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Motivation: Loss of Slater CQ/Facial reduction

@ optimization algorithms rely on the KKT system;
and require that some constraint qualification (CQ) holds
(Slater's CQ/strict feasibility for convex conic optimization)

@ However, surprisingly many conic opt, SDP relaxations,
instances arising from applications (QAP, GP, strengthened MC, SNL,
POP, Molecular Conformation)
do not satisfy Slater's CQ/are degenerate

@ lack of Slater's CQ results in: unbounded dual solutions;
theoretical and numerical difficulties,
in particular for primal-dual interior-point methods.

@ solution:
- theoretical facial reduction (Borwein, W.81)
- preprocess for regularized smaller problem (Cheung, Schurr, W.11)
- take advantage of degeneracy (for SNL)
(Krislock, W.'10; )




Background/Abstract convex program

(ACP) inf f(x) s.t. g(x) =k 0,x € Q

where:
o f:R" — Rconvex; g:R"— R™isK-convex
@ K C R™ closed convex cone;  C R" convex set
@ a=<kb «— b-ackK

o g(ax + (1 —ay)) 2k ag(X) + (1 — a)g(y),
Vx,y € R" Va € [0,1]

Slater's CQ: 3X € Q2 s.t. g(X) € —intK
@ guarantees strong duality
@ essential for efficiency/stability in primal-dual interior-point
methods

((near) loss of strict feasibility correlates with number of
iterations and loss of accuracy)
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Case of Linear Programming, LP

Primal-Dual Pair: A.m xn/P = {1 n} constr. matrix/set

max by min ¢ 'x

(LP-P) st. Aly<c (LP-D) st. Ax=Dh, x >0.

Slater's CQ for (LP-P) /

Jyst.c—ATy >0, ((c—ATy). >0,Vie P=:P<)
iff

Ad=0,¢c"d=0,d>0 = d=0 (%)

| A\

implicit equality constraints: | € P~

Finding solution O # d* to () with max number of non-zeros
determines (F Y feasible set)

d*>0 = (c—ATy)i=0,YyeFY (icP)




Rewrite implicit-equalities to equalities/ Regularize LP

Facial Reduction: ATy <s ¢; minimal face f

max by min  (c<)Tx< + (c:<)T><:
(LPreg-P) st. (AS)Ty <ec< (LPreg-D) st [AS A7) (XX:> =b
(A7) Ty =c= < =
XS > 0,x~ free
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Mangasarian-Fromovitz CQ holds

(after deleting redundant equality constraints!)

ieP< ieP= T
< 3. (AS)TY <c< (A=)T§ =c= ) (A7) s onto

MFCQ holds | dual optimal set is compact

Numerical difficulties if MFCQ fails; in particular for interior
point methods! Modelling issue?




Facial Reduction/Preprocessing

Linear Programming Example, x € R?

1 L 1 1
<O> feasible; weighted last two rows [_2 5 _2} sum to
zero. P< ={1,2},P= = {3,4}

Facial reduction to 1 dim; substit. for y
() ) () 2ok oos e
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Case of ordinary convex programming, CP

(CP) supb'ystg(y)<0,
y

where
@ beR™g(y) = (gi(y)) € R", gi : R™ — R convex, Vi € P
@ Slater's CQ: 3V s.t. gi(y) < 0,Vi (implies MFCQ)
@ Slater's CQ fails implies implicit equality constraints exist,
i.e.
P=={ieP:g(y) <0 = gi(y) =0} #0
Let P= := P\P~ and

9% = (9)iep< 9~ = (9i)icp-




Rewrite implicit equalities to equalities/ Regularize CP

(CP)is equivalentto g(y) <; 0, f is minimal face

sup by
(CPreg) st. g=(y) <0
yeF~ or(g=(y)=0)

Slater's CQ holds for (CPreg) | 2y € F~:9~(y) <0

modelling issue again?




Faithfully convex case

Faithfully convex function f (Rockafellar'70 )

f affine on a line segment only if affine on complete line
containing the segment (e.g. analytic convex functions)

Then:
F=={y:Vy =Vy} forsomey and full-row-rank matrix V.
Then MECQ holds for

(CPreg) st g=(y)

Il IA
<O
>




Semidefinite Programming, SDP

K =& = K* nonpolyhedral cone!

(SDP-P) vp = sup b'y st g(y):= A"y —¢c =g O
y€ER™

(SDP-D) vp = inf (c,x) st. Ax=Db, x =gn O
xeSn i

where:
@ PSD cone S ¢ S" symm. matrices
@ccS",beR

® A:S8" — R"is alinear map, with adjoint A*
Ax = (trace Aix) € R™
Aty =30 Ay € ST
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Slater's CQ/Theorem of Alternative

(Assume feasibility: 9y s.t. ¢ — A"y = 0.)
Jy st.s=c—- A"y -0  (Slater)
iff

Ad =0, (c,d)=0,d=0 = d=0 (x)
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Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of K, denoted F < K, if
x,yeKandx+y eF = x,y eF

(F < K proper face)

Minimal Faces

| A\

fp :=face F} <K, o Is primal feasible set
fo :=face F§ <K*, 5 Is dual feasible set
where: K* denotes the dual (nonnegative polar) cone;

face S denotes the smallest face containing S.




