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Abstract

This paper offers a simple approach to the theory of decentralizing inventory and
pricing decisions within a distribution system. We consider an upstream manufacturer
selling to two outlets, which compete as differentiated duopolists and face uncertain
demand. Demand spillovers between the outlets arise in the event of stock-outs. The
price mechanism, in which each outlet simply pays a wholesale price and chooses price
and inventory, never coordinates incentives efficiently. Contracts that can elicit first-
best decisions include resale price floors or buy-back policies (retailer-held options to
sell inventory back to the manufacturers) with fixed fees. The combination of a buy-
back option plus a resale price ceiling elicits the first-best without the need for a fixed
fee and is robust to asymmetry in information about demand at the time of contracting.
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1 Introduction

The choice of optimal inventory for a firm facing uncertain demand is a classic problem of

economics (Arrow et al (1951)) and has become a central problem of management science.

A recent literature recognizes that the choice of optimal inventory is not just a single agent

decision problem but rather involves the alignment of incentives all along a vertical supply

chain. And as Deneckere, Marvel and Peck (1996, 1997) have shown, the vertical control of

inventory decisions is tightly linked to control of pricing.

This paper introduces a simple framework that synthesizes and extends the theory of

decentralizing inventory and pricing decisions. Can a manufacturer simply set a wholesale

price for its product, relying on the distributors of its product to set optimal pricing and

inventory levels? If not, which contracts elicit the right incentives for these decisions? Our

framework adopts two principles. First, an organization faces an incentive problem when an

agent within the organization does not appropriate the full collective benefits of her actions.

Second, an incentive problem is resolved when some of the agent’s actions are constrained

at the optimal levels and prices or reward systems internalize the externalities imposed by

the remaining actions on other agents within the organization.

We apply this framework to analyse the roles of a range of instruments. Resale price

maintenance in the form of vertical price floors was very common when it was legal.1 The

opposite restraint, a vertical price ceiling, is also observed.2 A buyback policy refers to

a put option to sell unused inventory back to the manufacturer or an agreement to give credit

for any unsold inventory. Bookstores, for example, send the covers of paperback books and

magazines to publishers to obtain credit. Royalties are common, in video rentals and in

1When resale price maintenance was permitted it was used in a wide variety of retail markets, including
many lines of clothing (jeans, shoes, socks, underwear, shirts), jewelry, sports equipment, candy, biscuits,
automobiles, gasoline, small and large appliances (stereos, shavers, washing machines). See Mathewson and
Winter (1998). Estimates of the proportion of retail sales subject to RPM in the United States during the
1950’s run from 4 percent to 10 percent (Scherer and Ross 1990: 549; Overstreet 1983: 6). In both the
United Kingdom and Canada the practice was even more popular than in the United States: In 1960, some
25 percent of goods and services were subject to RPM in the UK, and in Canada, before the law prohibiting
RPM was enacted in 1951, an estimated 20 per cent of goods sold through grocery stores and 60 per cent
sold through drugstores were fair-traded (Overstreet: 153, 155).

2Vertical price ceilings were per se illegal after Albrecht v. Herald Co., U.S.S.C. 1968, but the Supreme
Court reversed the law in State Oil Co. v. Khan, U.S.S.C. 96-871 and now vertical price ceilings are legal.
In Albrecht v. Herald, the plaintiff was a newsvendor.
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franchising generally.3 Our framework is also applicable to many other observed contracts.4

This paper contributes to three related literatures. The economics literature on verti-

cal restraints (e.g., Deneckere, Marvel and Peck (1996, 1997), Butz (1997), Mathewson and

Winter (1984), Katz (1989), Dana and Spier (2001)) has mainly a positive motivation, in

explaining observed contracts. The managment science literature has a prescriptive moti-

vation in analyzing the optimal means of managing inventory in a multi-stage distribution

system. Cachon’s (2003) survey of supply chain coordination cites more than 150 articles and

the area has been active since the survey was written. An antitrust literature addresses the

normative issue of whether particular vertical restraints should be allowed (Posner (1981),

Easterbrook (1984)). Resale price maintenance, for example, is per se illegal in the U.S.

and vertical price ceilings have only recently escaped this status.5

We begin by outlining the classic newsvendor inventory model as well as the theory

of vertical restraints that we will apply to the inventory problem. We then offer our basic

model and four propositions, which in turn identify incentive incompatibilities and character-

ize resolutions. The characterization of some efficient contracts takes a first-order approach

to the underlying principal-agent problem, which requires assumptions of concavity in en-

dogenous agent payoff functions. The payoff functions are not concave in general, however,

and the characterization of other resolutions to the problem does not depend on concavity

of the entire payoff function.

