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Preface

In the year 2000, the Pacific Institute for the Mathematical Sciences (PIMS)
began its Distinguished Chair Programme, an initiative through which the six
founding PIMS institutions! host extended visits of top mathematicians from
around the world. These visits are built around collaborations with researchers
at the host university, and include a series of lectures presented by the distin-
guished researchers, on any topic of their choice. They have been recorded on
video for Web distribution, and transcribed for publication by the Institute.

PIMS’s first Distinguished Chair was Dr. Yuri Matiyasevich, of the Steklov
Institute of Mathematics at Saint Petersburg, Russia, who spent the months
of February and March, 2000 at the University of Calgary. Dr. Matiyasevich
is recognized for his outstanding work in logic, and in particular for his contri-
butions to the resolution of Hilbert’s Tenth Problem, involving the solution of
Diophantine equations. His visit to Calgary was particularly rewarding, with
lectures attracting full audiences of mathematical and computational scientists
in both pure and applied areas, and setting a high standard for the ongoing
programme.

Thanks are due to a number of individuals whose efforts helped to make
this visit a successful one. In particular, we must acknowledge the diligence of
Dr. James Jones, who both nominated Dr. Matiyasevich for the position, and
acted as principal host during his visit; Dr. Rex Westbrook, who opened his
house to the Matiyasevich family during their stay in Canada; and Ms. Marian
Miles, who took care of the many details involved in bringing a family from
overseas for an extended visit to Canada. We are highly indebited to the De-
partment of Mathematics and Statistics at the University of Calgary, which
provided the facilities and other resources necessary to host our distinguished
visitor.

As editor, T would also like to extend my personal thanks to Dr. Matiyase-
vich’s wife Nina and daughter Dasha, who did an excellent job in transcribing
the five lectures into the notes you see here. As well, thanks are due to Ms.
Cathy Beveridge for her technical assistance with the manuscript. Without their
efforts, this book would not exist.

Dr. Michael Lamoureux, PIMS Deputy Director

1Simon Fraser University, and the universities of Alberta, British Columbia, Calgary, Vic-
toria, and Washington.
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Chapter 1

History of the problem

In this introductory chapter, I shall briefly describe the origin of Hilbert’s tenth
problem, the history of its solution, and some related problems which still remain
open for solution.

1.1 Hilbert’s address

Mathematics is a science which, to a great extent, is driven by problems.
Throughout history, some of these problems have presented major challenges
and teken decades to solve. One such challenge was Hilbert’s tenth problem,
namely, the question of the solvability of Diophantine equations.

In the year 1900, scientists from around the world gathered together in Paris
for the Second International Congress of Mathematicians. One of the invited
lecturers was the great German mathematician David Hilbert. As it was the last
year of the nineteenth century, he decided to survey what were, in his opinion,
the most important open problems in mathematics that the pending century
would inherit from its predecessor.

Hilbert’s famous paper Mathematische Probleme [17], which recounts his
lecture, lists twenty three specific problems. While most of them are collections
of related problems, the tenth problem is so short that it can be reproduced
here in its entirety.

10. Entscheidung der Losbarkeit einer diophantischen
Gleichung.

FEine diophantische Gleichung mit irgendwelchen Unbekannten
und mit ganzen rationalen Zahlkoefficienten sei vorgelegt : man soll
ein Verfahren angeben, nach welchem sich mittels einer endlichen
Anzahl von Operationen entscheiden lifit, ob die Gleichung in gan-
zen rationalen Zahlen lésbar ist. !

110. Determination of the Solvability of a Diophantine Equation. Given a dio-
phantine equation with any number of unknown quantities and with rational integral numerical
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1.1.1 What are Diophantine equations

A Diophantine equation is an equation of the form
D(zy,...,o,) =0 (1.1)

where D is a polynomial with integer coefficients.

What are rational integers

In his tenth problem, Hilbert raises the question of solving Diophantine equa-
tions in “rational integers”. This terminology may sound a bit strange and
misleading. In fact, Hilbert had in mind nothing more than the familiar inte-
gers 0,£1,+£2,... He used the name rational integers because the term integers
can also be understood in a broader sense of algebraic integers. Below, the word
integer will be used in its “familiar sense” unless otherwise stated explicitly.

‘Who was Diophantus

Diophantus was a Greek mathematician who lived in the third century A.D. The
equations that bear his name are polynomial equations with integer coefficients.
Although the ancient Greek mathematicians had solved polynomial equations
long before Diophantus, they had always done so in a geometrical way. For
example, the solution of the equation

22 =2 (1.2)

would have been given as the diagonal of the square with unit sides. Diophantus
began to solve polynomial equations in terms of rational numbers. For him, the
equation (1.2) had no solution.

1.1.2 Why the problem was still open in 1900

Since Diophantus’ time, number-theorists have found solutions for many Dio-
phantine equations and also proved the insolvability of a large number of other
equations. Why then did Hilbert consider, in 1900, that the algorithmic solution
of Diophantine equations was an open problem?

Mathematicians, having investigaed the existing solutions and proofs of
insolvability for Diophantine equations, realized that many different, specific
methods had been invented for various classes of equations, or even for different
individual equations. In the tenth problem Hilbert asked for a universal method
for recognizing the solvability of Diophantine equations.

coefficients: Devise a process according to which it can be determined by a finite number of
operations whether the equation is solvable in rational integers.



1.1. HILBERT’S ADDRESS 3

1.1.3 Modern understanding of Hilbert’s tenth problem

Today we consider Hilbert’s tenth problem to be a decision problem. This means
that the problem consists of an infinite number of subproblems (specified by
particular equations) each of which requires an answer “YES” or “NO” (“there
is” or “there is not” a solution). An expected solution to the problem should
be an algorithm that is both applicable to an arbitrary equation and produces
the correct answer.

Why Hilbert did not use the word algorithm

Hilbert did not use the word “algorithm” in his statement of the tenth problem.
Instead, he used the rather vague wording “a process according to which it can
be determined by a finite number of operations ...”. Although he could have
used the word “algorithm,” it would not really have helped much to clarify his
statement because, at that time, there was no rigorous definition of the general
notion of an algorithm. What was known were different examples of particular
mathematical algorithms, such as Fuclid’s algorithm for finding the greatest
common divisor of two integers. However, the absence of a general definition
of an algorithm was not in itself an obstacle to finding a positive solution of
Hilbert’s tenth problem. If somebody invented the required “process,” it should
be clear that in fact this process was a bonafide “algorithm.”

The situation is fundamentally different when there is no possible algorithm,
as turned out to be the case with Hilbert’s tenth problem. To prove that no
possible algorithm exists, or even to state it rigorously, one requires a definition
of an algorithm. Such a definition was not developed until much later, in the
1930’s, in the work of Kurt Goédel, Alan Turing, Emil Post, Alonso Church,
and other logicians, when different tools were introduced to describe compu-
tational processes: the A-calculus, recursive functions, Turing machines, and
so on. Alonso Church was the first to understand that each specific, particu-
lar definition adequately reflects our intuitive idea about the general notion of
algorithms. This assertion is now known as Church’s thesis.

Church’s thesis is the principal tool required to prove that Hilbert’s tenth
problem is undecidable.

1.1.4 The negative solution of Hilbert’s tenth problem

Today we know that Hilbert’s tenth problem has no solution. That means that
it is undecidable as a decision problem.

Theorem (The undecidability of Hilbert’s tenth problem) There
is mo algorithm which, for a given arbitrary Diophantine equation, would tell
whether the equation has a solution or not.
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A stronger form of the undecidability of Hilbert’s tenth problem

The non-existence of an algorithm for Hilbert’s tenth problem means that any
given algorithm A (presumed to be the universal equation solver) fails for some
particular equation

Da(z1,...,2m) =0. (1.3)

That is, for this counterexample, either the algorithm never stops, or its output,
if any, is wrong.

Theorem (A stronger form of the undecidability of Hilbert’s tenth
problem) There is an algorithm which, for a given algorithm A, produces a
counterexample to the assumption that A solves Hilbert’s tenth problem.

Would Hilbert accept this as a “solution”?

The algorithmic undecidability of Hilbert’s tenth problem is a negative solution.
But would Hilbert himself accept this as a “solution” at all? I believe the answer
is “YES”. To support this point of view, I wish to cite a part of Hilbert’s famous
lecture Mathematische Probleme [17], in which the problems were posed:

Mitunter kommt es vor, da} wir die Beantwortung unter un-
geniigenden Voraussetzungen oder in unrichtigem Sinne erstreben
und infolgedessen nicht zum Ziele gelangen. Es entsteht dann die
Aufgabe, die Unmoglichkeit der Loésung des Problems unter den
gegebenen Voraussetzungen und in dem verlangten Sinne nachzuwei-
sen. Solche Unmdglichkeitsbeweise wurden schon von den Alten
gefihrt, indem sie z. B. zeigten, dafl die Hypotenuse eines gleich-
schenkligen rechtwinkligen Dreiecks zur Kathete in einem irrationalen
Verhéltnisse steht. In der neueren Mathematik spielt die Frage nach
der Unmdoglichkeit gewisser Losungen eine hervorragende Rolle, und
wir nehmen so gewahr, daf} alte schwierige Probleme wie der Beweis
des Parallelenaxioms, die Quadratur des Kreises oder die Auflésung
der Gleichungen 5. Grades durch Wurzelziehen, wenn auch in an-
derem als dem urspriinglich gemeinten Sinne, dennoch eine vollig
befriedigende und strenge Losung gefunden haben.

Diese merkwiirdige Tatsache neben anderen philosophischen Griin-
den ist es wohl, welche in uns eine Uberzeugung entstehen laBt, die
jeder Mathematiker gewifl teilt, die aber bis jetzt wenigstens nie-
mand durch Beweise gestiitzt hat-ich meine die Uberzeugung, da8
ein jedes bestimmte mathematische Problem einer strengen Erledi-
gung notwendig fihig sein miiusse, sei es, dafl es gelingt, die Beant-
wortung der gestellten Frage zu geben, sei es, dal die Unmdglichkeit
seiner Losung und damit die Notwendigkeit des Mifilingens aller Ver-
suche dargetan wird.2

2Qccasionally it happens that we seek the solution under insufficient hypotheses or in an
incorrect sense, and for this reason we do not succeed. The problem then arises: how do we
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1.2 Variations of Diophantine equations

The stronger form of the undecidability of Hilbert’s tenth problem stated above,
indicates that there is a close relationship between algorithms and Diophantine
equations. The existence of such a relationship was conjectured in the beginning
of the 1950’s by the American mathematician Martin Davis. Before I state his
conjecture, it is necessary to introduce more terminology. To this goal, consider,
initially, a modification of Hilbert’s tenth problem.

1.2.1 Natural number solutions

In the tenth problem, Hilbert asked about the existence of solutions in integers.
One can also consider the similar problem about solvability in natural numbers.
For a given Diophantine equation, the problem of deciding whether it has a
solution in integers and the problem of deciding whether it has a solution in
natural numbers are, in general, two quite different problems.

For example, the equation

(x+1°2+@y+17°=(2+1)3 (1.4)

clearly has infinitely many integer solutions of the form z = 2, y = —1. How-
ever, the fact that this equation has no solutions in natural numbers is not
trivial at all.

On the other hand, let

D(z1,...,2m,) =0 (1.5)
be an arbitrary Diophantine equation; suppose that we are looking for its solu-
tions in integers x1,...,Z;,. Consider another equation

D(p1—q1,---,Pm — qm) = 0. (1.6)
It is clear that any solution of equation (1.6) in natural numbers pi,...,Pm,

i, - --,qm yields the solution

Z1 D1 —¢1

(1.7)

Tm = Pm —qm

show the impossibility of the solution under the given hypotheses, or in the sense contemplated.
Such proofs of impossibility were effected by the ancients, for instance when they showed that
the ratio of the hypotenuse to the side of a right isosceles triangle is irrational. In later
mathematics, the question as to the impossibility of certain solutions plays a preéminent part,
and we perceive in this way that old and difficult problems, such as the proof of the axiom
of parallels, the squaring of circle, or the solution of equations of the fifth degree by radicals
have finally found fully satisfactory and rigorous solutions, although in another sense than
that originally intended.

It is probably this important fact along with other philosophical reasons that gives rise to
the conviction (which every mathematician shares, but which no one has as yet supported by
a proof) that every definite mathematical problem must necessary be susceptible of an exact
settlement, either in the form of an actual answer to the question asked, or by the proof of
the impossibility of its solution and therewith the necessary failure of all attempts.
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of equation (1.5) in integers z, ..., Zmy,. Moreover, for any z1, . .., Z,, forming
a solution of equation (1.5) we can find natural numbers p1, ..., Pm, g1, -- -, m
satisfying (1.7) and, hence, yielding a solution of equation (1.6).

Thus, one says that the problem of solvability of equation (1.5) in integers
reduces to the problem of solvability of equation (1.6) in natural numbers. Re-
spectively, one also says that the decision problem of recognizing the solvability
of Diophantine equations in integers reduces to the decision problem of recog-
nizing the solvability of Diophantine equations in natural numbers.

In fact, these two decision problems are equivalent in the sense that each of
them reduces to the other one, but the reduction in the other direction is less
evident. Let

be an arbitrary Diophantine equation for which we are looking for natural num-
ber solutions. Consider the following equation:

Dw? 423 +yf + 27, ,wi + 22, +y2, +22)=0. (1.9

It is clear that any solution of the latter equation in integers yields a solution
of the former equation in natural numbers. Conversely, every solution of (1.8)
in natural numbers zy, ..., Z,;, can be obtained from some solution of equation
(1.9) in integers wy, ..., zm, because, by Lagrange’s theorem, every natural
number is the sum of four squares.