Regularization Using Minimal Face

Borwein-W.81, fp = face 73

(SDP-P) is equivalent to the regularized

(SDPreg-P) Ve :=sup {(b,y) : A"y =4, c}
y

(slacks: s =c — A"y €fy)

Lagrangian Dual DRP Satisfies Strong Duality:

(SDPreg-D) Vorp :=inf {(c,x) : AX =D, X = 0}

=Vp = VRp

and vpgp is attained.
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SDP Regularization process

Alternative to Slater CQ

Ad =0, (c,d)=0,0#d =5 0 (%)

| \

Determine a proper face f <1 S

Let d solve (x) withd = Pd,P",d, - 0,and [P Q] € R™"
orthogonal. Then

cC—AYyrsn 0 = (c-Ay,d")=0
— F3CS" Nn{d*}t=Qs8"TQT « S

(implicit rank reduction, n < n)

\




Regularizing SDP

@ at most n — 1 iterations to satisfy Slater’s CQ.
@ to check Theorem of Alternative

Ad =0, (c,d)=0,0#d =50 0, (%)

use stable auxiliary problem

. Ad
(AP) r(rsndn o S.t. ‘ [(c,d>] ) <94,
trace(d) = v/n,
d > 0.

@ Both (AP) and its dual satisfy Slater's CQ.
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Auxiliary Problem

AP in o s.t.
w0 e

),

trace(d) = v/n,d = 0.

Both (AP) and its dual satisfy Slater’s CQ ... but ...

Cheung-Schurr-W’11, a k = 1 step CQ

Strict complementarity holds for (AP)
iff
k = 1 steps are needed to regularize (SDP-P).
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Regularizing SDP

Minimal face containing 75 := {s:s =c — A"y = 0}

fo =QST QT
for some n x n orthogonal matrix U = [P Q]

(SPD-P) is equivalent to

sup b'yst.g=(y) 20, g=(y) =0,
y

where 9%(y) = QT(A"y —c)Q

PT(A*Y —c)P }
A’y —€)Q+ QT (A"y —c)P |
(gen.) Slater CQ holds for the reduced program:
Jy sit.g=(y) <0andg=(y) = 0.

9 (y) = {PT(
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Conclusion Part |

@ Minimal representations of the data regularize (P);
use min. face fp (and/or implicit rank reduction)

@ goal: a backwards stable preprocessing algorithm to
handle (feasible) conic problems for which Slater's CQ

(almost) fails
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Part I1: SNL (K-W’10)

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry;

@ r . embedding dimension

® n ad hoc wireless sensors py, ..., pn € R" to locate in R";

om Ph—m+1s---5Pn (positions
known, using e.g. GPS)
@ pairwise distances Dj = ||p; — pj||%,ij € E, are known
within radio range R > 0
o
Pl =[p1 ... pn]=[XT AT] eR™"
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Sensor Localization Problem/Partial EDM

Sensors o and Anchors

Initial position of points

sensors
anchors
sens-anch

1 2 3 4 5 6 7 8 9
#sensorsn=300, #anchorsm=9, radiorange R =12
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Underlying Graph Realization/Partial EDM  NP-Hard

Graph G = (V,€,w)

@ nodesetV = {1,....n}
@ edge set (i,j) € £; wj = ||pi — p;||*> known approximately
@ The anchors form a clique (complete subgraph)

@ Realization of G in R": a mapping of nodes v; — p; € R’
with squared distances given by w.

Corresponding Partial Euclidean Distance Matrix, EDM

o _ 4 ifGee
7| 0 otherwise (unknown distance),

dij2 = wjj are known squared Euclidean distances between
Sensors p;, pj; anchors correspond to a clique.
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Connections to Semidefinite Programming (SDP)

D=K(B)c&", B=KT(D)ecS" nSc (centered Be = 0)

cc

B:=PP' €S (Gram matrix of inner products);

rank B =r; let D € £" corresponding EDM ; e = (1

1)’

(toDeé&") D = (|lpi— pj”%)in,jzl
n
(PTpi+ PPy —ZPiij)ijzl
— |diag(B)e" +ediag(B)T — 2B

= K(B) (fromB e S").
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Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard rank B)

® mingyo [|H o (K (B) —D)|; rank B =r;
typical weights: H; = 1/,/Dj, ifij € E, H;j = O otherwise.
@ with rank constraint: a non-convex, NP-hard program

@ SDP relaxation is convex, BUT: expensive/low
accuracy/implicitly highly degenerate (cliques restrict ranks
of feasible BS)
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Instead: (Shall) Take Advantage of Degeneracy!

clique . || = k (corresp. D[a]) with embed. dim. =t <r <k
— rank K T(D[a]) =t <1 = rankB[a] < rank K (D[o]) + 1
— rankB = rank K T(D) < n —m —

Slater's CQ (strict feasibility) fails




BASIC THEOREM for Single Clique/Facial Reduction

Let:
@ D :=DJ[1:k] € X,k < n, embdim (D) =t < r be given;
@ B:=K7(D)=UgSUg,Usg e M**', UJUg =1,S €S,
be full rank orthogonal decomposition of Gram matrix;

Us O
0 |nk] , and

[V HB—IEH} € M "K++1 be orthogonal.