3As Dana and Spier (2001) and Mortimer (2004) discuss, the video rental industry recently switched to a
rental contract with distributors. Traditionally, retailers such as Blockbuster had bought videotapes from a
distributor for about $65 a copy and kept all rental revenues. Under the new system, videos are purchased
by outlets for about $8 dollars each; 10 percent of the revenue goes to Rentrak, which is an information
management company that runs the system; the remaining revenue is split between the video retailer and
the movie studio. (See www.rentrakonline.com.)

4Other contractual clauses are price discount sharing schemes, which are contractual clauses that
provide a functional link between wholesale prices and retail prices; trade promotions known as bill-backs
and count-recounts (bill-backs refer to schemes by which the costs of downstream promotions are shared
by the upstream firm); flexible-quantity contracts, and so on.

5The research papers that lie closest to our model are Bernstein and Federgruen (2005), Deneckere, Marvel
and Peck (1997) and Dana and Spier (2001). Bernstein and Federgruen’s model is highly complex and sets
aside the possibility of demand spillovers from a stocked-out retailer to other retailers. We suggest that this
type of externality is central and can be incorporated in a simple framework. Deneckere, Marvel and Peck
offer a fundamental contribution in linking resale price maintenance to inventory management in a model
with market power upstream and perfect competition downstream. Our model incorporates market power
downstream in the form of a differentiated duopoly. This has the advantage of revealing the sources of
coordination failure of simple price-mediated exchange and the roles of a wide range of contracts in resolving
the coordination failures.
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2 Background

The optimal inventory problem for a single firm: The classic newsvendor inventory

problem considers a firm sourcing a good at a constant per unit cost, c , and facing an

exogenous price, p. The firm must order an amount y of the good prior to the realization of

demand and any product not sold is worth nothing. Denoting the distribution of uncertain

demand by G, the firm’s expected profit is p
∫ y

0
xdG(x)+py[1−G(y)]−cy. Maximizing this

with respect to y yields the fractile solution 1−G(y∗) = c
p
. Equivalently, G(y∗) = (p−c)

p
. Note

that if an upstream seller is providing the product to a downstream retailer at a uniform price

w then the retailer’s first-order condition substitutes w for c, and the retailer therefore orders

too little inventory. The standard double-marginalization or vertical externality distorts the

retailer’s decision: the retailer ignores the upstream margin (w − c) that accrues with each

additional unit of y ordered.

The simple newsvendor problem is concave and the first-order conditions are sufficient

as well as necessary for the solution. This is not always true in extensions that (a) en-

dogenize price (e.g., Petruzzi and Dada (1999)) (b) involve competing newsvendors with

inventories that spillover from one firm to the other in the event of a stock-out (e.g., Netes-

sine and Rudi (2003)); or (c) involve a vertical structure in which an upstream firm relies

on inventory decisions by downstream firms (e.g., Lariviere and Porteus (2001)). Since our

model will incorporate all three of these effects, we must be sensitive to the possibility of

non-concavities.

The simple analytics of vertical price restraints: The structure that we will con-

sider throughout is a single manufacturer upstream producing a single product at unit cost c

and selling to two differentiated retailers downstream, who in turn sell to consumers. While

our aim is to understand contracts that coordinate decisions on pricing and inventory, it is

helpful to set out in advance the structure in which demand is certain and depends on price

and another retailer action such as sales effort or service.6 Assume that the demands for

the product downstream at the two retailers are symmetric, with the demand at retailer 1

given by q1(p1, s1; p2, s2) where pi and si are the price and sales effort or service – measured

in units of the dollar cost of the effort – provided at the two retailers. Retailers bear no cost

other than the wholesale price, w, paid to the upstream producer and a fixed fee paid to the

6This framework is developed in more detail in Winter (1993).
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producer for the right to carry the product. The profit for retailer 1 gross of the fixed fee is

denoted by π1, and the total profit, for the manufacturers and both retailers is denoted by

Π. These profit functions are given by

π1((p1, s1; p2, s2) = q1(p1, s1; p2, s2)(p1 − w) − s1 (1)

Π((p1, s1; p2, s2) = q1(p1, s1; p2, s2)(p1 − c) + q2(p1, s1; p2, s2)(p2 − c) − s1 − s2 (2)

Assume that Π is maximized at a symmetric set of prices and effort levels and denote this

optimum by (p∗, s∗). Furthermore, for purposes of this background assume that π is concave.

Can (p∗, s∗) be achieved with a single instrument, w, or are more complex contracts required?