Thus, we see that the two problems — that of recognizing whether a Dio-
phantine equation has a solution in integers, and that of recognizing whether it
has a solution in natural numbers — are, in general, different problems for a par-
ticular equation, but they are equivalent when considered as decision problems,
i.e., algorithmic problems about the whole class of Diophantine equations.

For technical reasons, it is easier to work with variables ranging over natural
numbers, and, therefore, most of the time, I shall suppose that our unknowns
are natural numbers.

1.2.2 Parametric equations

Besides individual Diophantine equations, one can also consider families of Dio-
phantine equations. Such a family is defined by a Diophantine equation of the
form

D(ay,...,0n,T1,...,Tm) =0, (1.10)

where D is a polynomial with integer coeflicients, the variables of which are
split into two groups:

e the parameters ai,...,an;
e the unknowns x1,...,ZTm.

We shall suppose that the parameters, as well as the unknowns, can assume
positive integer values only.
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For some choices of the values of the parameters aq,...,a, the equation can
have a solution in the unknowns x1,...,z,; for other choices of the values of
the parameters, it can have no solution.

1.2.3 Diophantine sets

Consider the set 9 of all n-tuples {a1, . - ., a,) for which the parametric equation
(1.10) has a solution, that is

(@1,...,a,) €M<= F21 ... 2n{D(a1,...,an,Z1,...,2m) = 0}. (1.11)
Sets having such representations are called Diophantine sets. An equivalence of
the form (1.11) is called the Diophantine representation of the set 9. With an

abuse of language, one can say that the equation (1.10) itself is a representation
of the set.

Examples

Some easy examples of Diophantine sets are the following:
o the set of all squares, represented by the equation

a—z°=0; (1.12)

o the set of all composite numbers, represented by the equation

a—(z1+2)(z2+2) =0; (1.13)

e the set of all positive integers which are not powers of 2, represented by
the equation

a— (2z1 + 3)z2 = 0. (1.14)

Although it is perhaps less evident, the set of all numbers which are not
squares is also Diophantine; this set is represented by the equation

(a—22—z-1)2+((z+1)?-a-y—1)>=0. (1.15)

However, if one asks about the complements of the other two sets above, the
answers are not clear at all.

o Is the set of all prime numbers Diophantine?

o Is the set of all powers of 2 Diophantine?
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1.3 Davis’s conjecture

It is natural to seek a characterization of the whole class of Diophantine sets
or, at least, some necessary or sufficient conditions for a set to be Diophan-
tine. One necessary condition arises if one looks at Diophantine sets from the
computational point of view. As soon as on is given a parametric Diophantine
equation

D(a1,...,an,T1,...,&m) =0 (1.16)

one can effectively list all n-tuples from the Diophantine set 9t represented by
this equation. Namely, one needs only to look over, in some order, all (n + m)-

tuples of possible values of all the variables a1, ..., ay, 1, ... T, and check every
time whether the equality (1.16) holds or not. If it does, one puts the n-tuple
{ai,.-.,ay) on the list of elements of M. In this way, every n-tuple from 90t will

sooner or later appear on the list, although perhaps many times.

The above described algorithm for listing Diophantine sets has a very spe-
cial form. Allowing for arbitrary algorithms, we arrive at the following notion
studied in computability theory.

Definition A set 9 of n-tuples of natural numbers is called listable or
effectively enumerable, if there is an algorithm which would print in some order,
possibly with repetitions, all the elements of the set IN.

For example, it is easy to write a program which would, working for an
infinitely long time, print all prime numbers or all powers of 2, and thus the
corresponding sets are listable.

As discussed above, for a set 9t to be Diophantine, it is necessary that 90t
is listable. Martin Davis [8] conjectured that this condition is also sufficient.

Davis’s conjecture The notions of a Diophantine set and a listable set
coincide; i.e., a set is Diophantine if and only if it is listable.

This conjecture immediately implies the undecidability of Hilbert’s tenth
problem because there were known examples of listable sets without algorithms
for recognizing their elements.

1.3.1 Corollaries of Davis’s conjecture

Davis’s conjecture was bold and had many striking consequences.

Prime numbers as all positive values of a polynomial

Davis’s conjecture, if true, implied the existence of a particular polynomial P
such that the equation

Pla,z1,...,%m) =0 (1.17)
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has a solution if and only if a is a prime number. Hilary Putnam [42] noted
that such an equation can be rewritten in the following form:

a=(xo+1)(1 = P*(20,21,...,7,)) — L. (1.18)

In fact, every solution of equation (1.17) can be extended to a solution of equa-
tion (1.18) by putting
o = a. (1.19)

On the other hand, in any solution of equation (1.18) with non-negative a, the
product in the right-hand side should be positive, which is possible only if

P(zg,...,2,) =0, (1.20)

which implies (1.19) and consequently (1.17).

Thus Davis’s conjecture implied the existence of a particular polynomial
(namely, the right-hand side in (1.18)) such that the set of all its non-negative
values was exactly the set of all prime numbers. This corollary was considered,
by many researchers, as an informal argument against Davis’s conjecture.
Universal Diophantine equation
One can list all of the listable sets:

Mo, M1, ..., My, ... (1.21)
Formally, for every n there exists a listable set i, of (n + 1)-tuples such that
(a1,-..,an) €My, <> (a1,...,0n, k) € Uy (1.22)

Davis’s conjecture implied that the set ii,, being listable, should have a
Diophantine representation:

(aty.-+y0p,apy1) € Uy, <
Jy1 ... ym{Un(as,-..,0n, ant1,Y1,---,ym) = 0}. (1.23)

Thus a Diophantine representation of an arbitrary listable set of n-tuples can
be obtained from a single polynomial U,, just by fixing the value of one of its
variables:

(a1,...,an) € My, <
Jyi...ym{Un(as,...,an, k41, ..,ym) = 0}. (1.24)

In other words, the equation
Un(ar,---,an, ky1,---,ym) =0 (1.25)
is universal in the following sense: for every Diophantine equation

D(ay,.--y0n,T1,---,Zm) =0, (1.26)
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one can effectively find a particular number kp, such that, for given values of
the parameters ay,...,an, equation (1.26) has a solution in z,...,z,, if and
only if the equation

Unlar,...,an,kp,y1,-..,ym) =0 (1.27)

has a solution in y1,...,ynm-

Note that equation (1.27) has a fixed degree and a fixed number of un-
knowns, while equation (1.26) can be of an arbitrary high degree and can have
an unlimited number of unknowns.

1.3.2 Davis’s normal form

Martin Davis’s first step to proving his conjecture was to prove in [8] that every
listable set 991 has an almost Diophantine representation.

Theorem (Martin Davis) Fvery listable set I has a representation of the
form

(a1, ..., an) € M =
Vy< 23z ... {D(a1, ... ,an, 1, -, Tm,y,2) = 0}.

A representation of this type is said to be in the Davis normal form. This
form of representation was a quantitative improvement over the classical result
of Kurt Godel [16] who demonstrated the existence of similar arithmetical repre-
sentations with an arbitrary number of universal quantifiers. All that remained
to prove Davis’s conjecture was to eliminate the sole universal quantifier. This
last step took twenty years.

1.3.3 Exponential Diophantine equation

The universal quantifier was eliminated from the Davis normal form in the
celebrated joint paper of Martin Davis, Hilary Putnam and Julia Robinson
[12] published in 1961. However, the cost of this elimination was rather high.
Namely, Davis, Putnum and Robinson were forced to consider a broader class of
equations, the so-called exponential Diophantine equations. These are equations
of the form

EL(.Z’]_,$2,..-,ZL'm) = ER(mla'Z'%"')wm) (128)

where Ep, and Eg are so-called exponential polynomials, i.e., expressions con-
structed by combining the variables and particular positive integers using the
traditional rules of addition, multiplication and exponentiation.

An example of an exponential Diophantine equation is

(x4 1)V*2 4 2% = y@+D7 Lyt (1.29)
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Exponential Diophantine representations

Similar to the case of Diophantine equations, one can consider parametric ex-
ponential Diophantine equations. In addition, one can introduce the notions
of exponential Diophantine sets and exponential Diophantine representations.
Davis, Putnam and Robinson proved an analogue of Davis’s conjecture for expo-
nential Diophantine equations, namely, that there is an exponential Diophantine
representation for every listable set.

Theorem (Martin Davis, Julia Robinson, Hilary Putnam [12]) For
every listable set MM of n-tuples of non-negative integers there is a representation
of the form

(a1,...,0,) € M =
Az1 ... xmEL(a1, -y Gy 1, Ty o Ty) =

Er(at,-..,Qn,T1,%2, ..., Tm)

where Er, and Eg are exponential polynomials.

Universal exponential Diophantine equation

This theorem was a great breakthrough because it gives a purely existential
representation and, thus, one has immediate corollaries about these equations.
In particular, one can construct a universal exponential Diophantine equation

Ei(ar,...,an, k,x1,%2,...,%m) = Er(ai,...,0n,k,x1,2Z2,...,25) (1.30)

and, hence, solving an arbitrary exponential Diophantine equation can be re-
duced to solving an exponential Diophantine equation with a fixed number of
unknowns. In fact, it is known today that this number can be as low as only
three unknowns. The original proof of this estimate was given in [32] and was
also reproduced in [34, 51].

Although such a reduction in the number of unknowns is purely a number-
theoretical statement, it was not discovered nor even suspected by number-
theorists. Rather, it was initially proven by logicians using notions from com-
putability theory. Today one can construct [34, 35] a universal exponential
Diophantine equation by purely number-theoretical tools.

However, despite the remarkable results of Davis, Putnam and Robinson,
even some logicians found the existence of a universal Diophantine equation
implausible. In his synopsis for Mathematical Reviews [23] of this celebrated
paper of Davis, Putnam and Robinson [12], G. Kreisel wrote:

These results are superficially related to Hilbert’s tenth Prob-
lem on (ordinary, i.e., non-exponential) Diophantine equations. The
proof of the authors’ results, though very elegant, does not use re-
condite facts in the theory of numbers nor in the theory of r.e. sets,
and so it is likely that the present result is not closely connected with
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Hilbert’s tenth Problem. Also it is not altogether plausible that all
(ordinary) Diophantine problems are uniformly reducible to those in
a fixed number of variables of fixed degree, which would be the case
if all r.e. sets were Diophantine.

1.3.4 From exponential to genuine Diophantine equations

In order to prove DAvis’s conjecture, in view of the work by Davis, Putnam
and Robinson, it was sufficient to show that the set 2 of all triples of the form
{a,b,a’) is Diophantine. In fact, suppose that this is so and let

(a,bc) €A & a’=c

& zr..ozm{A(a,bc, 21, ., 2m) =0} (1.31)

be the corresponding Diophantine representation. With the aid of such a poly-
nomial A, one can transform an arbitrary exponential Diophantine equation
into an equivalent Diophantine equation with extra unknowns.

Consider (1.29) as an example equation. Here there are three exponentia-
tions and one can use three copies of the Diophantine equation from (1.31) to
transform equation (1.29) into an equivalent Diophantine equation

A2z +1,2+2,8,2],...,2) +

A*(z 4+ 1,2,8", 2),...,200) +
Az(y 8” S”I zIII zlll) +
3 9 y”L s *m
(s'+23=s"—yH? = 0. (1.32)

In other words, in order to prove that every listable set is Diophantine it was
sufficient to prove that one particular set of triples has a Diophantine represen-
tation (1.31).

Robinson predicates

The study of this problem was begun by Julia Robinson much earlier, at the
beginning of the 1950’s, i.e., at the same time when Davis posed his conjecture.

Robinson failed to find a Diophantine representation for exponentiation.
However, in [45], she found a condition sufficient for the existence of such a
representation.

Theorem (Julia Robinson) There is a polynomial A(a,b,c,21,...,2m)
such that

a®=c & 3z...2,{Aa,b,c,21,...,2,) = 0}
provided that there is a Diophantine equation

J(u7v7y17"'7yw) =0 (133)

such that



1.3. DAVIS’S CONJECTURE 13

e in every solution of the equation we have u < v¥ ;

o for every k there is a solution such that u > v*.

Equation (1.33) defines a relation between v and v which holds if and only
if the equation has a solution. Robinson called relations satisfying the above
two inequalities relations of exponential growth. They also became known as
Robinson predicates.

Now, in order to prove Davis’s conjecture, it remained to find a single relation
of exponential growth defined by a Diophantine equation. Surprisingly, among
numerous two-parameter equations studied in number theory from the time of
Diophantus up to the end of 1960’s, no equation was known that defined a
relation of exponential growth.

This fact, together with the unbelievable corollaries of Davis’s conjecture,
produced serious doubts about the existence of a Robinson relation. At some
point, Robinson herself lost her belief in it and began to look for a positive
solution of Hilbert’s tenth problem (see [43]).

The last step

Finally, in a work published in 1970 [28], I was able to construct the required
equation defining a relation with exponential growth. It was precisely the rela-
tion

v = ¢2u (134)
where ¢, @1, ...is the well-known sequence of Fibonacci numbers:
0,1,1,2,3,5,8,13,21,... (1.35)

This celebrated sequence has been extensively studied since the time of Fi-
bonacci. Nevertheless, I was able to find a new property for this sequence which
had been unknown to number-theorists for centuries, namely

2| bm = ¢n | . (1.36)

It is not difficult to prove this property of Fibonacci numbers after it has been
stated (see Chapter 3).

My construction of a relation of exponential growth turned out to be chrono-
logically the last step in the proof of Davis’s conjecture which now is often re-
ferred to as the DPR M-theorem, denoting Davis-Putnam-Robinson-Matiyasevich.

