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The Max-Cut Problem

Unconstrained quadratic 1/-1 optimization:

max xT Lx such that x ∈ {−1, 1}n

This is Max-Cut as a binary quadratic problem.
Unconstrained quadratic 0/1 minimization:

min xT Qx + cT x such that x ∈ {0, 1}n

This is equivalent to Max-Cut, by simple variable
transformation.
Q could either be assumed to be upper triangular, or
symmetric, with zero diagonal.
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Polyhedral Relaxations

Consider the Cut polytope CUT :=conv{xxT : x ∈ {−1, 1}n}.

Max-Cut now reads

zmc = max{xT Lx : x ∈ {−1, 1}n} = max{〈L,X〉 : X ∈ CUT}.

A simple observation:

x ∈ {−1, 1}n, f = (1, 1, 1, 0, . . . , 0)T ⇒ |fT x| ≥ 1.

Results in xT f fT x = 〈(xxT ), (ffT )〉 = 〈X,ffT〉 ≥ 1.
Can be applied to any triangle i < j < k. Nonzeros of f can
also be -1. We collect all the triangle inequalities in the
metric polytope M

M := {X : fT Xf ≥ 1 where f has 3 nonzeros ∈ {−1, 1}}
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Polyhedral Relaxations (2)

There are 4
(

n
3

)

such triangle inequality constraints. The
number of variables is

(

n
2

)

.

Optimizing over M results in a difficult (highly degenerate)
LP.

Barahona, Mahjoub (1986): CUT=M for graphs without
K5-minor.

Barahona, Jünger, Reinelt (1989): computational
experiments, LP relaxation very efficient for sparse graphs.

Pardella, Liers (2008): computations with 2d spinglass
problems of sizes larger than 1000 × 1000.

Weak results once density of graph grows.
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Polyhedral relaxations (3)

Other classes of cutting planes available.

If f ∈ {−1, 0, 1} with fT f = t, and t odd, we get odd-clique
inequalities

Mt := {X : fT Xf ≥ 1 where f has t nonzeros ∈ {−1, 1}}.

Deza, Grishukin, Laurent (1993) consider the hypermetric
cone and show that it is in fact polyhedral.

Many other classes of facets of CUT, but they are often
difficult to separate, no substantial computational
experiments available.
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Basic semidefinite relaxation

Consider the Cut polytope CUT :=conv{xxT : x ∈ {−1, 1}n}.
It is contained in the set

C := {X : diag(X) = e, X � 0}

of correlation matrices. Since xT Lx = 〈L, xxT 〉 we get

max{〈L,X〉 : X ∈ CUT} ≤ max{〈L,X〉 : X ∈ C} := zC

Goemans, Williamson (1995): worst-case error analysis (at
most 14 % above optimum if weights nonnegative).

This is best possible approximation if the Unique Game
Conjecture would hold (Khot, 2007) and P 6= NP .
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Optimizing over C

We solve max{〈L,X〉 : X ∈ C } .
Matrices of order n and C = {X : diag(X) = e, X � 0}

n seconds
1000 12
2000 102
3000 340
4000 782
5000 1570

h n seconds
10 1000 3
15 3375 37
20 8000 273
25 15625 1395

Computing times on my laptop. Implementation in MATLAB,
30 lines of source code, Interior-Point Method based on the
Newton Method (left). Larger problems can also be solved
with the spectral bundle method, see Helmberg, Overton,
R. (2012), 3d-grids of size h× h× h. Relative accuracy 10−6.
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Practical experience withC ∩ M

graph n C C ∩ M time(min) cut
g1d 100 396.1 352.374 1.10 324
g2d 200 1268.9 1167.978 7.00 1050
g3d 300 2359.6 2215.233 14.01 1953
g1s 100 144.6 130.007 2.60 126
g2s 200 377.3 343.149 8.24 318
g3s 300 678.5 635.039 13.73 555

spin5 125 125.3 109.334 11.40 108

All relaxations solved exactly. The cut value is not known to
be optimal.
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C, M , C ∩ M

graph n C M C ∩ M cut
g1d 100 396.1 786.3 352.374 324
g2d 200 1268.9 n.a. 1167.978 1050
g3d 300 2359.6 n.a. 2215.233 1953
g1s 100 144.6 137.5 130.007 126
g2s 200 377.3 410.0 343.149 318
g3s 300 678.5 854.4 635.039 555

spin5 125 125.3 110.3 109.334 108

The LP over M is ’harder’ than the SDP over C ∩ M :
Largest possible violation for X ∈ M : fT Xf = −3, but
should be ≥ 1.
Violation for X ∈ C: fT Xf ≥ 0, but should be ≥ 1.
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Higher order relaxations