The key to understanding any incentive distortions in retailer decisions is to isolate and

decompose the difference between the marginal gain in individual profit and the marginal

gain in total profit from a change in either pi or si. From equations (1) and (2), it follows

that at a symmetric configuration (p1 = p2 ≡ p and s1 = s2 ≡ s):

∂π1

∂p1

=
∂Π

∂p1

−

vertical externality︷ ︸︸ ︷
∂q1

∂p1

(w − c) −

horizontal externality︷ ︸︸ ︷
∂q2

∂p1

(p − c) (3)

∂π1

∂s1

=
∂Π

∂s1

−

vertical externality︷ ︸︸ ︷
∂q1

∂s1

(w − c) −

horizontal externality︷ ︸︸ ︷
∂q2

∂s1

(p − c) (4)

and similarly for retailer 2. The individual retailer’s private optimum in setting p1 (where

∂π1/∂p1 = 0) is distorted from the collective optimum by two externalities: when p1 is raised,

the manufacturer’s collects the wholesale markup, (w − c), on a smaller demand through

retailer 1. This is the vertical externality. The effect of this externality is to distort the

retailer’s price upwards. The second externality operates through the cross-elasticity of

demand between the two retailers. When p1 is raised, the competing retailer collects the

retail markup (p − w) on an additional ∂q2/∂p1 units and the manufacturer collects the

wholesale markup (w − c) on the same additional units; these add up to the term labelled

horizontal externality in equation (3). The same two externalities distort the sales effort

decision. For each instrument, the vertical and horizontal externalities act to distort the

decentralized decision in opposite directions.

When will the right choice of w alone elicit the optimum p∗ and s∗? That is, when can

simple price-mediated exchange lead to efficient price and effort decisions? This efficiency

4



will hold if the last two terms of equation (4) sum to zero when the last two terms of equation

(3) sum to zero. It follows immediately that the following is a necessary and sufficient

condition for efficiency of the simple contract. Let εpi, εpm represent the price-elasticities of

individual outlet demand and market demand evaluated at (p∗, s∗), and similarly for εsi, εsm.

εpi

εpm

=
εsi

εsm

(5)

The firm elasticities of demand are of course higher than the market elasticities. Ef-

ficiency without restraints requires that the two elasticities be higher in exactly the same

proportion. If the left hand side of (5) is greater than the right hand side, then the manu-

facturer faces a bias in competitive strategy downstream: the outlets are excessively oriented

towards price competition away from service or sales effort competition, relative to the ag-

gregate profit maximum. This condition can be viewed as a direct consequence of the

Dorfman-Steiner (1954) Theorem, which implies that the optimum s∗
p∗q∗ equals εsm

εpm
and the

outlet will set s
pq

equal to εsi

εpi
; the outlet’s decision then implements (p∗, s∗) only if εsm

εpm
= εsi

εpi
,

which is equivalent to (5).

Vertical restraints can be explained simply as a response to this bias. Continuing with

the case of excessive price competition (where the left-hand side of (5) is greater), it is easily

shown that at w∗
p, where p∗ is elicited, the last two terms of equation (3) are negative, with

the result that s < s∗ is elicited by w∗
p. Suppose, however, that a price floor p is established

at p = p∗ and consider the retailer’s marginal profitability of si (from (1)):

∂π1

∂s1

= (p∗ − w)
∂q1

∂s1

− 1

Lowering w raises this marginal benefit because the price floor prevents p from following

w downwards. Lowering w to the right value elicits s∗. The two instruments, w and p, are

sufficient to elicit the optimal values of the two targets, p∗ and s∗. The non-contractibility

of effort is circumvented entirely through the design of a vertical restraint contract under

which the vertical and horizontal externalities on effort are exactly offsetting. In sum,

Lemma 1 An upstream firm selling to two downstream retailers that face symmetric de-

mands qi(p1, s1; p2, s2) yielding concave payoff functions can achieve a symmetric optimum

(p∗, s∗) with two part pricing alone; with two part pricing and a resale price floor; or with two

part pricing and a resale price ceiling; depending on whether the left hand side of equation

(5) is equal to, less than, or greater than the right hand side.
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Of course, this lemma does not explain why downstream outlets should be biased one

direction or the other. Why, for example, were price floors observed much more often

than price ceilings (during periods when these restraints were both legal)? The externality-

balancing argument merely provides a structure, which we apply below to a setting in which

the downstream decisions are price and inventory.

3 The Model: Competing Newsvendors in a Vertical

Setting

3.1 Assumptions

In this model, a single manufacturer sells the product through two competing retailers and

must either rely on the retailers to choose prices and inventory levels or constrain their

choices. We assume that contracts can constrain prices but cannot constrain inventory

levels.7 The demand for the product at the two outlets depends on the realization of a

random variable, θ, as well as the two prices: q1(p1, p2, θ) and q2(p1, p2, θ). The retailers set

prices and choose inventory levels, y1 and y2, before the realization of uncertainty. We

define λ1(p1, p2, θ) as the proportion of any excess demand from outlet 1 that would spill

over to outlet 2 in the event of a stock-out at outlet 1, and similarly for λ2. (This imposes

a restriction that λ1 not depend on y1.) Finally, we assume that the joint distribution

on the random demands is differentiable and symmetric in the sense that the marginal

distributions of q1(p1, p2, θ) and q2(p2, p1, θ) are identical. For fixed p ≡ (p1, p2), the support

of the distribution of qi(p1, p2, θ) is assumed to be an interval.