DPRM-theorem Every listable set I of n-tuples of non-negative integers
has a Diophantine representation, that is

(a1,...,a,) EM <=
dzy...zp{D(a1,...,0n,%1,...,Tm) = 0}

for some polynomial with integer coefficients.



14 CHAPTER 1. HISTORY OF THE PROBLEM

Nowadays, detailed and simplified proofs of this theorem can be found in
many publications, in particular, in [1, 4, 6, 9, 10, 21, 26, 27, 29, 34, 51]. There
is also an Internet website devoted to Hilbert’s tenth problem, as listed in [54].

1.4 Some corollaries of the DPRM-theorem

With the proof of Davis’s conjecture, one obtains all the corollaries previously
believed to be implausible.

The whole proof is constructive in the sense that given any standard repre-
sentation of a listable set, one can actually find its Diophantine representation.

1.4.1 Polynomial for primes exhibited

The very first example of one of those “implausible” corollaries is a represen-
tation of the prime numbers by polynomials. That is, there is a particular
polynomial representing the set of prime numbers, as described in [22].

Theorem (J.P. Jones, D. Sato, H. Wada, D. Wiens) The set of all
prime numbers is equal to the set of all positive values of the polynomial
(k+2){ 1 —[wz+h+j—q?
—[(gk+29+Ek+1)(h+4)+h—2]
—-R2n+p+qg+z—e
— [16(k +1)*(k +2)(n + 1) + 1 — f?]
— [Fle+2)(a+1)*+1—0"]"
- [(az —1)y2 41— x2]2
— [16r2y*(a® — 1) + 1 — u2]2
—[n+l4+v—y)?
—[((a+v*(@w?—a)®>—1) (n+4dy)* + 1 — (z + cu)2]2
—[@®-DP+1- m2]2
—[g+yla—p—1)+s(2ap+ 2a — p* — 2p—2) —:zz]z
— [z +pl(a—p) +t(2ap — p* — 1) — pm]’
—fai+k+1—1-4d)

2

—[p+i(a—n—1)+b(2an + 2a — n® — 2n — 2) —m]z }.
assumed for non-negative integer values of twenty six variables a,. . . ,z.

Today, one can construct a polynomial that represents the prime numbers
using only ten variables (see [31]).
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1.4.2 Universal equations

The existence of universal Diophantine equations means that traditional num-
ber-theoretical classifications of Diophantine equations as equations in 1,2, ...
unknowns and as equations of degree 1,2, ... collapse. It is easy to reduce the
degree to four, while the current best bound for the number of unknowns is nine.
Although I obtained this result and its proof myself (see [30]), for various reasons
(see [34]) I never published it. A detailed proof was published by J. P. Jones
[18].

However, at present, we cannot construct a single universal Diophantine
equation of degree four in nine unknowns only. Naturally, there is a trade-off
between the degree and the number of unknowns. Presently, (see [18]), the beset
bounds obtainable are as follows: Solving an arbitrary parametric Diophantine
equation can be reduced to solving another Diophantine equation (with the same
parameters) of degree D in M unknowns where (D, M) is any of the following
pairs:

(4,58), (8,38), (12,32), (16,29), (20, 28), (24,26), (28,25), (36,24),
(96,21), (2668,19), (2 x 10%,14), (6.6 x 103, 13), (1.3 x 10, 12),
(4.6 x 10%4,11), (8.6 x 10%4,10), (1.6 x 10%5,9).

1.5 Hilbert’s tenth problem in the broader sense

One can ask the following question: would Hilbert be satisfied with the statement
of the tenth problem if he knew it would be “solved” in the negative sense? 1
believe the answer is “NO.” Let me explain my point of view.

1.5.1 Solution in rational numbers

One can only guess why Hilbert asked about solutions only in “integers.” This, as
explained earlier, is equivalent to asking for an algorithm for solving Diophantine
equations in non-negative integers. By contrast, Diophantus was looking for
solutions in rational numbers. So why did Hilbert not also ask about “a process”
to determine the existence of a solution in rational numbers?

The answer is more or less evident. Hilbert was an optimist and believed
in the existence of an algorithm for solving Diophantine equations in integers.
Such an algorithm would allow one to solve equations in rational numbers as
well. Namely, solving an equation

D(X1s--yXm) =0 (1.37)

in rational x1,..., Xxm iS equivalent to solving the equation

D x1—y1j___7$m—ym =0
z+1 z+1
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in non-negative integers z1,...,Zm, Y1,---,Ym, 2. Lhe latter equation is equiv-
alent to the Diophantine equation

(z+1)'D (ml‘yl,...,xm‘ym) =0

z+1 z+1

where d is the degree of D.

There is a less evident reduction of solving Diophantine equations in rational
numbers to solving homogenous Diophantine equations in integers. Start by
transforming (1.37) into

I Tm
Dl—,...,— ) =0 1.38
(%) (1.38)
and then into - x
d T mY\ _
zD(z,...,—z) 0. (1.39)

An additional trick (see, for example, [34, 51]) is required to guarantee that
z #0.

So while asking explicitly about solving Diophantine equations in integers,
Hilbert was also asking implicitly about solving Diophantine equations in ra-
tional numbers. A positive solution of the tenth problem, as it was originally
stated, would give immediately a positive solution to the similar problem about
solutions in rational numbers.

However, we have obtained a negative solution of the original statement of
the tenth problem. What does this imply for solving Diophantine equations in
rational numbers? Nothing. Homogenous Diophantine equations form a very
special subclass of all Diophantine equations and it is quite possible that for
this narrower class, a corresponding algorithm exists.

1.5.2 Two modern understandings of Hilbert’s tenth prob-
lem

It is likely that, if Hilbert had anticipated the non-existence of the algorithms

for solving Diophantine equations in integers, he would have expanded the state-

ment of the tenth problem to include the case of solving equations in rational
numbers. Thus, we can understand the tenth problem in two senses.

e the narrower sense, i.e., literally as the problem was stated;

e the broader sense, including other problems for which the solutions would
easily follow from a positive solution of the tenth problem, as it was stated.

In the narrow sense, the tenth problem is closed, but in the broader sense it
remains open.
Solving equations in rational numbers

Solving equations in rational numbers remains one of the most important open
cases of Hilbert’s tenth problem, considered in its broader sense. To date,
progress in this case has been rather meagre.
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Solving equations in Gaussian integers

Besides solving Diophantine equations in integers, one may be interested in
solving them in different rings of integers from various algebraic extensions of
the field of rational numbers. For example, one may be interested in solving
Diophantine equations in Gaussian integers, i.e., complex numbers of the form
a + bi where a and b are rational integers and i = /—1. Clearly, the equation

has a solution in Gaussian integers if and only if equation
D(z1 +yiiy . s Tm + Ymi) =0 (1.41)

has a solution in rational integers. Now one can separate the real and the
imaginary parts by writing

D(z1 +y1i, .- T + ymi) =
Dr(z1,-- s @m,¥1,- - Ym) + Di(z1, .- T, y1, - - ym)i (1.42)

and rewriting (1.41) as a genuine Diophantine equation

Dl%,(mla"'amm7y17"'7ym) +DI2($17-"7$m7y17"'7ym) =0. (143)

Hence one may consider solving Diophantine equations in Gaussian integers
as part of Hilbert’s tenth problem in the broader sense.

This problem was shown to be undecidable by J. Denef [13]. Denef found a
reduction in the opposite direction, i.e., he showed how solving a Diophantine
equation

D(z1,...,2,)=0 (1.44)

in rational integers can be reduced to solving another Diophantine equation

G(Xb"':XUJ) =0 (145)

in Gaussian integers. As a result of this reduction, the undecidability of Hilbert’s
tenth problem in the narrower sense implies the undecidability of its counterpart
in Gaussian integers.

Cases of other rings of algebraic integers

Similar reductions were found by different researchers (for references see survey
[41]) for rings of integers from some other algebraic extensions of the field of
rational numbers. While these progress for the tenth problem in the broader
sense, the reductions were done only for certain specific extensions. The general
case of arbitrary extensions still remains an important open case of the tenth
problem in the broader sense.
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1.5.3 Connections with other famous problems

Considered in a broader sense, Hilbert’s tenth problem deals with solutions that
would easily follow from a positive solution of the problem, as it was originally
stated. Thus, the scope of the tenth problem in the broader sense depends
on one’s understanding of the word “easily.” Certainly, solving Diophantine
equations in rational numbers or in Gaussian integers would follow easily. Yet,
there are many other problems whose reductions to the tenth problem are not
difficult, but simply less evident. Some examples of these problems are presented
below.

Fermat’s Last Theorem

Hilbert did not explicitly include Fermat’s Last Theorem in his Problemen. For-
mally, this theorem considers the insolvability of an infinite series of Diophantine
equations

" 4+ y" = 2" (1.46)

with n > 3, z > 1, y > 1, and, thus, it is not a case of the tenth problem (for
which Hilbert considered solving a single Diophantine equation rather than an
infinite series of them).

Fermat’s equation is a Diophantine equation in z, y, z for a fixed value of
n, but is an exponential Diophantine equation if viewed as an equation in four
unknowns n, z, y, 2. Knowing how to transform an arbitrary exponential Dio-
phantine equation into a genuine Diophantine equation with extra unknowns,
one is able (as was actually done in [47, 5]) to construct a particular polynomial
F with integer coefficients such that equation

F(n,z,y,z,u1,...,um) =0 (1.47)

has a solution in wuy, ...,u,, if and only if n, z, y and z form a solution to
(1.46). Hence, Fermat’s Last Theorem is equivalent to the statement that the
particular, genuine, Diophantine equation

Flw+3,z+1,y+1,z,u1,...,uy) =0 (1.48)

has no solution in non-negative unknowns. A positive solution of the tenth
problem in its original formulation would provide a tool to prove or disprove
Fermat’s Last Theorem. So, while it was not included ezplicitly among Hilbert’s
problems, Fermat’s Last Theorem is implicitly present as a very particular case
of the tenth problem.

Goldbach’s Conjecture

Hilbert included Goldbach’s Conjecture in his eighth problem. The conjecture,
which is still open, states that every even integer greater than 2 is the sum of
two prime numbers.

Consider the set & of even numbers which are greater than 2, but which
still are not the sum of two primes. For any particular number a, one can easily
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check whether it is a counterexample to Goldbach’s conjecture or not. Thus,
this set & of counterexamples is listable and, hence, Diophantine. Consequently,
one can find a particular Diophantine equation

G(a,z1,---,T,) =0 (1.49)

that has a solution if and only if a spoils the conjecture. In other words, Gold-
bach’s conjecture is equivalent to the statement that the set & is empty, and,
hence, to the statement that Diophantine equation

G(xo, @1y 3%m) =0 (1.50)

has no solution at all.
Thus, the positive solution of the tenth problem in its original form would
allow one to know whether Goldbach’s conjecture is true or not.

The Riemann Hypothesis

Besides Goldbach’s conjecture, Hilbert included in his eighth problem another
outstanding conjecture, the famous Riemann Hypothesis. In its original formu-
lation, it is a statement about the complex zeros of Riemann’s zeta function
which is the analytical continuation of the series

=1

((z) = vl (1.51)

n=1

that converges for R(z) > 1.
Nevertheless, we can also construct a particular Diophantine equation

R(z1,...,2,) =0 (1.52)

that has no solution if and only if the Riemann hypothesis is true. Such a
reduction requires either the use of the theory of functions of a complex variable
or the use of the fact that the Riemann Hypothesis can be reformulated as a
statement about the distribution of prime numbers (for details see [11, 34]).

Thus, once again, an outstanding mathematical problem is seen as a specific
case of Hilbert’s tenth problem in its original formulation.

The Four Color Conjecture

In mathematical logic there is a powerful tool, arithmetization, which allows one
to reduce to numbers many problems which are not about numbers at all.

As my last example, I shall consider yet another famous challenge to math-
ematicians, the Four Color Conjecture, which was established as a theorem in
1976 by the work of K. Appel and W. Haken [3]. This is a problem about color-
ing planar maps, but again we can construct a particular Diophantine equation

C(x1,.yxm) =0 (1.53)

that has no solution if and only if the Four Color Conjecture is true. Again,
a problem which was not included by Hilbert in his Problemen appears in an
implicit form in the tenth problem.
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What use could be made of such reductions

I have described the reductions of four famous problems to Diophantine equa-
tion:

Fermat’s Last Theorem,

Goldbach’s Conjecture,

Riemann Hypothesis,

Four Color Conjecture.

Two of these four problems have now been solved; two others remain open.
The reductions of these problems may be considered striking, amazing, and
amusing, but could they also be deemed to be useful? Hilbert’s tenth problem is
undecidable so a universal method to solve all these problems does not exist. We
can hardly hope to solve any of these problems by looking at their corresponding,
particular Diophantine equations because they are rather complicated.

However, we can reverse the order of our problem solving strategy. The
tenth problem is undecidable, therefore, we need to invent more and more ad
hoc methods to solve more and more Diophantine equations. This way, we can
view the proof of Fermat’s Last Theorem and that of the Four Color Theorem
as deep tools for treating particular Diophantine equations and we can try to
extend these techniques to other equations.

The reduction of famous problems to Diophantine equations can also be
considered as a psychological “explanation” of the insolvability of Hilbert’s tenth
problem: one could hardly expect that so many difficult problems, from such
diverse areas of mathematics, could be tackled by some universal “process.”



Chapter 2

Number-theoretical
prerequisites

In this chapter, I introduce more terminology and some useful tools for con-
structing exponential Diophantine representations, as well as particular exam-
ples of such representations which are important for the proof in Chapter Four.

2.1 Exponential Diophantine equations
Consider exponential Diophantine equations. They are equations of the form
Ei(z1,...,2m) = Er(z1,...,Zm) (2.1)

where Ep, and Eg are so-called exponential polynomials, i.e., expressions con-
structed by combining the variables and particular non-negative integers using
the traditional rules of addition, multiplication and exponentiation. We assume
the unknowns x4, ..., T, are natural numbers, i.e., the numbers 0,1,2,....