There are several hierarchies of relaxations for 0-1
optimization problems, see Lovasz, Schrijver lifting, the RLT
procedure by Sherali, Adams and the hierarchy introduced
by Anjos, Wolkowicz (2002) and Lasserre (2002).

They get in n lifting steps to the integer optimum, but in
each step, the dimension of the problem grows.

Even the first nontrivial lifting step in the SDP hierarchies
leads to SDP problems which are computationally out of
reach for very modest sizes (n ≈ 50).

Now: A hierarchy where the matrix dimension stays n.
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A new relaxation hierarchy

Recall CUT :=conv{xxT : x ∈ {−1, 1}n}.
Let I ⊆ {1, . . . , n} with |I| = k.
Set XI := X(I, I) (submatrix indexed by I).

Key observation: If X ∈ CUT and |I| = k, then

XI ∈ CUTk.
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A new relaxation hierarchy

Recall CUT :=conv{xxT : x ∈ {−1, 1}n}.
Let I ⊆ {1, . . . , n} with |I| = k.
Set XI := X(I, I) (submatrix indexed by I).

Key observation: If X ∈ CUT and |I| = k, then

XI ∈ CUTk.

This translates into

XI =
∑

j

λjcjc
T
j , λj ≥ 0,

∑

j

λj = 1.

Here, cj ∈ {−1, 1}k and cjc
T
j runs through all cuts in CUTk.

There are 2k−1 distinct cut matrices cjc
T
j .

The additional variables are the λj.
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Exact subgraph idea

This idea works nicely for problems which have the property
that the restriction to subgraph results in a similar problem
of smaller dimension.

Candidate problems:

• Max-Cut
• Stable-Set, Max-Clique, Coloring
• Ordering

Not directly applicable to:

• Assignment Problems
• Traveling Salesman Problems

because restriction to subproblem changes the problem
structure.
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Related Work

Previous work using this idea in connection with polyhedral
relaxations:

Buchheim, Liers, Oswald (2008) use this idea to generate
target cuts by projecting the polyhedron onto subsets.

A similar idea also used by Bonato, Jünger, Reinelt, Rinaldi
(2012) to tighten relaxations for the cut polytope.

In both cases, an outer description of the small polytope is
used to lift local cuts to cuts for the original problem.

We show that an inner description for the small polytope
has algorithmic advantages.
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The new Relaxation

zC∩M,k := max{〈L,X〉 : X ∈ C ∩ M,

XI ∈ CUTk ∀I with |I| = k}

For k fixed, the resulting relaxation is polynomially solvable
(with fixed precision).

As k approaches n, we get the exact solution.
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The new Relaxation

zC∩M,k := max{〈L,X〉 : X ∈ C ∩ M,

XI ∈ CUTk ∀I with |I| = k}

For k fixed, the resulting relaxation is polynomially solvable
(with fixed precision).

As k approaches n, we get the exact solution.

Theorem: For k ≤ 4 we have zM = zCUT .
This follows from the fact that M = CUT for graphs without
K4-minor. Thus the metric polytope is equal to the cut
polytope for k ≤ 4.

Smallest interesting case: k = 5, but there are
(

n
5

)

subsets
to consider.
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Some Observations

• Contrary to Cutting Plane approaches, which add
constraints valid for CUT , we include an inner description of
CUTk for small k. This can be seen as a variant of Column
Generation (new variables are the λj).
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Some Observations

• Contrary to Cutting Plane approaches, which add
constraints valid for CUT , we include an inner description of
CUTk for small k. This can be seen as a variant of Column
Generation (new variables are the λj).

