual DRP Satisfies Strong Duality:

(SDPreg-D) vDRP := inf
x

{〈c, x〉 : A x = b, x �f∗P
0}

= vP = vRP

and vDRP is attained.
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SDP Regularization process

Alternative to Slater CQ

Ad = 0, 〈c,d〉 = 0, 0 6= d �Sn
+

0 (∗)

Determine a proper face f ⊳ Sn
+

Let d solve (∗) with d = Pd+P⊤, d+ ≻ 0, and [P Q] ∈ R
n×n

orthogonal. Then

c −A∗y �Sn
+

0 =⇒ 〈c −A∗y ,d∗〉 = 0

=⇒ F s
P ⊆ Sn

+ ∩ {d∗}⊥ = QS n̄
+ Q⊤

⊳ Sn
+

(implicit rank reduction, n̄ < n)
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Regularizing SDP

at most n − 1 iterations to satisfy Slater’s CQ.

to check Theorem of Alternative

Ad = 0, 〈c,d〉 = 0, 0 6= d �Sn
+

0, (∗)

use stable auxiliary problem

(AP) min
δ,d

δ s.t.

∥

∥

∥

∥

[

Ad
〈c,d〉

]∥

∥

∥

∥

2
≤ δ,

trace(d) =
√

n,

d � 0.

Both (AP) and its dual satisfy Slater’s CQ.
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Auxiliary Problem

(AP) min
δ,d

δ s.t.

∥

∥

∥

∥

[

Ad
〈c,d〉

]∥

∥

∥

∥

2
≤ δ,

trace(d) =
√

n,d � 0.

Both (AP) and its dual satisfy Slater’s CQ ... but ...

Cheung-Schurr-W’11, a k = 1 step CQ

Strict complementarity holds for (AP)
iff

k = 1 steps are needed to regularize (SDP-P).
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Regularizing SDP

Minimal face containing Fs
P := {s : s = c −A ∗y � 0}

fP = QS n̄
+ Q⊤

for some n × n orthogonal matrix U = [P Q]

(SPD-P) is equivalent to

sup
y

b⊤y s.t. g≺(y) � 0, g=(y) = 0,

where
g≺(y) := Q⊤(A∗y − c)Q

g=(y) :=
[

P⊤(A∗y − c)P
P⊤(A∗y − c)Q + Q⊤(A∗y − c)P

]

.

(gen.) Slater CQ holds for the reduced program:
∃ ŷ s.t. g≺(y) ≺ 0 and g=(y) = 0.
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Conclusion Part I

Minimal representations of the data regularize (P);
use min. face fP (and/or implicit rank reduction)

goal: a backwards stable preprocessing algorithm to
handle (feasible) conic problems for which Slater’s CQ
(almost) fails
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Part II: SNL (K-W’10 )

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry;
easy to describe - dates back to Grasssmann 1886

r : embedding dimension

n ad hoc wireless sensors p1, . . . ,pn ∈ R
r to locate in R

r ;

m of the sensors pn−m+1, . . . ,pn are anchors (positions
known, using e.g. GPS)

pairwise distances Dij = ‖pi − pj‖2, ij ∈ E , are known
within radio range R > 0

P⊤ =
[

p1 . . . pn
]

=
[

X⊤ A⊤] ∈ R
r×n

19



Sensor Localization Problem/Partial EDM

Sensors ◦ and Anchors

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Initial position of points

 # sensors n = 300,     # anchors m = 9,     radio range R = 1.2

 

 
sensors
anchors
sens−anch

20



Underlying Graph Realization/Partial EDM NP-Hard

Graph G = (V , E , ω)

node set V = {1, . . . ,n}
edge set (i , j) ∈ E ; ωij = ‖pi − pj‖2 known approximately

The anchors form a clique (complete subgraph)

Realization of G in R
r : a mapping of nodes vi 7→ pi ∈ R

r

with squared distances given by ω.

Corresponding Partial Euclidean Distance Matrix, EDM

Dij =

{

d2
ij if (i , j) ∈ E

0 otherwise (unknown distance),

d2
ij = ωij are known squared Euclidean distances between

sensors pi ,pj ; anchors correspond to a clique.
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Connections to Semidefinite Programming (SDP)

D = K (B) ∈ En, B = K †(D) ∈ Sn ∩ SC (centered Be = 0)

P⊤ =
[

p1 p2 . . . pn
]

∈ M r×n;
B := PP⊤ ∈ Sn

+ (Gram matrix of inner products);

rank B = r ; let D ∈ En corresponding EDM ; e =
(

1 . . . 1
)⊤

(to D ∈ En) D =
(

‖pi − pj‖2
2

)n
i ,j=1

=
(

pT
i pi + pT

j pj − 2pT
i pj

)n

i ,j=1

= diag (B)e⊤ + e diag (B)⊤ − 2B

=: K (B) (from B ∈ Sn
+ ).
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Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard rank B)

minB�0 ‖H ◦ (K (B)− D)‖; rank B = r ;
typical weights: Hij = 1/

√

Dij , if ij ∈ E , Hij = 0 otherwise.

with rank constraint: a non-convex, NP-hard program

SDP relaxation is convex, BUT: expensive/low
accuracy/implicitly highly degenerate (cliques restrict ranks
of feasible Bs)

Instead: (Shall) Take Advantage of Degeneracy!

clique α, |α| = k (corresp. D[α]) with embed. dim. = t ≤ r < k
=⇒ rankK †(D[α]) = t ≤ r =⇒ rank B[α] ≤ rankK †(D[α]) + 1
=⇒ rank B = rankK †(D) ≤ n − (k − t − 1) =⇒
Slater’s CQ (strict feasibility) fails
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BASIC THEOREM for Single Clique/Facial Reduction

Let:

D̄ := D[1 :k ] ∈ Ek , k < n, embdim (D̄) = t ≤ r be given;

B := K †(D̄) = ŪBSŪ⊤
B , ŪB ∈ M k×t , Ū⊤

B ŪB = It , S ∈ S t
++

be full rank orthogonal decomposition of Gram matrix;

UB :=
[

ŪB
1√
k
e
]

∈ M k×(t+1), U :=

[

UB 0
0 In−k

]

, and
[

V U⊤e
‖U⊤e‖

]

∈ M n−k+t+1 be orthogonal.