The following is a structure that is described by this reduced form. Assume that

the demands are derived from choices by a set of consumers each of whom purchases at

most one unit of the product. A consumer is identified by a pair of reservation prices

(r1, r2) where ri is the consumer’s gross value of purchasing the product from retailer

7In the language of contract theory, this is an “incomplete-contracting approach” (e.g., Bolton and De-
watripont (2005), Chapter 11) because within the informational constraints of the model presented below,
contracting on inventory levels would clearly be possible. In the simple model, as in the supply chain
incentive literature, the restriction against contracting on inventory is intended to reflect the fact that in
the complex environment of real world, there are strong reasons (especially related to retailer private infor-
mation) for leaving inventory decisions decentralized. We incorporate these reasons explicitly, if briefly, in
Section 3 of the paper.
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i. The density of tastes is given by a differentiable function k(r1, r2; θ) on R
2 and we

represent K(S, θ) ≡ ∫
S

k(r1, r2)dr1dr2 for any (Lebesgue-measurable) set S ⊂ R
2. De-

fine S1(p1, p2, θ) ≡ {r1, r2|r1 − p1 ≥ r2 − p2 and r1 − p1 ≥ 0} as the set of consumers

who would choose to purchase from retailer 1 and similarly for S2(p1, p2, θ). And de-

fine H1(p1, p2, θ) as the set of consumers who would prefer to purchase from retailer 1

at the given prices but, if retailer 1 is out of stock, would then purchase from retailer 2:

H1(p1, p2, θ) = {r1, r2|r1 − p1 ≥ r2 − p2 ≥ 0 ; r1 − p1 ≥ 0} ⊂ S1(p1, p2, θ). Similarly for

H2(p1, p2, θ). Then λ1(p1, p2, θ) = K(H1(p1, p2, θ), θ)/K(S1(p1, p2, θ), θ). The assumption

that λ1 depends only on (p1, p2, θ) and not on y1 is interpreted as the restriction that should

firm 1 stock out, then all consumers in S1(p1, p2, θ) are equally likely to be left with their

orders unfilled.8 Consumers in this model, if they do bear transactions costs from shopping

(which is implied by the preference for one retail outlet over another), place their orders or

reserve units before leaving home rather than shopping on the basis of expected fill rates.9

The timing of the game is as follows:

1. the manufacturer offers contracts, which in the simplest case include w and F , the

fixed fee;10

2. the two retailers observe both contract offers and simultaneously choose to accept or

not;

8This rules out, for example, a “sequential purchase” interpretation in which consumers who have a very
strong relative preference for purchasing from outlet 1 are likely to rush, arrive at the outlet early, and have
their orders filled. It is a natural assumption in a static model.

9A natural setting that reduces preferences further, to a single dimension, and which we will explore in
a subsequent section of the paper, draws on a standard representation of differentiated-product duopoly:
two firms sell an identical physical product and are located at the ends of a unit line segment; consumers
are located along the line segment and have a common value for the product as well as a common travel
cost; a consumer purchases from the store offering the lowest price net of transportation cost. We add to
this model a random distribution of consumers and the requirement that firms choose inventory and prices
before the realization of this demand. The realized distribution of consumers may be asymmetric, to allow
the possibility that only one outlet stocks out even when the ex ante equilibrium choices are identical. (The
probability distribution over the distributions of consumers, however, is symmetric.) The sets Si(p1, p2, θ)
and Hi(p1, p2, θ) are determined by three marginal consumers in this structured model, given (p1, p2, θ): the
consumer indifferent between purchasing at the two outlets and the consumer indifferent to purchasing at
outlet i and not purchasing, for i = 1, 2. Figure 1 below depicts this example.

10The assumption that fixed fees are feasible is discussed in section 6. Note that in a sales contract under
symmetric information, any nonlinear pricing function with nonincreasing marginal price (e.g. quantity
discounts) can be implemented as a two-part tariff. Our assumption is therefore that nonlinear pricing is
possible. Quantity discounts in reality are quite common.
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3. the two retailers simultaneously choose price and inventory levels from some intervals

[0, p] and [0, y];

4. uncertain demand is realized;

5. consumers make purchase decisions;

Given decisions (p1, y1; p2, y2) ≡ (p, y) and demand realization θ, the demand at outlet i

can be expressed as Di(p, yj, θ) = qi(p, θ) + λj(p, θ)(qj(p, θ) − yj)
+. The transactions (sales)

realized by outlet i are given by

ti(p, y; θ) = min{yi, Di(p, yj, θ)} = yi − (yi − Di(p, yj, θ))
+ = yi − Oi(p, y, θ) (6)

where Oi(p, y, θ) is the number of “overstocks” at outlet i.