It is necessary to define the value of 0°. This can be done in different ways—
compare three numbers

lim 0° =0, lim € =1, lim € = 1. (2.2)
e—0+ e—0+ €—0+

For the purpose of the proof, it is convenient to define 0° = 1.

2.1.1 Why subtraction is not allowed in exponential Dio-
phantine equations

The expression
z—y
(@ —y)” (2:3)
looks like a well-formed formula. However, there is no reasonable way to assign
a numerical value to it, for example, if x = 1, y = 3. This is the reason

21



22 CHAPTER 2. NUMBER-THEORETICAL PREREQUISITES

why subtraction is not allowed in exponential Diophantine equations. Without
subtraction, one remains safely within the set of natural numbers.

2.1.2 Systems of exponential Diophantine equations

Although Hilbert asked about solving individual equations, one is often inter-
ested in solving a system of equations. It is easy to see, however, that treating
systems of exponential Diophantine equations is not more difficult than working
with a single equation. In fact, the system

E(z1,.--,%m) = Er(z1,---,Tm) (2.4)

Fu(@y,.. ,@m) = Fa(@i,...,om) (2.5)
of two exponential Diophantine equations can be combined into the equivalent
single equation

(Br(z1,...,2m) — Er(z1,...,2m))° +

(F(z1,...,2m) — Fr(z1,...,2m))% = 0. (2.6)
One can then eliminate subtraction by squaring and transposing negative terms
to the right-hand side:

El(z1,....,xm) + Ei (1, s %m) + F2(z1,. .., Tm) + Fa(T1, ..., Tm) =
2E1,(z1,y ..y xm)Er(21, ..y Tm) + 2FL (21, .., ) FR(Z1, - - -y ). (2.7)

2.1.3 Families of exponential Diophantine equations

Besides individual Diophantine equations, one may also consider families of
exponential Diophantine equations. Such a family is defined by an equation of
the form

Ei(ar, .. ,0n, %1,y %m) = Er(a1,...,0n,T1,...,Tm) (2.8)

where Ey,, Eg are exponential polynomials, the variables of which are split into
two groups:

e the parameters aq,...,an;
e the unknowns x1,...,ZTm.

For the purposes of this discussion, the parameters are restricted to non-negative
integer values only, as are the unknowns.

For some choices of the values of the parameters a,...,a,, the equation
will have a solution in the unknowns z1, ..., Zy; for other choices of the values
of the parameters, it will have no solution.
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2.2 Exponential Diophantine sets

We can consider the set 91 of all n-tuples (ay,...,a,) for which the parametric
equation (2.8) has a solution, that is

(a1,-..,0,) € M <=
Azy ... {EL(01, -, 00, T1,. -, ) =
Er(ai,---yQnyT1,. .. Tm)}- (2.9)

Sets having such representations are said to be exponential Diophantine. An
equivalence of the form (2.9) is called an exponential Diophantine representation
of the set M. With an abuse of the language, one can say that the equation
(2.8) is itself a representation of the set.

The number n will be called the dimension of the set 9.

2.2.1 Generalized exponential Diophantine representations

Naturally, one can consider systems of parametric equations and for a system
consisting, say, of two equations

Ei(ar,.. ,an, %15+ y%m) = Er(a1,...,0n,T1,...,Tm) (2.10)

F.(ai,---,an,%1,---,Tm) = Fr(a1,-..,0n,%1,---,Tm) (2.11)

one can consider the set 9 of all n-tuples of the parameters for which this
system has a solution in 1, . .., Z,,. Of course, since this set 9 is an exponential
Diophantine set, its exponential Diophantine representation can b given by the
parametric analogue of (2.7). However, when Er,, Egr, Fr, and Fg are replaced
by concrete polynomials, it is not easy to recognize that this analogue of (2.7) is
equivalent to the system of two equations (2.10) and (2.11). It is more natural
to write

(a1y...,a,) €M <=
Ay .. zpm{EL(a1, .-, Qny T1, oo ) = Er(A1,.. .0, @1, - oo, T )&

Fr(at, .- yan, @1y &) = Fr(a1,. .., Qny @1, o, T ) }- (2.12)

Such equivalences will be called generalized exponential Diophantine represen-
tations. However, there is no formal definition of a generalized exponential
Diophantine representation. Intuitively, they will be formulas which can be eas-
ily transformed into genuine exponential Diophantine representations. Thus,
as soon as some new technique for constructing exponential Diophantine rep-
resentations is introduced, the notion of a generalized exponential Diophantine
representation would enlarge respectively.
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Disjunction instead of conjunction

By replacing, in (2.12), the sign of conjunction & by the sign of disjunction V,
one obtains another generalized exponential Diophantine representation:

(a1,...,an) € M=
Az1 ... em{EL(a1,-.-,0n,Z1,...,Zm) = Er(a1,...,an,Z1,.-.,Zm) V
F.(ai,...,an, %1, Zm) = Fr(a1,...,0n,%1,...,Zm)}- (2.13)
In contrast to conjunction having a system of equations as its counterpart, there
are no other tools in traditional mathematics for expressing the disjunction of
a set of equations.

To justify calling (2.13) a generalized exponential Diophantine representation
one can consider, naturally, the equation

(ErL(at, .- ,an,%1,...,Tm) — Er(a1,...,an,T1,...,Zm))

X
(FL(a1y--+yQn, T1, -« Tm) — Fr(a1, .-« sQpy T1y .-, T)) = 0. (2.14)

Here again, one needs to expand the brackets and transpose negative terms;
such simple equivalent algebraic transformations will not be mentioned explicitly
below.

Inequality instead of equality

It is also possible put a negation in front of an exponential Diophantine equation:
—~{EL(a1,-..,0n,%1,-.-,Tm) = Er(a1,...,8n,%1,...,Zm)} (2.15)

or, equivalently,
Ei (a1, yan,%1,---,Tm) 7 Er(a1, -, Qs @1, ooy Try)- (2.16)

In this case, in order to obtain a genuine exponential Diophantine representa-
tion, one needs to introduce a new unknown; formula (2.16) is equivalent to

I {(Br(a1,---»QnyT1y- - Tm) — BR(G1, - -« Gy @1, - 2m))? =y + 1} (2.17)

Now one can consider as a generalized exponential Diophantine representa-
tion any formula constructed from exponential Diophantine polynomials with
the aid of equality and inequality relations and any combination of conjunctions
and disjunctions.

2.2.2 Operations on exponential Diophantine sets

It is easy to see that the union of two exponential Diophantine sets of equal
dimension is also an exponential Diophantineset. In fact, let these sets be rep-
resented by equations (2.10) and (2.11) respectively (without loss of generality,
one can assume that the number of unknowns is the same in both representa-
tions). The union is then represented by equation (2.14).
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Intersection of exponential Diophantine sets

The intersection of two exponential Diophantine sets of equal dimension is again
an exponential Diophantine set. However, simply taking the parametric coun-
terpart of (2.6) results in the equation

(Br(at, .- yQn, 1,y Tm) — Br(A1, -y Gy T1,y - ooy T))? +
(FL(a1,...,Qn,T1y. -y Tm) — Fr(a1, ..., 00, T1,...,7))2 =0  (2.18)

which does not represent the intersection of the sets represented by (2.10) and
(2.11). In fact, even if some m-tuple (ai,...,a,) belongs to both sets, the
corresponding values of z1, ..., %, need not be the same in (2.10) and (2.11).
To obtain an exponential Diophantine representation of the intersection, one
needs to be more careful and rename the unknowns in one of the equations:

(BL(a1,--yQn, T1,- oy Tm) —ER(al,...,an,wl,...,:cm))2 +
(FL(@1y- -y QnyY1s-- s Ym) — FR(A1, -+ QG Y1, -2, ym))2 = 0. (2.19)

The complement of an exponential Diophantine set

The complement of an exponential Diophantine set need not be an exponential
Diophantine set itself. This fact is non-trivial. The existence of a Diophantine
set with a non-Diophantine complement was proved by Davis [8] who used
corresponding logical tools to achieve this proof. His argument can be easily
extended to show that this complement is not an exponential Diophantine set
either.

2.3 More logical terminology

The whole of mathematics can be presented using sets as the basic foundation.
However, it is more convenient to use also properties, relations and functions.

2.3.1 Exponential Diophantine properties

A property of natural numbers is said to be exponential Diophantine if the set
of all numbers having this property is itself exponential Diophantine.

For example, the property “to be an odd number”, denoted Odd(a), is ex-
ponential Diophantine because the set of all odd numbers is so:

a € {w:wisodd} < Jz{a =2z + 1}. (2.20)

Instead of (2.20) one can write down an exponential Diophantine representation
of the property Odd:

0Odd(a) <= Jz{a = 22 + 1}. (2.21)

Once one has established that some property is Diophantine, it can be used
in generalized exponential Diophantine representations.
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2.3.2 Exponential Diophantine relations

Similar to properties, a relation among n natural numbers is called exponential
Diophantine if the set of all n-tuples of natural numbers satisfying this rela-
tion is itself exponential Diophantine. For example, the relation “less” has an
exponential Diophantine representation:

a<b< z{a+z+1=0>}. (2.22)

Consequently, from now on, the sign < (as well as <) can be used in generalized
exponential Diophantine representations.

Other useful relations are that of divisibility and congruence having, respec-
tively, the representations

a|b < Jz{ax = b}, (2.23)
a=b (modc) < Jz{(a—0b)* =z} (2.24)

2.3.3 Exponential Diophantine functions

Finally, a map from n-tuples of natural numbers into natural numbers is called
an ezponential Diophantine function if its graph is an exponential Diophantine
set.

It is easy to see that the composition of exponential Diophantine functions
is again an exponential Diophantine function. In fact, suppose that one has two
exponential Diophantine functions (to simplify notation, consider both functions
to have one argument only)

a=A0) <<= 3z1...2n{EL(a,b,z1,...,2m) = Er(a,b,z1,...,2m)}, (2.25)
b=B(c) < Jz1...2n{Fr(b,c,21,...,2m) = Fr(b,c,21,...,2m)}. (2.26)

Then the composite function a = A(B(c)) is represented by the system

Er(a,z,21,...,2m) = Egr(a,z,21,...,23), (2.27)
FL(ZJCJyla"'Jym) = FR(Z;C;yl;---;ym) '

(notice that the unknowns have been renamed!) which can be combined into a
single exponential Diophantine equation with parameters a and ¢, and unknowns
LlyeeosLmyYlyeessYm, 2.

2.4 Positional notation
The interplay between number theory and computability theory will be based

on positional notation. For any positive base b, every natural number a has a
unique representation of the form

a=>)_ agb (2.28)
k=0
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with 0 < ap <bfor k =0,1,... (of course, all but finitely many of the numbers
ag,ai, ... are zero). Thus one can look at every number as a string of digits
...aga1a9.

Let Digit(a, b, k) denote the k-th digit of number a in base-b notation, i.e.,
number ay, from (2.28). Observe that Digit is an exponential Diophantine func-
tion. In fact,

d = Digit(a, b, k) <= Jzy{a = zbF ' + db* +y & d < b & y < bF}. (2.29)

If the left-hand side is true, one can obtain values of z and y (justifying the
right-hand side) by cutting base-b notation of a:
co o Q41 dak_l ... ag . (230)
——— ———

T Y

Similarly, if some numbers x and y satisfy the equality and two inequalities in
the right-hand side of (2.29), then base-b notation of a can be obtained by gluing
together base-b notations of z and y (the latter being padded by leading zeros
to length k, if required) with digit d between them.

2.5 Binomial coefficients
Binomial coefficients play important roles in the investigation of Hilbert’s tenth

problem. First, one must ensure that there is an exponential Diophantine rep-
resentation for them.

2.5.1 Binomial coefficients are Diophantine

Binomial coefficients form the well-known Pascal triangle

1
1 1
1 2 1
1 3 3 1 (2.31)
1 4 6 4 1
1 5 10 10 5 1

The traditional definition of binomial coefficients is based on the formal
expansion
(u+1)* = Cyqu® + Ca,a,lua_1 +...+Cop- (2.32)

The numbers C,,; are defined in a unique way by considering (2.32) as an iden-
tity, i.e., as an equality valid for all values of u. This definition is unsuitable
because one cannot use universal quantifiers in exponential Diophantine rep-
resentations. Luckily, it is sufficient to treat (2.32) as an equation having a
solution with a large enough value of u. In fact, (2.32) shows that Cp q,-..,Ca0
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are nothing else but the digits of the number (u + 1)* in base-u notation pro-
vided that u is large enough, i.e., greater than each of these numbers. Here are
examples with u = 10 (compare with (2.31)):

11° = 1
11t = 11
112 = 121
113 = 1331 (2:33)
11* = 14641
115 = 161051

The above observation immediately gives a generalized exponential Diophan-
tine representation for binomial coefficients:

c= (Z) = Jufu=2°+1 & ¢ = Digit((u + 1)°,u,b)}. (2.34)

Observe that the value u = 2* 4+ 1 is indeed sufficiently large because the sum
of all the binomial coefficients in (2.32), i.e., its value for u = 1, is only 2.
Note that according to (2.34), () = 0 as soon as a < b.

2.5.2 Kummer’s theorem

Being a positive natural number, the binomial coefficient (*}°)

sented in a unique way as the product of prime numbers:

can be repre-

(“ ;: b) = goa(@b)gas(ab) sas(ab) (2.35)
The nineteenth century German mathematician Ernst Kummer [24] found a
surprising way to calculate ay,(a,b): write a and b in base-p notation and add
them; the number of carries from digit to digit performed during this addition
is exactly ap(a,b).