Then the minimal face:

faceK † (En(1 :k , D̄)
)

=
(

USn−k+t+1
+ U⊤

)

∩ SC

= (UV )Sn−k+t
+ (UV )⊤
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The minimal face for single clique reduction

faceK † (En(1 :k , D̄)
)

=
(

USn−k+t+1
+ U⊤

)

∩ SC

= (UV )Sn−k+t
+ (UV )⊤

Note that the minimal face is defined by the subspace
L = R (UV ). We add 1√

k
e to represent N (K ); then we use V

to eliminate e to recover a centered face.
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Two (Intersecting) Clique Reduction/Subsp. Repres.

Let:

α1, α2 ⊆ 1 :n; k := |α1 ∪ α2|
for i = 1,2: D̄i := D[αi ] ∈ E ki , embedding dimension ti ;

Bi := K †(D̄i) = ŪiSi Ū⊤
i , Ūi ∈ M ki×ti , Ū⊤

i Ūi = Iti , Si ∈ S ti
++;

Ui :=
[

Ūi
1√
ki

e
]

∈ M ki×(ti+1); and Ū ∈ M k×(t+1)

satisfies R (Ū) = R

([

U1 0
0 Ik̄3

])

∩ R

([

Ik̄1
0

0 U2

])

, with Ū⊤Ū = It+1

U :=
[

Ū 0
0 In−k

]

∈ M n×(n−k+t+1) and
[

V U⊤e
‖U⊤e‖

]

∈ M n−k+t+1

be orthogonal.

Then
⋂2

i=1 faceK † (En(αi , D̄i )
)

=
(

US
n−k+t+1
+ U⊤

)

∩ SC

= (UV )Sn−k+t
+ (UV )⊤
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Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:

U1 =





U ′
1 0

U ′′
1 0

0 I



 and U2 =





I 0
0 U ′′

2
0 U ′

2





Then:

U :=





U ′
1

U ′′
1

U ′
2(U

′′
2 )

†U ′′
1



 or U :=





U ′
1(U

′′
1 )

†U ′′
2

U ′′
2

U ′
2





(Q1 =: (U ′′
1 )

†U ′′
2 ,Q2 = (U ′′

2 )
†U ′′

1 orthogonal/rotation)
(Efficiently) satisfies

R (U) = R (U1) ∩R (U2)
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Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

Given P =

[

P1

P2

]

∈ R
n×r such that D = K (PP⊤)

Solve the orthogonal Procrustes problem:

min ‖A − P2Q‖
s.t. Q⊤Q = I

P⊤
2 A = UΣV⊤ SVD decomposition; set Q = UV⊤;

(Golub/Van Loan’79, Algorithm 12.4.1)

Set X := P1Q
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Summary: Facial Reduction for Cliques

Using the basic theorem: each clique corresponds to a
Gram matrix/corresponding subspace/corresponding face
of SDP cone (implicit rank reduction)

In the case where two cliques intersect, the union of the
cliques correspond to the (efficiently computable)
intersection of the corresponding faces/subspaces

Finally, the positions are determined using a Procrustes
problem
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Results - Data for Random Noisless Problems

2.16 GHz Intel Core 2 Duo, 2 GB of RAM

Dimension r = 2

Square region: [0,1]× [0,1]

m = 9 anchors

Using only Rigid Clique Union and Rigid Node Absorption

Error measure: Root Mean Square Deviation

RMSD =

(

1
n

n
∑

i=1

‖pi − ptrue
i ‖2

)1/2
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Results - Large n (SDP size O(n2))

n # of Sensors Located
n # sensors \ R 0.07 0.06 0.05 0.04

2000 2000 2000 1956 1374
6000 6000 6000 6000 6000

10000 10000 10000 10000 10000

CPU Seconds
# sensors \ R 0.07 0.06 0.05 0.04

2000 1 1 1 3
6000 5 5 4 4

10000 10 10 9 8

RMSD (over located sensors)
n # sensors \ R 0.07 0.06 0.05 0.04

2000 4e−16 5e−16 6e−16 3e−16
6000 4e−16 4e−16 3e−16 3e−16
10000 3e−16 5e−16 4e−16 4e−16
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Results - N Huge SDPs Solved

Large-Scale Problems

# sensors # anchors radio range RMSD Time
20000 9 .025 5e−16 25s
40000 9 .02 8e−16 1m 23s
60000 9 .015 5e−16 3m 13s

100000 9 .01 6e−16 9m 8s

Size of SDPs Solved: N =

(

n
2

)

(# vrbls)

En(density of G ) = πR2; M = En(|E |) = πR2N (# constraints)
Size of SDP Problems:
M =

[

3,078,915 12,315,351 27,709,309 76,969,790
]

N = 109
[

0.2000 0.8000 1.8000 5.0000
]
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Thanks for your attention!

Taking Advantage of Degeneracy in Cone
Optimization: with Applications to Sensor

Network Localization

Henry Wolkowicz
Dept. Combinatorics and Optimization, Univ. Waterloo
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