The aggregate realized profit of the supply chain can be expressed as

Π(p, y; θ) = p1t1(p, y; θ) − cy1 + p2t2(p, y; θ) − cy2 (7)

The realized profit of outlet 1 can be expressed as11

π1(p, y; θ) = p1t1(p, y; θ) − wy1 − F (8)

3.2 Failure of the Price System to Coordinate Incentives

From (7) and (8) we can derive the first-order conditions and compare the individual incen-

tives and collective efficiency in price and inventory:

∂Eπ1

∂y1

=
∂EΠ

∂y1

−
vertical externality︷ ︸︸ ︷

(w − c) −

horizontal externality︷ ︸︸ ︷
p2

∂Et2
∂y1

(9)

∂Eπ1

∂p1

=
∂EΠ

∂p1

−

horizontal externality︷ ︸︸ ︷
p2

∂Et2
∂p1

(10)

11We suppress the arguments w and F in the function πi.
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The terms labelled in these equations describe the externalities parallel to those outlined

in the previous section of the paper. The last equation captures what we think is a fun-

damental feature of the decentralization of price and inventory decisions in the newsvendor

model: controlling for the level of inventory, pricing decisions are not subject to a vertical

externality. Given the inventory choice of an outlet, the manufacturer has no direct (verti-

cal) interest in the price at which the inventory is resold. The wholesale revenue and profits

are completely determined by the inventory purchase. This does not mean that the man-

ufacturer is indifferent as to the pricing decision. To the contrary, the downstream pricing

decision is always distorted. Because only the horizontal externality is at work, decentralized

pricing is biased towards a price that is, at the margin, too low.12 In sum,

Proposition 1 In the basic model, unconstrained outlets fail to achieve the efficient outcome

(p∗, y∗).

Note that Proposition 1 requires no concavity assumptions whatsoever – not even as-

sumptions that guarantee the existence of a pure strategy equilibrium.13 It relies only on

the necessary first-order conditions for the aggregate optimum. Economists often view in-

centive distortions in terms of externalities, or missing markets. Ironically, the source of the

inefficiency in downstream decisions here is a missing externality.

3.3 Contracts that achieve coordination

Given that a simple price contract fails to elicit privately efficient price and inventory deci-

sions, which contracts are efficient? A difficulty in differentiated Bertrand models as well as

models in which firms choose quantities and prices is that payoff functions are not concave

or even quasi-concave. This means that the non-existence of pure strategy equilibria is

common in many models of differentiated Bertrand competition (e.g., d’Aspremont, Gab-

szewicz and Thisse (1979)) and in models in which firms choose both prices and quantities

(Friedman (1988)). It is clear in the game that we have set out that quasiconcavity and

12Recall that the horizontal externality reflects the decrease in the profits flowing to the rival outlet, and
the resulting decrease in the fixed fee that the manufacturer can charge up front to any rival outlet that
rationally anticipates the externality.

13The proposition is easily extended to the case of an asymmetric efficient outcome.
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therefore existence of pure strategy equilibria do not hold in general.14 A common approach

in applications of these models is to restrict strategies or parameters to ranges where the

pure strategies do exist.15 We begin by characterizing contractual resolutions that do not

rely on concavity of the entire payoff functions. These contracts, which involve vertically

imposed prices, or “dictated prices”, rather than just price floors or ceilings, depends on con-

cavity of payoffs in the inventory dimension alone. This requirement is easily met. We are

interested, however, in whether price ceilings or floors are optimal because we observe both

of these contracts and they are opposite instruments. The prediction of which is optimal is

a stronger prediction of the analysis. And from a policy perspective, the law is completely

different on each restraint so welfare analysis should distinguish the two. Accordingly, we

turn subsequently to cases in which the endogenous payoff functions are assumed to be quasi-

concave. We compute ranges, in the more structured model of Section 3.4, in which these

payoff functions are quasi-concave.

A similar issue arises with respect to the centralized or collectively efficient price and

inventory levels. If the two outlets are perfect substitutes for consumers, then it would

always pay the monopolist manufacturer, who is committed to setting prices ex ante, to

set different prices at the two outlets.16 If product differentiation (travel costs) are above

a critical level in the retail sector, however, then the symmetry in assumed demand will

translate into symmetry of the optimum. We restrict attention to a range of travel costs

14Intuitively, when the products offered by the two outlets are very close substitutes, then an outlet may
attain one local optimum in price by competing intensively with its rival, and another local optimum by
forgoing such competition, charging a near-monopoly price, and relying on the chance of a stock-out at its
rival to generate revenue. (The parallel with Varian’s 1980 model of sales is clear. In Varian’s model,
each of two retail firms faces a set of loyal consumers and a set of consumers indifferent between the two
firms. Only a mixed strategy exists.) Note that a mixed strategy equilibrium exists because payoff functions
are continuous and strategy spaces are compact (Glicksberg (1952)), and that our first proposition did not
require a pure strategy equilibrium.