Kummer’s result was rediscovered by several researchers, including ones from
twentieth century. To prove it, note that the identity

COE
implies that
ap(a,b) = Byp(a+b) — By(a) — Bp(b), (2.37)

where 3, (k) stands for the exponent of p in the prime factorization of k!. It is
not difficult to see that

B, (k) = L—’jJ + L%J T (2.38)
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because among the numbers 1, ..., k, there are exactly L%J numbers divisible
by p, exactly LI%J numbers divisible by p?, and so on. Thus,

S (CTRFIR) R

Now it suffices to note that in this sum, the /-th summand is equal to either 1
or 0, depending on whether or not there is a carry from the (I — 1)-th digit.

2.6 Digit-by-digit comparison of natural num-
bers

Kummer’s theorem turned out to be a bridge between number theory and com-
puter science: it connects divisibility properties of numbers with properties of
their positional notations. For the purpose of this discussion, the most impor-
tant format will be binary notation.

2.6.1 Binary orthogonality

Consider two natural numbers, a and b, written in base-2 notation:

a=> a2*, b= b2* (2.40)
k=0 k=0

where ay, and by, are either 0 or 1. The numbers a and b are said to be orthogonal,
written a L b, if agxby = 0 for every k.

Kummer’s theorem immediately gives a generalized exponential Diophantine
representation of the relation of orthogonality:

alb<=>0dd(<a‘gb)). (2.41)

In fact, both the left-hand side and the right-hand side of this equivalence are
true if and only if no carry occurs during the addition of a+b in binary notation.

2.6.2 Binary masking

A number ¢ with binary notation
oo
c= Z i 2k (2.42)
k=0

is said to mask number b with binary notation (2.40) if by < ¢ for every k. The
magking relation will be denoted as <.
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Again, Kummer’s theorem allows one to give a generalized exponential Dio-
phantine representation of the masking relation:

b<cc:OM(<9). (2.43)

To see why (2.43) is true, note that both sides are false whenever b > ¢. Oth-
erwise, put a = ¢ — b. According to (2.41), the right-hand side of (2.43) means
that a L b so no carry occurs during the calculation of ¢ = a + b and hence b is
magsked by c.

2.6.3 Digit-by-digit multiplication

A number ¢ with binary notation (2.42) is said to be the result of the digit-by-
digit multiplication of numbers a and b with binary notations (2.40) if ¢, = apbg
for every k. The digit-by-digit product of numbers a and b will be denoted by
aANb.

It is easy to see that if ¢ = a A b then

c=a, (2.44)
c=<b, (2.45)
a—clb—ec (2.46)

These three conditions are not only necessary, but also sufficient for a number
¢ to be the digit-by-digit product of a and b. In fact, (2.44) and (2.45) imply
that ¢ < agby for every k. Suppose that there is k such that ¢, < agby and
let ko be the smallest such k. Then numbers a — ¢ and b — ¢ are not orthogonal
because their ko-th digits are both “1”.

Thus, one has a generalized exponential Diophantine representation of digit-
by-digit multiplication:

c=aANb<=c=<a&kcb&ka—-clb—ec (2.47)



Chapter 3

Exponentiation is
Diophantine

In this chapter, I will show that exponentiation is a Diophantine function; i.e.,
it has a Diophantine representation

p=q < Jr1...2{P(p,q,7,21,-..,2m) =0} (3.1)

for a suitable choice of polynomial P. As indicated in Chapter One, equivalence
(3.1) allows the transformation of exponential Diophantine representations of
sets, properties, relations and functions into corresponding genuine Diophantine
representations.

3.1 Special second-order recurrent sequences

In the proof, the second-order recurrence sequences
ap(0) =0, ap(l) =1, ap(n + 2) = bay(n + 1) — ap(n), (3.2)

where b > 2, play an essential rule.
It is easy to prove by induction that every such sequence is monotonically
increasing, namely

0=ap(0) <ap(l) < ... <ap(n) <ap(n+1)<... (3.3)
and hence
n < a(n). (3.4)
Moreover, for b = 2 the sequence is linear, namely,
az(n) =mn, (3.5)

while for b > 2 it grows exponentially, namely,

(b—1)" < ap(n+1) < b". (3.6)

31
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3.2 First-order relation

All the required properties of numbers ay(n) can be proved by induction. How-
ever, many of them can be made more “visual” by using matrices and other
traditional algebraic tools. To this end, the second-order relation (3.2) can be
rewritten as a first-order relation among the matrices

N O L
taking as(—1) = —1. Namely,
Ay(0) =E,  Ap(n+1) = Ay(n)By, (3.8)
where
E:((l) ?) B,,:(Il’ _01>. (3.9)
This implies that
Ay(n) = Bp. (3.10)

3.3 Characteristic equation
Definitions (3.9) together with (3.10) imply that

det(A4y(n)) =1, (3.11)
ie.,

ai(n) —ap(n+ ay(n —1) =

ai(n+1) —bay(n+ Vay(n) + ai(n) = (3.12)
ai(n—1) —bay(n — Nap(n) +aj(n) = 1 (3.13
Let us show that the converse is also true: if

z?2 —bry +y* =1, (3.14)

then either
r=a(m+1), y=ay(m) (3.15)

or

x = ap(m), y=ap(m+1) (3.16)

for some m. To distinguish between the two alternatives (3.15) and (3.16), it
is sufficient to compare z and y by size, namely, to show that equation (3.14)
together with the inequality

y<zx (3.17)

implies the existence of some m for which (3.15) holds.
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This proof will proceed by induction on y.
If y = 0, then clearly z = 1; i.e., (3.15) holds with m = 0.
If y > 0, then (3.14) and (3.17) imply that

2
-1

by—z=2""1>0, (3.18)

2 _ 1 2
by—x:y <y—<y. (3.19)

T T

Let zy =y and y; = by — z. Then
#f —boiyi +yi = y* —by(by —z) + (by — 2)°
= 22 — bay + o>

- 1 (3.20)

By (3.19), y1 < 1, and by the induction hypothesis,
z1 = ap(my + 1), y1 = ap(mq) (3.21)
for some my. Hence, for m = my + 1,

x=br; —y1 = ap(m+1), y =1z = ap(m). (3.22)

3.4 Divisibility properties
Let us show that for positive &
ap(k) | ap(m) <= k| m. (3.23)

Recall that ap(k) and ap(m) are elements of the matrices Ay(k) and Ay(m)
defined by (3.7) and satisfying (3.10). Let

m =mn+ kl, 0<n<k. (3.24)
We have:
Ap(m) = By*
— ng—i-kl
= BBl
= Ay(n)Ay(k)

_ ( an+1)  —ayn) ) ( apk+1)  —ay(k) >l
ap(n) —ap(n —1) ap (k) —ap(k—1) J°

Passing to a congruence modulo ay(k), we obtain

(ab(m+1) —ay(m) >_

ap(m)  —ay(m—1) ) =

( abo(:(:;)l) —ojbc(lfl(ﬁ)l) ) ( ab(k0+ Y —ozb((li— 1) )l (mod ay(k)),
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and, hence,
ap(m) = ap(n)al(k +1) (mod ay(k)). (3.25)
Now, if k | m, then n = 0, ap(n) = 0 and (3.25) implies the left-hand side
of (3.23). Conversely, if the left-hand side of (3.23) is true, then (3.25) implies
that

ap(k) | ap(n)al(k +1). (3.26)
But by (3.12), ap(k) and ap(k + 1) are coprime, hence
as(k) | as(n). (3.27)

Now it follows from (3.24) and (3.3) that ay(n) < ap(k), so (3.27) is possible
only if n = 0, i.e., if m = kl; hence, the left-hand side of (3.23) is true.

3.5 Divisibility properties (continued)

Let us show that for positive &
ai(k) | ap(m) <= kay(k) | m. (3.28)

(From the previous section we know that both sides of (3.28) are false unless
m = kl for some [. In the latter case we have:

Ap(m) = Bz’;d
= Ay(k)
= [ab(k)Bb - ab(k - l)E]l
I
= > (=) ( ﬁ ) ol (k)o ™ (k — 1)Bj. (3.29)
i=0

Passing from the equality to a congruence modulo a7 (k), we can omit all the
summands except the first two:

(m+1)  —ay(m)
Ap(m) = ( aba:)rzm) _abO(z:nni 1) )
= (-D'al(k—1)E + (-1)" "ap(k)ah ' (k—1)By (mod qa;(k)),
whence

ap(m) = (1) Hap(k)al " (k —1) (mod af(k)). (3.30)

Now if the right-hand side in (3.28) is true, then ay(k) | I, which, together
with (3.30), implies the left-hand side in (3.28). Conversely, if the left-hand side
of (3.28) is true, then (3.30) implies that

ap(k) | Lo~ (k = 1). (3.31)
But by (3.13), ay(k) and ap(k — 1) are coprime; hence,
ap(k) |1 (3.32)

and the right-hand side of (3.28) is true.
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3.6 Congruence properties
It follows by induction from the definition (3.2) that
by =b: (mod ¢) = ap,(n) = ap,(n) (mod q). (3.33)

Hence, according to (3.5)

ap(n) = az(n) =n  (mod b — 2). (3.34)
Let us check that if
n=2m =+ j, (3.35)
then
ap(n) = ap(j) (mod v) (3.36)
where
v=ap(m+1) —ap(m—1) (3.37)

and the choice of “+” or “—” for the sign in (3.36) need not coincide with the
choice of the sign in (3.35).
Using the matrix representation once again, we have:

Ay(n) = By
B2lm:|:j
b

= BB
= (A3 m)]) 4G,

Ay(m) = (ab(m+1) —ap(m) )

ap(m) —ap(m —1)

. —ap(m —1) ap(m)
= _( —bozb(m) ab(ﬁn—l—l) ) (mod v).

The latter matrix is nothing else but A; ' (m); hence,

A2(m) = -FE (modv), (3.38)
Ap(n) = £[AH)]F (mod v). (3.39)
In this last formula, all four combinations of the signs “4” and “—” are possible.

Passing from the matrix congruence (3.39) to element-wise congruence, we get
(3.36)

3.7 Diophantine definition of sequence «

We are now ready to show that the relation between the three numbers, a, b,
and ¢, expressed by the formula

3<b& a= (o), (3.40)
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is Diophantine. Namely, we are to check that (3.40) holds if and only if the
following system of conditions can be satisfied:

3<b, (3.41)

u? —but + 2 =1, (3.42)
s2—bsr+r2=1, (3.43)
r<s, (3.44)

u? | s, (3.45)

v = bs — 2, (3.46)
w=b (modw), (3.47)
w=2 (mod u), (3.48)
2 < w, (3.49)

2 —wry +y* =1, (3.50)
2a < u, (3.51)

2a < v, (3.52)
a=z (modv), (3.53)
2¢ < u, (3.54)
c=z (mod u). (3.55)
Representations (2.22), (2.23) and (2.24) for relations “<”, “|” and “=” are in

fact Diophantine so the system (3.41)—(3.55) can be regarded as a (generalized)
Diophantine representation of relation (3.40).

3.7.1 The sufficiency
It was shown in Section 3.3 that (3.41) and (3.42) imply that for some k,
u = op(k). (3.56)
Likewise, (3.41), (3.43), and (3.44) imply that for some positive m,
s = ap(m), r=ap(m—1) (3.57)
and (3.49) and (3.50) imply that for some n,
T = ay(n). (3.58)
Let n = 2lm + j or n = 2lm — j with some j such that
j<m. (3.59)

By (3.28), it follows from (3.45), (3.56), and (3.57) that

u | m. (3.60)
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By (3.2), it follows from (3.46) and (3.57) that
v=ap(m+1) —ap(m—1). (3.61)
(From (3.53), (3.58), (3.47) (3.33) and (3.36) we have that
a=z=a(w) =ap(n) = £ap(j) (mod v). (3.62)
(From (3.59), (3.3), (3.41), (3.2) and (3.61) we have that
200(j) < 2a(m) < (b —2)ay(m) < bay(m) — 2a(m — 1) = v, (3.63)
which together with (3.52) makes (3.62) possible only if
a=ap(j). (3.64)
(From (3.55), (3.34) and (3.48) we have that
c=r=ay(n)=n (mod u). (3.65)
(From (3.4), (3.64) and (3.52) we have that
27 < 2ap(j) = 2a < u, (3.66)
which together with (3.54) makes (3.65) possible only if
c=j. (3.67)

Finally, (3.64) and (3.67) imply the second conjunctive term in (3.40) while the
first term trivially follows from (3.41).

3.7.2 The necessity

Now we are going to prove that if the numbers a, b, and ¢ satisfy (3.40), then
there are numbers s, r, u, t, v, w satisfying (3.42)—(3.55). The above consider-
ations indicate how these numbers are to be chosen.

Condition (3.41) is evidently fulfilled.

We choose v according to (3.56), selecting some positive number & so that
the inequalities (3.51) and (3.54) hold and u is odd (we are able to do this thanks
to (3.4) and the fact, implied by (3.13), that at least one of any two consecutive
terms of the sequence ap(n) is odd). Let

t = ap(k + 1), (3.68)

then by (3.13), equation (3.42) holds.
We choose r and s as in (3.57), with

m = uk, (3.69)

then by (3.13) and (3.3), equation (3.43) and inequality (3.44) both hold.
By (3.28), condition (3.45) is also valid.
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We can find v satisfying (3.46) and (3.51) because, according to (3.57), (3.2),
(3.40), (3.3), (3.4) and (3.51)

bs—2r = ap(m+1)—ap(m—1) (3.70)
= bab(m) —2ap(m —1) (3.71)
> b(m) = 2a(m — 1) (3.72)
> 2a4(m) (3.73)
> 2m (3.74)
> 2u (3.75)
> 2. (3.76)

We now verify that u and v are coprime. Suppose that d | u and d | v; then
by (3.45), d | s and by (3.46), d | 2r. However, by our choice of u, d is odd;
hence, d | r and by (3.43) d | 1. Thus, by the Chinese Remainder Theorem, we
can find w satisfying (3.47), (3.48), and (3.49).