• For each I we add 2k−1 nonnegative variables and
(

k
2

)

new equations.

• Adding all possible choices for I at once is
computationally inefficient, so the challenge is to identify
good choices for I.
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SelectingI

Given X ∈ C ∩ M we would like to identify a subset I with
|I| = 5, such that XI /∈ CUT5.

For I fixed this can be determined by projection (solve
convex QP with 16 variables).
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SelectingI

Given X ∈ C ∩ M we would like to identify a subset I with
|I| = 5, such that XI /∈ CUT5.

For I fixed this can be determined by projection (solve
convex QP with 16 variables).

Our heuristic: Given I, check whether there exists a
violated 5-clique inequality fT Xf < 1.
We determine the minimum of

fT Xf

over all 24 vectors f with support on I and denote it by sI .

We select those I where sI is significantly smaller than 1.
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General Computational Setup

Start:
• Find optimal solution X ∈ C ∩ M
Iteration:
(a) Determine subsets Ir with |Ir| = 5 and sIr

< 1
(b) Resolve with XIr

∈ CUT5 yielding new X
(c) Add triangle inequalities violated by X
(d) purge inactive triangles
(e) Resolve with new triangles added yielding new X

Note that after (e) the condition X ∈ C ∩ M is not
garantueed to hold. It could be inforced by repeating (c),(d)
and (e) until all triangles inequalities are satisfied again.
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Preliminary Computational Results

The relaxation C ∩ M is usually quite accurate on smaller
instances with n up to n ≈ 50, so we consider instances with
60 ≤ n ≤ 100.

We use randomized enumeration of all I with |I| = 5 and
include in one round 50 new subsets I with smallest values
sI .

The resulting SDP is solved using an interior-point code
(SDPT3).

Triangles are separated by complete enumeration.
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A snapshot

We select n = 70 and adjacency matrix with density of 50%,
edge weights are integers between -10 and 10.
At start we get:

zC = 996.1 zC∩M = 872.3, zmc = 856

round bound min sI sets I triangles
1 868.2 0.41 48 670
2 865.9 0.55 94 602
3 864.1 0.54 138 516
4 862.4 0.56 183 509
. . . . .

10 858.3 0.76 344 416
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Preliminary Results

random graphs, density 50 %, edge weights between -10
and 10

n C C ∩ M new cut gap
70 996.2 872.3 858.3 856 0.14
80 1317.2 1181.6 1162.6 1152 0.36
90 1491.1 1335.6 1307.8 1297 0.28

100 1959.6 1772.2 1745.8 1698 0.64

The last column shows by how much the gap between
C ∩ M and the cut value (normalized to 1) is reduced by the
new bound.
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Preliminary Results (2)

random dense graphs, edge weights between 1 and 10

n C C ∩ M new cut gap
70 6807.1 6725.9 6712.9 6693 0.60
80 8741.6 8639.6 8623.2 8604 0.54
90 11217.8 11109.4 11092.6 11070 0.57

100 13718.9 13593.3 13575.1 13530 0.71

The last column shows by how much the gap between
C ∩ M and the cut value (normalized to 1) is reduced by the
new bound.
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Preliminary Results (3)

random graphs, density 50 %, edge weights 1

n C C ∩ M new cut gap
70 742.0 727.8 727.0 727 0.00
80 967.7 952.5 949.8 947 0.51
90 1177.5 1158.4 1155.4 1148 0.71

100 1458.3 1436.8 1433.7 1424 0.76

The last column shows by how much the gap between
C ∩ M and the cut value (normalized to 1) is reduced by the
new bound.
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C, M , C ∩ M and the new bound

graph n C M C ∩ M new cut
g1s 100 144.6 137.5 130.007 128.46 126

spin5 125 125.3 110.3 109.334 108.90 108

Only preliminary results, after a few rounds of adding
subgraph constraints. The number of subgraphs included is
less than 300
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Last slide

• Fast separation?

• Exploit column generation idea (drop λj = 0)?

• Experiment with subsets of larger sizes?

• How solve resulting SDP more efficiently?

• Application to other problem classes?

• Include in Branch-and-Bound (BiqMac)?
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