15For example, Salop (1979) and all of the address model literature on product differentiation (Eaton and
Lipsey 1989) restrict attention to parameters where pure strategy equilibrium exist, although for general
parameters such existence is not guaranteed.

16The logic is essentially the same as in Dana (2001). Suppose, to give a simple example, that the
demand curve of each consumer is identical, with a very high choke price, but that there are 100 consumers
with probability 0.95, and 120 consumers with probability 0.05. When there is no differentiation among
outlets, then instead of setting one price, the vertically integrated manufacturer would profit from choosing
inventory and price at one outlet to equate marginal cost and marginal revenue for the first 100 consumers.
At the second outlet, the marginal cost is identical, but the expected marginal revenue is only 5 percent as
high. Equating marginal cost with expected marginal revenue at the second outlet yields an inventory much
smaller than 20 percent of the first outlet’s inventory, as well as a very high price.
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in the structured model high enough to deal with the existence problem discussed in the

previous paragraph and to achieve symmetry for the optimum. (The former problem tends

to be the binding constraint.) In the general framework of this section, our more specific

characterization of optimal contracts simply assumes concavity and symmetry.

The contractual clauses that we consider are the following: a linear price w and a fixed

fee F as before; a resale price floor; a resale price ceiling; a dictated price; a buy-pack policy

in which the outlet has the option to sell back the inventory ex post to the manufacturer for a

“buy-back price” b; and a per-unit royalty r.17 In the following, denote by s∗ the probability

of a stock-out at either outlet at the first-best (p∗, y∗).18 Denote the own-price elasticity

of expected transactions and the cross-price elasticity of expected transactions, evaluated at

(p∗, y∗) by εt
p ≡ d ln Et1/d ln p1 and εt

pc ≡ d ln Et2/d ln p1. Note that, as in Proposition 1, the

following result does not assume that a pure strategy equilibrium exists in the unrestrained

game.19

Proposition 2 The first-best (p∗, y∗) can be achieved with

(a) a dictated price at p∗, a fixed fee and a linear wholesale price given by

w∗ = p∗s∗

(b) a dictated price at p∗, a linear wholesale price and a buy-back price.

(c) a dictated price at p∗, a linear wholesale price and a per-unit royalty on sales.

When we restrict consideration to the range of parameters where the endogenous pay-

off functions are quasi-concave (a range that includes sufficiently high t, or differentiation

between the products), we can get predictions on the nature of the price restraints:

Proposition 3 (Quasi-concave payoff functions): In the basic model, if the payoff

functions πi are quasi-concave in strategies pi and yi then the efficient (p∗, y∗) can be elicited

with

(a) a price floor at p∗, a fixed fee, and a wholesale price.

(b) a linear wholesale price w, a fixed fee, and a buy-back price given by

b∗ = −εt
pc

εt
p

p∗

17We focus first on per-unit royalties and then consider revenue royalties.
18That is, s∗ = prob[Di(p∗, p∗, y∗) ≥ y∗].
19Proofs are in the appendix.
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(c) a buy-back price, a linear wholesale price and a resale price ceiling.

(d) a linear wholesale price, a fixed fee, and a per-unit royalty on sales.

(e) a linear wholesale price, a per-unit royalty and a resale price ceiling.

The role of the price floor in part (a) of the proposition is clear. The missing externality

in the outlet’s first-order condition on price leaves the outlet with the incentive to drop price

below p∗. Setting w∗ = p∗s∗ then leaves the outlet, which faces a newsvendor problem, with

efficient incentives: its optimum is achieved by setting inventory such that the probability

of stock out equal to w∗
p∗ (from the well-known solution to this problem), and this ratio is

selected by the manufacturer to equal s∗. The only way the outlet can achieve a probability

of stock out equal to s∗ is by choosing the first-best efficient y∗.

Recall that the source of the categorical failure of the simplest price-mediated exchange to

elicit correct incentives in our model was a missing externality (equation (10)). An optimal

buy-back policy in (b) resolves the incentive problem by creating a vertical externality of

precisely the right magnitude. This contract achieves the efficient solution purely through

the use of price instruments to elicit the right incentives; no restraint on retailer actions is

necessary. The key is that the wholesale price, w, is free for use purely as an incentive device

because the fixed fee is available to redistribute profits.20

Contractual solutions that do not involve a fixed fee (Propositions 2(b), 2(c), 3(c), 3(d)

and 3(e)) are particularly interesting for two reasons. First, one does not often observe

fixed fees in distribution networks outside of the franchising context, although other forms

on nonlinear pricing can achieve the same effect and are common. These propositions show

that coordination of decisions can be achieved even with uniform pricing. Second, as we

illustrate in Section 4, these propositions are completely robust to asymmetric information

about the size of the market.