Finally, let

T = aw(c)7 Y= Otw(C + 1)7 (377)

then by (3.3) equation (3.50) holds.
According to (3.33), it follows from the choice of z, (3.77), and (3.47) that

T = ay(c) = ap(c) =a (mod v) (3.78)

0 (3.53) is true.
By (3.8) it follows from (3.77) that

z=c (modw—2), (3.79)
which, together with (3.48), implies (3.55).

3.8 Exponentiation is Diophantine

Having found a Diophantine representation for the sequence a, we are ready
to construct a generalized Diophantine representation for exponentiation.
An eigenvalue A of the matrix By, satisfies the equation

AN —bA—1=0. (3.80)
We will select a modulus m such that
A=q (mod m). (3.81)
According to (3.80), we should have
@ —bg+1=0 (mod m) (3.82)

so we simply choose
m=bqg—q*—1. (3.83)
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Now we can easily find (modulo m) the corresponding eigenvector:

B()-(1 ) (1)=0(5) mm o

Consequently, we obtain

( abO(‘:(;‘L)l) —ojb(?;i(i)l) )( ({ ) = Ay(r) (
q
1

(mod m) (3.85)

1l
IS
4
/N
—

and hence
gop(r) —ap(r—1)=4q" (mod m). (3.86)
As soon as
q" <m, (3.87)
we can write
p=q = p<m&qu(r) —ap(r—1)=p (modm). (3.88)

We can easily guarantee (3.87) by selecting, according to (3.6),
b=agpa(r+1)+¢° +2 (3.89)

provided that g > 0. The exceptional case ¢ = 0 can be easily treated separately
and finally we get the following generalized Diophantine representation:

p=q¢ < (@=0&r=0&p=1)V
(g=0&0<r&p=0)V
@b,m {b=aga(r+1)+¢°+2&
m=bg—q¢>-1%&
p<m&
P = qap(r) — (bap(r) —aw(r +1)) (mod m)}).
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Chapter 4

Simulation of register
machines by equations

In this chapter, I will show that the work of an abstract computer can be
simulated by equations— exponential Diophantine equations as described in
Chapter Two or genuine Diophantine equations as described in Chapters Two
and Three.

4.1 Another definition of listable sets

Listable, or effectively enumerable sets can be defined via abstract computing
devices in several formally different yet equivalent ways. In Chapter One, they
were defined as sets whose elements can be printed by some abstract computer
having no input data but working indefinitely long. In this chapter, it will be
more convenient to define listable sets as sets recognized or accepted by some
abstract computer. Such a computer, having received some n-tuple (a1, ... ,a,)
as input, would stop after finitely many steps when the n-tuple belongs to the
considered listable set 901, and never stop otherwise.

Clearly, the new definition of listable sets is at least as broad as the previous
one: if one had a computer (without input) printing all elements of the set,
it could transformed into a computer (with input) which, instead of printing
elements of the set, would compare them with the input value and stop as soon
as the equality happened!.

'n fact, the definition of a listable set as the set accepted by some computer is equivalent
to the definition as a set whose elements are printed by some computer, but the converse
transformation is technically more involved. Suppose there is a computer that accepts some
listable set 91, i.e., it stops if and only if the input value belongs to the set. One can imagine
infinitely many copies of this computer working on all possible inputs in parallel. As soon as
one of these computers stops, a supervisor computer prints the input value of the computer
that halted.

This is not a correct description of a computer printing all values of the set because one as-
sumes that infinitely many computers work in parallel. Instead of this, a supervisor computer

41
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To simplify notation, we shall deal with sets of natural numbers; the gener-
alization to sets of higher dimensions is straightforward.

4.2 Register machines

To be able to work with recognizable sets we need to select the “construction” of
computers used. For a theoretical treatment, it is better to deal with as primitive
computers as possible. A classical example here are the Turing machines. Their
operation was simulated by exponential Diophantine equations in [30], with an
improved version in [34]. Here, we will simulate so-called register machines,
which were used for constructing exponential Diophantine representations for
the first time in a joint work with J. P. Jones [19] and then in [20, 21] and [33].
Construction presented here is a further simplification.

Register machines are more suitable than Turing machines for simulation by
exponential Diophantine equations because they work with numbers. Namely,
a register machine has a finite number of registers R1,...,Rn each of which is
capable of containing an arbitrarily large natural number. The machine per-
forms a program consisting of finitely many instructions labeled by S1,...,Sm.
When the machine is to perform an instruction labeled Sk, one also says that
the machine is in the state Sk.

Instructions can be of three types

I. Sk: RI+ +;S¢
II. Sk: RI— —; Si;Sj
III. Sk: STOP

An instruction of type I means that when in state Sk, the machine is to
increase register Rl by 1 and pass to state Si.

An instruction of type II means that when in state Sk, the machine is to
decrease register Rl by 1 and pass to state Si; however, if register Rl already
contains 0, its value does not change and the machine goes to state Sj rather
then to state Si.

An instruction of type III stops calculations; without loss of generality, one
assumes that the machine can stop only in state Sm.

Register machines were introduced almost simultaneously by several authors:
[25], [36], [37, 38] and [49]. In spite of their very primitive instructions, register
machines are in principle as powerful as all other standard abstract computing
devices, including Turing machines.

should generate copies of accepting computers one by one and launch them with different
initial values. So at each moment of time, one would have only finitely many copies of the ac-
cepting computer. Generation and concurrent running of several copies of the same computer
can be performed by a single program
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4.3 The protocol

The operation of a register machine is a dynamic process while solutions of an
equation are static. In order to pass from the former to the latter, one uses a
protocol to describe the operation of the machine. A protocol is a rectangular
table similar to those used in spreadsheets. There will be m rows corresponding
to the states of the machine, and n rows corresponding to the registers. The
columns will correspond to the (discrete) time. For reasons that will become
clear later, we will number the columns from right to left.

q o t+1 t . 0
Sl S1,q . S1,t+1 S1,t . 51,0 S1
Sk Sk,q PN Sk,t+1 Skt e Sk,0 Sk
Sm Sm,q e | Smyt+1 Sm,t v | Smyo Sm
R1 T1,q .. T1,t+4+1 T1,t .. 1,0 1
RI Ti,q PN Ti,t4+1 Ti,t e 71,0 Tl
Rn Tn,q coo | Thgg Tt o Tn,0 Tn
71 21,q PN 21,641 Z1,t .. 21,0 z1
y/) Zl,q PN 21,641 21,t e 21,0 Zl
n Zn,q coo | Zngt Zn,t - Zn,0 Zn
20 -1 ...|20=1 | 2°=1]...|2¢-1 d
1 ... 1 1 ... 1 e
2¢ ... 2¢ 2¢ ... 2¢ f

The values in the rows corresponding to the states will indicate the current
state of the machine: s;; =1 or s;; = 0 depending on whether or not on step ¢
the machine is in state Sk. Consequently, the numbers in the rows corresponding
to the registers will contain their current values.

4.3.1 Zero indicators

The rows introduced above are sufficient for describing the operation of a register
machine. However, in order to simplify its simulation by equation, we introduce
n auxiliary rows Z1,...,7Zn.

The values in the new cells will indicate whether the values in corresponding
R-rows are zeros or not:

_ 0, if 7'l,t =0
At _{ 1, otherwise. (4.1)
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4.3.2 The initial values

Without loss of generality, assume that the machine always starts in state S1 so

s1,0=1,

82,02...:Sm,0=0.

(4.2)

(4.3)

Similarly, assume that the only input data a is placed in register R1, all other

registers being empty:

4.3.3 One-step relations

(4.4)
(4.5)

As soon as the values in the ¢-th column are known, one can fill in the (¢ + 1)-st

column (unless sp,; = 1, in which case the machine stopped).
Register relations
It is easy to see that
Figsr =T+ Yo Skt — 0 214kt
where ¥t summation is over all instructions of the form
Sk: RI++;Si
and ¥~ summation is over all instructions of the form

Sk : Rl ——;Si;Sjy.

State relations

Similar to (4.6),

Satr1 = 2 skt + S skt + 0 (1 — 214)8ht
where X0 summation is over all instructions of the form
Sk : Rl + +;Sd,
¥ 1 summation is over all instructions of the form
Sk: Rl — —;Sd;Sjy,
and ¥~ summation is over all instructions of the form

Sk: Rl — —;Si;Sd.

(4.6)
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4.3.4 Final values

If the input value a belongs to the listable set recognized by this computer, then
the computer must halt after some number, say ¢, of steps so

Sm,q = 1, (4.8)

S1,g =---=S8m—-1,q = 0. (49)

Without loss of generality, assume that the machine is programmed in such a
way that before halting it empties all its registers so

Tig=---=Tngq= 0. (410)

4.4 Positional coding of the protocol

On input a, if the machine stops after g steps, then one can find numbers sy,
ri,e and 2z, satisfying conditions (4.1)—(4.10). The converse is also true: if
for some ¢, one finds numbers sy ¢, 7+ and 2z, satisfying conditions (4.1)-
(4.8), then the machine stops after ¢ steps. All conditions (4.1)—(4.8) are either
Diophantine or can be easily expressed in such a way. The “only” difficulty is
that the number of variables and the number of conditions are indeterminate;
they depend not only on the program of the machine, but also on the number
of steps, ¢, before the machine stopped.

To overcome this difficulty, we can combine the content of all the cells in
a given row into a single number. To this end, we select a number b which
should be greater then every si:, r;; and z¢. This b will serve as the base
for the positional number system, and sp, 7+ and z;; will be digits of the
corresponding numbers si,7; and z;. Formally, define

a
Sk = Zskﬂgbt, (4.11)
t=0
q
rp = Zrl,tbt; (4.12)
t=0
q
z] = Zzl,tbt- (4.13)
t=0
For technical reasons, we select b to be a positive power of 2:
b=2ctL (4.14)

Definitions (4.11)—(4.14) mean that the binary notation of sy, r; and z; can be
obtained as follows—write numbers s ¢, 77+ and 2, in binary notation padded
by leading zeros to the length ¢+ 1, “remove” cell boundaries and, thus, obtain
the binary notation for sg, r; or z;. (That was the reason for numbering steps
in the protocol from right to left).

Our goal is to rewrite conditions (4.1)—(4.8) in terms of numbers s1, ..., Sm,
T1,---,7p and 21,..., 2n.
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4.4.1 Zero indicator relations

To be able to rewrite definition (4.1) in terms of 71, ..., 7, and 21, . .., 2,, we will
select b even larger than is necessary for the unique decomposition of s, ..., Sm,
T1,---,Tn, 21,- - -, Zn into the cell contents. Namely, we will suppose that already
b/2 = 2¢ is larger then every element of the protocol. In other words, the biggest
allowed value of cell contents will be 2¢ — 1.

The binary notation of this number, 2¢ — 1, consists of a single block of ‘1’s
of length ¢. This implies that the inequality

r<2°—1

is equivalent to the masking condition

x<2°—1.
Consequently, we can write
r; 2 d, l=1,...,n, (4.15)
where .
d=>Y (2¢— 1)’ (4.16)
t=0

is the number all b-base digits of which are equal to 2¢ — 1.
Numbers z; ; are either 0 or 1, so the z; satisfy conditions

2z < e, I=1,...,n (4.17)
analogous to (4.15) with e defined by
g
e=> b (4.18)
t=0
Now one can easily express condition (4.1). Consider number
Tt + 2¢ —1.

If r;+ = 0, then the binary notation of this number, padded to the length ¢+ 1,
is

01...1.
On the other hand, if r;;+ > 0, then its binary notation looks like
1x...%

where the asterisks replace unknown binary digits. In other words, the leading
(c + 1)-th digit of ;¢ + 2° — 1 is always equal to z;; and hence

2°214 = (ri,e +2° = 1) A 25 (4.19)
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Consequently, definition (4.1) can be rewritten as

2z =(r+d)Af (4.20)
where .
F=> 2% (4.21)
t=0

4.4.2 Multiple-step relations
Register relations

One can replace ordinary multiplication in (4.6) by digit-by-digit multiplication
21,4 A 8k Multiplying both parts by b**! and summing up for ¢ from 0 to ¢—1,
one obtains an analogue of (4.6):

r; = br; + b2+5k —bY." (21 N\ sg) (4.22)

for I = 2,...,n; according to (4.4), for I = 1, it should be slightly different,
namely,

ro=a+bri +b3 s, — b3 (21 A sp). (4.23)
State relations
Similar to (4.22), for d = 2,...,m condition (4.7) can be rewritten as
54 =b3 sk + b3 (21 Asg) + b3 ((e — 1) A sp) (4.24)

while for d = 1, one needs to increase the right-hand side by 1 according to
(4.2):

51=14+03 s, + b3 (2 Ask) + b ((e — 21) A sp). (4.25)
4.4.3 The initial values

The initial values in equation (4.3) are implied by (4.24) because the right-hand
side is divisible by b; similarly, initial values in equation (4.5) are implied by
(4.22).