Then the minimal face:

face KT (En(1:k,D)) = (usi—k““uT) N Sc
= (UV)ST Kt uv)T

o Ug = [UB %e} e MKt 'y .= [
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The minimal face for single clique reduction

face KT (€"(1:k,D)) = (Usfk“*luT)msc
= (UV)ST*tuv)T

Note that the minimal face is defined by the subspace

L =R (UV). We add %e to represent V' (KC ); then we use V

to eliminate e to recover a centered face.
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Two (Intersecting) Cligue Reduction/Subsp. Repres.

Let:
® aj,a2 C1l:n; K:=|agUay|
@ fori =1,2: D; := D[oy] € £%, embedding dimension t;;
® B ;:KT(D) USi0T, Uy e MK 070 =k, S; € S
o U = [UI W } e MK*xt+1): and U e M kx(t+1)

satisfies R(U):R([Uol ,;DmR(["Bl ljJD,withUTozll_l
S 2

o U — [8 0 } c M Mx(n—k+t+1) gng [V Hweu] c MN—k+t+l

In—k

be orthogonal.

Then N2, face K T (£"(ay, By)) (usifk*‘*luT) NS

(UV)ST—*+twv) T
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Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:
U O I O
U, = Ui’ 0 and U, = 1|0 Ué/
o | 0 U]
Then:
u; Uy (upyiug
U:= Uy or U:= us
Uy(Ug)iuy U}
(Q1 =: (U])TUY,Q, = (U4)'UY orthogonal/rotation)
(Efficiently) satisfies
R(U) =R (U1) "R (U2)
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Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

@ Given P = {El] € R"™" suchthat D = K (PP )
2

@ Solve the orthogonal Procrustes problem:

min [|A - P2Q|
st QTQ =1

P,A=UXV ' SVD decomposition; set Q = UV ';
(Golub/Van Loan’'79, Algorithm 12.4.1)
@ SetX :=P;Q
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Summary: Facial Reduction for Cliques

@ Using the basic theorem: each clique corresponds to a
Gram matrix/corresponding subspace/corresponding face
of SDP cone (implicit rank reduction)

@ In the case where two cliques intersect, the union of the
cligues correspond to the (efficiently computable)
intersection of the corresponding faces/subspaces

@ Finally, the positions are determined using a Procrustes
problem
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Results - Data for Random Noisless Problems

2.16 GHz Intel Core 2 Duo, 2 GB of RAM

Dimensionr = 2

Square region: [0, 1] x [0, 1]

m = 9 anchors

Using only Rigid Clique Union and Rigid Node Absorption
Error measure: Root Mean Square Deviation

L0 1/2
RMSD = (a > Ipi- pr“euz)
1=
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Results - Large n

(SDP size O(n?))

n # of Sensors Located

n # sensors \ R 0.07 0.06 0.05 0.04
2000 2000 2000 1956 1374
6000 6000 6000 6000 6000
10000 10000 | 10000 | 10000 | 10000

CPU Seconds
#sensors\R | 0.07 | 0.06 | 0.05 | 0.04
2000 1 1 1 3
6000 5 5 4 4
10000 10 10 9 8
RMSD (over located sensors)

n # sensors \ R 0.07 0.06 0.05 0.04
2000 4e—16 | 5e—16 | 6e—16 | 3e—16
6000 4e—16 | 4e—16 | 3e—16 | 3e—16
10000 3e—16 | 5e—16 | 4e—16 | 4e—16
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Results - N Huge SDPs Solved

Large-Scale Problems

# sensors # anchors radiorange | RMSD Time
20000 9 .025 5e—16 25s
40000 9 .02 8e—16 | 1m 23s
60000 9 .015 5e—16 | 3m 13s
100000 9 .01 6e—16 | 9m 8s

Size of SDPs Solved:

En(density of G) = 7R?; M = &,(|E|) = mR2N (# constraints)

Size of SDP Problems:

M = [3,078,915 12,315,351 27,709,309 76,969,790]

(# vrbls)

N = 10° [0.2000 0.8000 1.8000 5.0000]
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Thanks for your attention!

Taking Advantage of Degeneracy in Cone
Optimization: with Applications to Sensor
Network Localization

Henry Wolkowicz
Dept. Combinatorics and Optimization, Univ. Waterloo