In Propositions 2(c), 3(d) and 3(e), we considered per-unit royalties on units sold. Rev-

enue royalties (revenue sharing) are more common in reality and have been the topic of a

20This focus on the incentive effects of variable prices, as opposed to the rent collection role, contrasts with
analysis in the management science literature in which the wholesale price is burdened with both roles. The
simplicity and generality of our approach, compared to the management science literature, is exemplified by
the theory of the buyback policy. Starting with our model and (a) eliminating one downstream outlet; (b)
making price exogenous – thus eliminating three of the four possible externalities in downstream decisions –
we arrive at the oft-cited result of Pasternack (1985) that a buyback policy can resolve incentive distortions.
In addition, we characterize the necessary price restraint as a price ceiling.
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number of papers in the coordination literature (Cachon and Lavirière (2005), Dana and

Spier (2001)). Surprisingly, the incentive effects created by output royalties and revenue

royalties are quite different. Where output royalties required the addition of a price ceiling

to achieve first-best, revenue royalties require the addition of a price floor:

Proposition 4 The first-best (p∗, y∗) cannot be achieved with w and a revenue royalty alone,

but can be achieved with:

(a) with w, a constant revenue royalty and a dictated price.

(b) with w, a constrant revenue royalty and a price floor, if profits are quasi-concave.

In a model with inventory and pricing decisions, a royalty – of any value – induces an

individual outlet price that maximize the outlet’s expected revenue, given the chosen inven-

tory level (i.e. a price where the price elasticity of expected transactions is −1). Revenue

royalties have no direct impact at all on price. If there were a single outlet downstream, this

price would implement the first-best price since the collective objective, given the inventory

level, is also the maximization of expected retail revenue at the single outlet. The wholesale

price and royalty could then fill the two roles of eliciting the right inventory and re-allocating

rents to the upstream firm. But with a second outlet downstream, individual revenue is

always maximized at a lower price than the price that maximizes collective revenue because

only the horizontal externality is in effect.21 A price floor is therefore the right instrument

to correct the distortion.22

3.4 Spatial Model Example

To illustrate the results presented in this section and to explore the welfare implications of

price restraints, consider the following spatial model. Assume that the two retail outlets are

located at two ends of a unit line segment and the travel cost per unit distance is t. Each

21Equation (17) of the proof does reveal an externality in the first two terms. These terms sum to zero,
however, at the optimum (p∗, y∗) from the first-order condition determining p∗.

22Inventory choice by vertical outlets has an additional horizontal and vertical effect, beyond the exter-
nalities incorporated in our model. An increase in inventory will attract customers who value a well-stocked
outlet or high fill rate (and who cannot shop from home). (See Dana and Petruzzi (2001).) In a companion
paper (Krishnan and Winter (2005)), we examine the consequences of this “ex ante” effect of inventory
for vertical control, in a model that also incorporates dynamics. The impact of the ex ante effect depends
critically on the availability of the product – a decision set aside in the newsvendor framework of the current
paper.
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outlet serves a set of “loyal” customers who incur zero travel cost to shop at their preferred

outlet and infinite cost of travelling to the other outlet. Each outlet also competes over the

“common” customers, or comparison shoppers, who are uniformly distributed on the line

segment joining the two retailers.23

Each of the comparison shoppers buys either zero or one unit, and all of these customers

have the same reservation price r. This generates a linear demand curve for these consumers,

with a choke price of r. We assume that the demand curve generated by loyal customers is

also linear, and for simplicity that the elasticity of demand for this demand is the same as

for the comparison shoppers. That is, the linear loyal customer demand for outlet i also

has a choke price of r: LDi(pi, θi) ≡ θi(r − pi). With the density of comparison shoppers

given by a random variable θc, the distribution of demand is given by the joint distribution

G(θ), where θ = (θ1, θ2, θc).

The surplus that a comparison shopper at location x experiences buying from outlet 1 is

r − p1 − tx and from outlet 2 is r − p2 − t(d− x) and the customer will buy from the outlet

where she obtains the higher net surplus. The customers located at M1 = min{ r−p1

t
, d}

and M2 = max{d − r−p2

t
, 0} are the “marginal” customers for outlet 1 and 2 respectively,

indifferent to buying at the outlet or not buying the product. If M1 > M2, there is a non-

empty set of customers (in the interval [M2, M1]) who have positive utility from shopping at

both outlets, and customers located at Mio = M1+M2

2
are at the inter-retailer margin; they

are indifferent between the two outlets.