Of course, (4.25) implies the initial values (4.2). To be sure that (4.23)
implies the initial value in equation (4.4), we impose the condition

a < 2. (4.26)

4.4.4 The final values
The halting condition (4.8) can be written as

Sm = bY. (4.27)

It is not necessary to consider the final conditions (4.9) and (4.10).
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4.5 From the codes to cell contents

We have seen that on input a, if the machine stops after ¢ steps, then one can

find numbers b, ¢, d, e, f,r1,...,"n, S1,---,Sm, 21, - - -, Zm satisfying conditions
(4.14)—(4.27). The converse is also true: if some numbers a, b, ¢, d, e, f, g,
TlyeeesTry 81y-«y8my 21, - - - Zm Satisfy conditions (4.14)—(4.27), then on input

a the machine stops after ¢ steps.
To prove this, we first define numbers 7y, s, 2+ by splitting the binary
notations of 7y, s; and z; respectively into blocks of length ¢+ 1. Formally, set

r1,¢ = Digit(r;, b, t), (4.28)
sk, = Digit(sg, b, t), (4.29)
21,1 = Digit(z, b, t) (4.30)

We need to check only that conditions (4.14)—(4.27) imply conditions (4.1)—
(4.8). This is evident in the case of conditions (4.1)—(4.5) and (4.8).

For conditions (4.6) and (4.7), it is very important that during summations
there is no carry “across the boundary of a cell” in the protocol.

It can be shown by induction that for every ¢, among the numbers s, ...,
sm,t one and only one is equal to 1, others being equal to 0. This is so for t =0
thanks to (4.24) and (4.25). If this is so for some ¢, then the same holds for
t + 1. This is so because in the right-hand side of (4.7), all summands but 1
should be equal to 0, the remaining summand being equal to 1; hence, no carry
at all occurs in summations (4.24)—(4.25) and relation (4.7) holds.

Similarly, in (4.6), besides the first summand, there can be at most one other
summand different from 0. By (4.15), the first summand is at most 2¢ — 1, and
the other non-zero summand can be equal only to 1. This implies that no carry
“across the boundary of a cell” ever occurs and, hence, relation (4.6) also holds.

4.6 All listable sets are Diophantine

Now, we can easily obtain a Diophantine representation for the listable set 90t
accepted by our register machine.

In fact, in (4.16), (4.18) and (4.21), we simply sum up geometrical progres-
sions so these conditions can be rewritten as

(b—1)d = (2°=1)(b7" —1), (4.31)
(b—1)e = bt —1, (4.32)
(b—1)f = 2°* —1). (4.33)

It was shown in Chapter Two that the relations of masking and digit-by-
digit multiplication are exponential Diophantine so conditions (4.15), (4.17),
(4.19)—(4.25) can be rewritten as generalized exponential Diophantine equations.
Condition (4.26) is also generalized exponential Diophantine.
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Conditions (4.14) and (4.27) are exponential Diophantine equations by them-
selves. Now it remains to apply equivalence (3.1) for transforming exponential
Diophantine equations into genuine Diophantine equations.
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Chapter 5

Undecidable problems for
continuous variables

The undecidability of Hilbert’s tenth problem turned out to be a powerful tool
for establishing the undecidability of many other decision problems. In spite
of the fact that Hilbert’s tenth problem deals with integer-valued variables,
it has many ramifications for problems dealing with continuous variables. In
this chapter, Greek letters will be used for real variables and functions while
lower case Latin letters will be used either for integers or for natural numbers
depending on the context.

The presentation in this chapter is based on [2, 7, 14, 44, 53]. More undecid-
ability results for continuous variables based on the undecidability of Hilbert’s
tenth problem can be found in [15, 39, 40, 48, 50].

5.1 Tarski’s theorem

It is natural to begin with the direct counterpart of Hilbert’s tenth problem for
real unknowns: i.e., by considering equations of the form

P(X17“‘7Xm)=()7 (51)

where P is a polynomial with integer coefficients and x1, ..., xm are real un-
knowns. In contrast to the case of Diophantine equations, it is possible to
determine whether (5.1) has a real solution or not. For m = 1, this can be done
by the well-known Sturm method; a far-reaching generalization of this method
found by Alfred Tarski [52] enables one to work with any number of unknowns.

5.2 Main alternatives

Tarski’s theorem implies that, in order to establish the undecidability of solving
equations in real unknowns, one must allow the use of something else besides

51
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addition, subtraction, and multiplication. Hence, one can obtain many different
undecidability results depending on the choice of allowed additional tools.

The proofs will always go by reduction to Hilbert’s tenth problem, either
for integer or for natural number solutions. The undecidability of this decision
problem means the following: for every polynomial D(z1, ..., ), one and only
one of the following alternatives holds:

o either
Az ...z {D(x1,...,2m) = 0} (5.2)

Vo1 ... 2m{D(Z1,...,2,) # 0} (5.3)

but there is no algorithm to determine which of them is true and which is not.
Reduction to Hilbert’s tenth problem will consist of finding a way to effectively
construct corresponding alternatives for the case of continuous variables.

5.3 Equations in many real unknowns

A very simple way to achieve an undecidability result is to allow the use of the
trigonometric sine function. Namely, one can consider the following system of
equations in real unknowns X1, ..., Xm:

D(Xb---:Xm) = 0,
sin(mx1) = 0,

: (5.4)
sin(fmxm) = 0

where, as usual, 7 = 3.14159.... Clearly, this system either has solutions in real
X1,---,Xm When alternative (5.2) holds, and does not have solutions in real
X1, - - -5 Xm When the second alternative (5.3) holds.

Of course, one can combine all equations (5.4) into a single equation:

Dz(Xb te 7Xm)+
sin?(mx1) + ... + sin®(7xm) = 0. (5.5)

In this way one obtains the following undecidability result.

Undecidable Problem 1 Let Fy denote the class of functions in several vari-
ables that can be defined by expressions constructed from real variables, the
integers and the number w, combined through the traditional rules for addi-
tion, subtraction, multiplication, and composition with the sine function in ar-
bitrary order. There is no algorithm for deciding for an arbitrary given func-
tion ®(x1,---,Xm) from the class Fo whether the equation

®(X15--+rXm) =0 (5.6)

has a real solution.
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5.3.1 A slight improvement

The above result can be improved slightly by the elimination of the number 7
from the definition of the class of functions. Namely, one can introduce a new
unknown, say, 1, and impose the following conditions on it:

sin(¢)) = 0, 2<y <4 (5.7)

Clearly, the number 7 is the only value of 9 satisfying (5.7) so by replacing 7
by ¢ in (5.5) and combining the resulting equation with (5.7) at the cost of
the introduction of yet another new unknown for rewriting the inequalities from
(5.7) as equalities, one obtains:

DQ(Xla" 7Xm)+
sin?(x1) + ...+ sin?(Pxm) +
sin?(¢) + (1= (¢ —3)? = 2%)? = 0. (5.8)

Consequently, one gets the following improvement of the previous result:

Undecidable Problem 2 Let F; denote the class of functions in several vari-
ables that can be defined by expressions constructed from real variables and the
integers, combined through the traditional rules for addition, subtraction, mul-
tiplication, and composition with the sine function in arbitrary order. There is
no algorithm for deciding for an arbitrary given function ® from the class F1
whether the equation

®(x1,---,xk) =0 (5.9)
has a real solution.

5.4 Inequalities in many real unknowns

For the original alternatives (5.2)—(5.3), there are now corresponding alterna-
tives for equation (5.9):

e cither
Ixt - xm{®(x15- -+, xm) = 0} (5.10)

Vx1 - Xxm{®(x1,--->Xm) # 0} (5.11)

with ®(x1,...,xm) being the left-hand side of (5.5). This construction makes
these alternatives unstable: arbitrary small perturbations of the function ® may
switch the situation from the first alternative to the second one. To achieve
“stable” alternatives, note that, in fact, in the case of integer variables one can
replace the second alternative (5.3) by a stronger condition. Namely, for every
polynomial D one and only one of the following statements is true:

o either
3z1 ... 2 {D*(21,...,2m) = 0}, (5.12)
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Yoy ... o {D*(z1,...,2m) > 1} (5.13)

One can obtain a similar improvement of alternative (5.11) by multiplying the
left-hand side of (5.5) by a suitable polynomial.

In fact, let € be the distance from some point (x1,- .., Xm) in R™ to the near-

est point {z1, ..., T,,) with integer coordinates. The difference D?(x1, ..., Xm)—
D*(zy,...,2,) can be easily bounded as

ID*(X1s- -5 Xm) = D*(@1, .., Zm)| < B(X1s -+, Xm)€ (5.14)

where B is a suitable polynomial constructed with the use of polynomial D and
its partial derivatives. So if (5.11) holds and € is so small that

1

€< o,
2B(X1,---»Xm)

(5.15)

then
D*(x1,---,Xm) > 0.5. (5.16)

On the other hand, if € is not small, that is if (5.15) is not true, then the other
summands in the left-hand side of (5.5) contribute a significant amount:

2

sin?(mx1) + ... +sin®(xm) > :_m
16mBQ(X1, s Xm) (5.17)
Thus, with
®(X1,- -5 Xm) = 32mB* (X1, -, Xm) (D> (X1, - - Xm)+ (5.18)
sin?(x1) + ... + sin®(7xm))), (5.19)
the following alternatives correspond to alternatives (5.2)—(5.3):
o cither
Ixi - xm{®(Xx15-- -5 Xm) =0} (5.20)
e or
Vx1 - Xm{®(x1, -y Xm) > 1} (5.21)

Consequently, one obtains the following undecidability result for the class
JFo defined above:

Undecidable Problem 3 There is no algorithm for deciding for an arbitrary
given function ®(x1,--.,xm) from the class Fo whether the inequality

Q(Xlr":Xm) <1 (522)
has a real solution.

I leave as an easy exercise an improvement to the case of functions from the
class Fi.
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5.5 Equations and inequalities in one real un-
known

To obtain the undecidability of Diophantine equations, it ws necessary to con-
sider equations with sufficiently many unknowns. Surprisingly, the introduction
of the sine function not only allows one to use unknowns for real numbers, but

also to reduce the number of such unknowns to one.
Consider the following map from R to R™:

x — {xsin(x), xsin(x®), ..., xsin(x*™1)). (5.23)

It is easy to check that the range of this map is everywhere dense in R™. Thus
by defining

T(x) = ®(xsin(x), xsin(x?), ..., xsin(x*™ 1), (5.24)

one can restate alternatives (5.20)—(5.21) as follows:
o cither

Ve > 0Ix{P(x) < €} (5.25)

V() > 1), (5.26)

One obtains the following quantitative improvements of Undecidable Problems
1 and 3, respectively:

Undecidable Problem 4 There is no algorithm for deciding for an arbitrary
given function U(x) from the class Fo whether the inequality

T(x) <1 (5.27)

has a real solution.

Undecidable Problem 5 There is no algorithm for deciding for an arbitrary
given function ®(x) from the class Fo whether the equation

®(x) =0 (5.28)
has a real solution.

(To prove the latter result, it suffices to define ®(x) = 2¥(x) — 1.)
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5.6 Identities in one real variable

One can extend the class of admissible functions by allowing the use of the
absolute value function. With this function, the alternatives (5.25)—(5.26) can
be restated in the following way:

e cither
Ix{l—¥(x) + |1 - ¥(x)| # 0} (5.29)

V{1 = B(x) + |1 — T(x)| = 0. (5.30)
Consequently, one obtains:

Undecidable Problem 6 Let F, denote the class of functions in one real
variable that can be defined by expressions constructed from the variable, the
integers and the number 7, combined through the traditional rules for addition,
subtraction, and multiplication, and composition with the functions sin and abs
(absolute value) in arbitrary order. There is no algorithm for deciding for an
arbitrary given function ®(x) from the class Fa whether the equality

®(x)=0 (5.31)
holds identically for all values of x.

5.7 Convergence of definite integrals

This section addresses the undecidability of a decision problem relating to inte-
gration rather than one about solving equations.

Alternatives (5.25)—(5.26) can be rewritten in yet another incarnation as
follows:

e cither

+o0 dX
/wo (x2+1)(2¥(x) — 1)2 =0 (5.32)

+o0 dX
/—oo 2+ 1)(2¥(x) — 1)2 < 0o. (5.33)

By extending the class of admissible functions by division, one obtains:

Undecidable Problem 7 Let F3 denote the class of functions of one real vari-
able that can be defined by expressions constructed from the variable, the integers
and the number 7, combined through the traditional rules for addition, subtrac-
tion, multiplication, division, and composition with the sin function in arbitrary
order. Then there is no method for deciding for an arbitrary function ® in the
class Fs whether the integral

+oo
/ @(n) dn (5.34)

—0Q

CONveErges or not.



5.8. THE EXISTENCE OF AN ANTIDERIVATIVE 57

5.8 The existence of an antiderivative

One now deals with indefinite integrals rather than definite integrals as in the
previous section. Modern computer algebra systems are capable of finding sym-
bolic antiderivatives for a wide class of functions. For this purpose a number
of sophisticated algorithms have been developed. Typically, such an algorithm
is defined for dealing with two classes of functions, say class F, and class Fs.
For every function from the former class, the algorithm either produces the
corresponding antiderivative belonging to the latter class, or indicates that no
function from the latter class is the required antiderivative.

In order to have an undecidability result, one should select these classes in
such a way that there should be at least one function in 4 with no antiderivative
in Fy, because otherwise the answer would be trivially always positive. In
fact, for the proof, we need a somewhat stronger property than this: namely,
assume that the class Fy contains a function Y that is defined for all values
of its argument, while the class Fs does not contain any function Q such that
T(x) = Q(x) for x € (a,B). for any non-empty open interval (a, (). As a
possible example, consider Y (x) = 2" because the antiderivative of this function
is not representable as the composition of elementary functions on any interval.

Assume that the class F4 contains the class Fo and is closed under multi-
plication. Thus, this class should contain the function

A(n) =1+ |4n—4| — |4n — 3| (5.35)

which is step-wise linear:

1, if x <5,
Ax) =9 21-x), if5<x<1, (5.36)
0, if1<y,

Under the above assumptions, the class F, also contains function

Alx) = A(¥()) T(x) (5.37)

where ¥ is defined by (5.24). Now, if (5.26) is true, then A(x) = 0 for every x
and, hence, any constant is an antiderivative of A. On the other hand, if (5.25)
is true, then A(x) = Y(x) in some non-empty interval where of ¥(x) < .5, and,
hence, A has no antiderivative from the class F5. Thus one gets:

Undecidable Problem 8 With all the above stated assumptions about the classes
Fu and Fy, there is no method for determining for an arbitrary function in F,
whether it has an antiderivative in Fy.

5.9 Solvability of systems of ordinary differen-
tial equations

This section again deals with equations, and indeed polynomial equations, but
now they will be ordinary differential equations, or more precisely, systems of
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such equations. Consequently, the unknowns will be real differentiable functions
of one independent variable 7 rather than real numbers. To make matters
definite, assume that 7 ranges over the interval [0, 1].

To simulate real unknowns, constant functions will be used: i.e., functions
satisfying the differential equation of the form

Y'(r) =0. (5.38)
It is easy to check that in every solution of the system
'(r) =0, E"(7)+I*(1)2(r) =0 (5.39)
with boundary conditions
3 <TI(0) < 4, (5.40)
=Z(0) =0, =(1) =0, ='0) =1, (5.41)

the solution II(7) is equal (identically) to the number . Similarly, in every
solution of the system

Y (r)=0, U'(r)+I*(1)Y*(1)¥(r) =0 (5.42)
with boundary conditions
¥(0) =T(1) =0, ¥'(0) = I1(0)Y(0), (5.43)

the solution Y(7) is identically equal to some integer y.
Thus, a Diophantine equation

D(y1,.-,ym) =0 (5.44)
has a solution in integers w1, ..., ¥, if and only if the system of differential
equations

II'(r) =0, (5.45)
='(r) + O%(1)Z(7) = 0, (5.46)
Ti(r) =0, (5.47)
V(1) + I (7)X3(7) ¥y (1) = 0, (5.48)
: (5.49)
T7.(r) =0, (5.50)
U7 (r) + (1) X7, (1) ¥ (1) = 0, (5.51)
D(Y1(7),...,Ti(7)) =0 (5.52)
has a solution on [0, 1] satisfying the boundary conditions
3 <II(0) < 4, (5.53)
=(0) =E2(1) =0, =(0) =1, (5.54)
T1(0) = ¥:(1) =0, ¥3(0) = I1(0)Y1(0),
(5.55)
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Introducing new unknown functions, one can easily replace these boundary
conditions by additional equations. Inequalities (5.53) can be rewritten as

3+ A%(0) = 11(0), I(0) + A%(0) = 4 (5.56)

A condition of the form

Ala) = (5.57)
with constants a and § can be replaced by the equation
A1) — B8 = (1 — a)Q(7). (5.58)

An equation containing A" can be replaced by a system of two first-order equa-
tions in A’ and an additional function.
Thus, one obtains the following undecidability result:

Undecidable Problem 9 There is no algorithm for determining for an arbi-
trary system of differential equations of the form

PI(T7EI(T)7"'JE‘k(T)JE‘Il(T)) =0

: (5.59)
Py (1,E1(7), ..., Ex(7),Er(1)) =0,

where Py, ..., Py are polynomials with integer coefficients, whether the system
has a solution on the interval [0, 1].

In Undecidable Problems 4 and 5, the number of unknowns was reduced to
one. Similarly, a quantitative improvement is possible for Undecidable Problem
9, namely, it is sufficient to consider a single (high order) differential equation
with one unknown function. This is left here as a (not so easy) exercise; the
answer can be found in [15].

5.10 Uniqueness of solutions of ordinary differ-
ential equations

Thanks to the boundary conditions (5.55), in order to obtain the undecidability
result in Problem 9, it is sufficient to consider system (5.59), for which functions
identically equal to 0 do not form a solution. One can add this solution by
putting

Ql(ﬂXI;;Xk;??):(X%"'+X%)PZ(T,X1,7Xk777); lﬁlﬁk (560)
Thus one gets:

Undecidable Problem 10 There is no algorithm for determining for an ar-
bitrary system of differential equations of the form

Ql(Tagl(T)r"7Ek(T)7E‘Il(T)) =0

: (5.61)
Qk(T,El(T),...,Ek(T),E;C(T)) :0,
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where Q1, ..., Qr are polynomials with integer coefficients, whether the system
has unique solution on the interval [0,1].

5.11 Formal power series solutions of ordinary
differential equations

All the above reductions to Hilbert’s tenth problem were based on the explicit
or implicit use of the sine function in order to imitate the discrete structure
of integers by continuous objects. The remaining examples will be based on a
different idea; namely, looking for solutions of differential equations in formal
power series.

Consider the system

¥'(r) = 0, (5.62
T® (1) = U(1)®(7) (5.63)
with unknowns
T(r) = D et (5.64)
k=0
o(r) = > et (5.65)
k=0

Clearly, this system has solutions of two kinds:

e 3 degenerate solution

Yo=tr=...=0, dr=¢2=...=0, (5.66)

e a non-degenerate solution
Ppo=y, ¢r1=¢2=...=0, (5.67)
Yo=...=9%y1=0, Y=y, Yyp1=...=0. (5.68)

In the non-degenerate case, y must be a natural number and this fact can be
used to reduce the question of solvability of Diophantine equation (5.44) in
natural numbers to the question of the existence of a formal power solution for
a system of differential equations

W) = o,
T®(r) = Ui(1)P1(7),
(5.69)
(r) = 0,
T0(1) = Un(r)®i(r),
D(®y(7),..., ¥p(r)) = 0
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with the additional condition
Dy (7)...P(1) Z0. (5.70)
Consequently, one obtains the following result:

Undecidable Problem 11 There is no algorithm for deciding for an arbitrary
system of differential equations of the form

Pl(TaE‘l(T)ﬂ"'7Ek(T)JEII(T)) :Oa

(5.71)

where the P’s are polynomials with integer coefficients whether the system has
a solution in formal power series satisfying the additional condition

AGEAS (5.72)

5.12 Convergent power series solutions of ordi-
nary differential equations

The undecidable problem stated above has a definite aesthetic shortcoming;
namely, the forced addition of an inequality. To eliminate this shortcoming, one
can replace equations (5.62)—(5.63) by equations

(1) =0, (5.73)
2@/ (1) — ((¥(7) — )7+ 1)®(7) +1=0. (5.74)

All formal power solutions of this system are of the form

do=y, hr=¢2=...=0, (5.75)
’(p():].,...,Qpn:(].—¢0)(2—¢0)...(’I’L—¢0),.... (576)

Such a solution is convergent if and only if y is a positive integer. One obtains:

Undecidable Problem 12 There is no algorithm for deciding for an arbitrary
system of differential equations of the form

Pl(TaE‘l(T)ﬂ"'7Ek(7—)7511(7-)) :Oa

(5.77)

where the P’s are polynomials with integer coefficients, whether the system has
a convergent formal power series solution.
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5.13 Power series solutions of partial differential

equations

Instead of dealing with several formal power series in one variable, one can
consider formal power series

U(r,o ) = Y Cypyn T T (5.78)
Y15--Ym
in m independent variables 7y, ...,7,. The differential operator Tk% acts on
monomial 7;* as a multiplication by yj:
Tkirfj’“ = YrTp". (5.79)
oty
Consequently, the operator
0 0
D ... — 5.80
(TI o™ OTm) (5.80)
acts as element-wise multiplication by D(y1, ..., ym):

0 0
D (Tla—ﬁ,...,TmW) \I'(T]_,...,Tm) =

2ot D@L Y)Yy T T (5.81)
Thus, as soon as Diophantine equation (5.44) has a solution in natural numbers,
some coefficients in (5.81) must be equal to zero. If there is no solution to (5.44),

the coefficients can be set as arbitrary numbers by the choice of suitable 9’s.
For example, by putting

1
D(yla"'7ym)

one can make all the coefficients equal to 1 and, consequently, (5.81) becomes
equal to

’l'[}yl""vym = (5-82)

2yt T = 1—17-1 1—1rm' (5.83)
In other words, the partial differential equation
(1=7)...(1 = 7m) D (71%,...,%%) (.. mm) =1 (5.84)

has a formal power series solution if and only if Diophantine equation (5.44) has
no solutions in natural numbers. Consequently, one gets:

Undecidable Problem 13 There is no algorithm for deciding for an arbitrary
polynomial P with integer coefficients whether the partial differential equation

P(Tl,...,Tm,ain,...,%>1IJ(T1,...,Tm):1 (5.85)

has a formal power series solution.
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5.14 Equations with non-computable solutions

Thus far, the results obtained have dealt with the non-existence of algorithms
for decision problems: i.e., problems which require a binary answer “YES” or
“NQO”. The last example to be considered here pertains to the non-existence
of algorithms for computing rational coefficients forming a formal power series
solution of a system of linear partial differential equations. Note that while such
a power series expansion always exists, the consideration here is the question of
computing the coefficients.

Now the mere undecidability of Hilbert’s tenth problem will not be sufficient
for the proof and it will be necessary to invoke the full power of the DPRM-
theorem (stated in Chapter One and proved in Chapters Two through Four)
which asserts that every listable set 99T has a Diophantine representation:

a €M< xs... 2 {D(a,zs,...,2,) =0} (5.86)
Consider the following system of partial differential equations:
l-7)...01=7pn)D (Tl%,TQ%,...,Tm%> (71,72, yTm) =
E(T1, T2+« yTm), (5.87)
5= BT, T2y Ti) =+ = 52 E(T1, T2y -+, Tin) = 0. (5.88)

2
According to (5.88), function E depends only on 7q; that is
o
E(T]_,TQ,...,Tm)Zngle. (589)
k=0

Multiplying the left-hand side and the right-hand side in (5.87) by the left-hand
side and the right-hand side, respectively, in the identity

171T2 o lfle = Zyg,...,ym 7_2y1 ST (590)
and using (5.81) one sees that
D1, > Ym)Pys,ym = € (5.91)
and, hence,
a€M=—= & =0. (5.92)
In fact, this is the only restriction on =; that is, putting
05 if U1 eM
Vuroeon = { —fu___ - otherwise (5.93)
D(y1,.-sym)’

one obtains a solution of (5.87)—(5.88). Thus, this system always has a solution,
and in this solution, all coefficients are rational numbers.

The mere existence of a listable set with the undecidable problem of member-
ship will no longer be sufficient. A stronger result about the existence of some
listable sets My and M of natural numbers which are effectively inseparable is
required. This property means the following:
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e the sets My and M, do not intersect: that is
S):)’IO N 9'nl = ®7 (594)
but their complements 9%, and 9M; do intersect:

Mo NIy # 0; (5.95)

e the latter property, (5.95), is inherited by all listable extensions 9§ and
My of sets Wy and Ny which meet the former condition, (5.94). That is,
if M and M7 are any listable sets such that

Mo C MG, My C M (5.96)

and
Wy NI =10 (5.97)

then
IME NI # 0. (5.98)

Proofs of the existence of such effectively inseparable listable sets can nowadays
be found in many standard textbooks.
Let

a € My <— 3$2...$m{D0(a,$2,...,$m) ZO} (599)

and
a €My <= Fz2...xn{Di(a,z2,...,2m) =0} (5.100)

be Diophantine representations for sets 9ty and My, respectively. Consider the
following system of partial differential equations, which consists of two copies
of equations (5.87)—(5.88) and one additional equation:

(1-m)...(1 = 7m) Do (71%,T2%,...,Tm%) U(T1, T2,y Tin) =
Eo(T1, T2,y Tm), (5.101)
817_250(7-1,7-2,...,7;“) == %50(7’1,7'27---;7'711) =0, (5.102)
(1-7)...(1 —7m) Dy (Tlaiﬁ,Tgaim,...,Tm%) Ui (T1, T2y ey Tim) =
(1,72, Tm), (5.103)
521 (T1, Ty -y Tm) = o0 = 3B (11,72, -+, Tm) = 0, (5.104)
(1=71)(Bo(r1,72,- -, Tm) = E1(11, 72, .-, 7)) = 1. (5.105)

The additional equation (5.105) is equivalent to

foat&la=1, a=01,... (5.106)
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where
o
Eo(T1, 72,y Tm) = Z&o,krk, (5.107)
k=0
oo
Eilr, 1y, Tm) = Z&,Mk- (5.108)
k=0

This condition is easily satisfied thanks to (5.94), which implies that the restric-
tion caused by the analogue of (5.92) forces at most one of the numbers, &g 4 or
&1,q, to be equal to 0 and, hence, we have full freedom in the choice of the other
number.

Now suppose that there is an algorithm which calculates some rational num-
bers &,0,&0,1,-.. such that the formal power series Z¢ defined by (5.107), to-
gether with some formal power series Z;, ¥y and ¥y, satisfy equations (5.101)—
(5.105). One defines

o =1{al&,. =0}, (5.109)
Wi = {a | &,. # 0} (5.110)

Clearly both sets 9§ and 9] are listable.

it is necessary to check that the conditions in (5.96) are satisfied. If a € 9y,
then by an analogue of (5.92), &, = 0 and, hence, a € M as required. On the
other hand, if a € 9, then by an analogue of (5.92), &, = 0, which by (5.106)
implies that & , =1 and, hence, a € M} as required.

The sets MG and M are evidently complements of one another, hence, both
intersections (5.97) and (5.98) are empty, which contradicts the choice of M
and 9y as effectively inseparable sets. This contradiction implies that numbers
0,0,%0,1, - - - cannot be calculated by an algorithm.
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