All customers first attempt to obtain the product from their preferred (higher surplus)

outlet; if their preferred outlet is stocked out, then those customers who are willing to shop

at the other outlet will spillover to that outlet. All customers who shop at a particular

outlet have the same probability of getting the product whether they buy directly or on

rebound from the stocked-out other outlet. That is, we assume “proportional rationing.”24

23Narayanan, Raman, and Singh (2005) consider a similar spatial model but set aside the possibility of
asymmetric demand realizations, and therefore spillover demand, at the two outlets. In our model, the
existence of “loyal” customers with uncertain demand allows for the possibility of asymmetric demand
realizations and demand spillovers even under a symmetric ex ante distribution of demands. Since Varian
(1980), models of retail markets incorporating both shoppers and loyal consumers have been common.

24To justify consumer behavior in this model, assume that consumers can telephone a retail outlet and
“reserve” one unit of the product if it is in stock. Consumers who have a positive surplus at both outlets call
their preferred outlet first, and call the second outlet only if their preferred outlet is stocked out. Proportional
rationing follows under the assumption that a customer’s location in the call sequence at either outlet is
uniformly distributed and identical for all potential customers.
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The “common” demand at outlet 1 (number of customers on the line segment who will make

their first purchase attempt at outlet 1) is given by CD1 ≡ θc(min{M1+M2

2
, M1}) and at

outlet 2 is CD2 ≡ θc(d−max{M1+M2

2
, M2}). The proportion of customers who spillover from

outlet i to outlet j is given by λij = (M1−M2)+

2
/(LDi + CDi).

Using this set-up, we numerically simulate and compare the centralized and decentralized

solutions. Each outlet chooses price pi and inventory yi prior to observing demand. In the

centralized case a single decision maker chooses (p1, y1, p2, y2) to maximize collective profits,

while in the decentralized case, the outlets independently and simultaneously choose (pi, yi).

In comparing the centralized solution with the decentralized equilibrium we restrict at-

tention to symmetric outcomes. For very high travel costs, each outlet is independent of

the other (their markets do not overlap), and a unique, symmetric solution will result.25

For intermediate values of travel cost, the two outlets have overlapping markets and have

a symmetric solution. (For sufficiently small travel costs, a symmetric solution does not

exist.) Where multiple symmetric equilibria exist, we restrict attention to the equilibrium

that maximizes joint profits.

To understand the impact on welfare, consider the use of price floors (as in Proposition

3(a)), applied to the spatial case. In adopting a price floor in this model, the manufacturer

trades off a higher retail price and a consequent drop in quantity demanded in exchange for

greater inventory and a resulting increase in the expected number of transactions. Does

the manufacturer’s willingness to make this tradeoff signal an increase in total welfare as

well? We numerically verify that centralization can increase total welfare and even consumer

surplus alone. A sample of the simulation results is presented in Figure 2. In each of the

cases where centralization raises welfare, the centralized outcome can be implemented with

a price floor.

4 Asymmetric Information

The problem that we have addressed to this point is, from the perspective of contract theory,

incomplete. We have asserted that contracting with a price restraint alone, for example,

is simpler than contracting on price and inventory. This is true in reality, and motivates

the search for simple contracts. But there is no constraint within the model that explains

25The uniqueness follows from the specific assumptions on demand that we use in the spatial model.
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why contracting on inventory is costly. In the static model, the flow of sales is identical to

the stock of inventory – and the manufacturer clearly knows the sales to each retailer.26 In

this section of the paper, we incorporate explicitly one feature of reality that potential limits

contracting over inventory or contracts including fixed fees. This is asymmetric information

about the size of the market. It is clear that in reality retail outlets or individual franchisees

have private information that is relevant to their decision-making. Informational advantages

of decentralized agents are key to the theory of decentralized decision-making in general, and

information about the size of the local market – and therefore the appropriate quantity of

inventory investment – is one of the most important dimensions in which outlets are likely

to be better informed.

Accordingly, we consider a model in which uncertainty about demand is realized in two

stages. In the first stage, a signal about final demand is realized and observed only by the

outlets. This signal is about the size of the overall market, i.e. conditional upon the signal

the distribution of final demand remains symmetric. The manufacturer offers a contract to

the outlets based on the instruments considered to this point. Specifically, let demand at

the two outlets be given by αqi(p, θ), i = 1, 2 where α and θ are both random variables that

are realized in sequence. After the realization of α, which is observed by the outlets but not

by the manufacturer, the manufacturer offers a take-it-or-leave-it contract which the outlets

accept or reject.

The following proposition is a direct implication of Proposition 3, and the homogeneity

of degree 1 of all payoff functions in α.

Proposition 5 If the payoff functions πi (conditional upon α) are quasi-concave in strategies

pi and yi then in the asymmetric information game the efficient (p∗, y∗) can be elicited with

(a) a buy-back price, a linear wholesale price and a resale price ceiling.

(b) a linear wholesale price, a per-unit royalty and a resale price ceiling.

5 Conclusion

An organization faces an incentive problem when an agent within the organization does

not appropriate the full net benefits to the organization of the agent’s decisions. The

26This contrasts with the model of price and sales effort in the background section of the paper, in which
it is reasonable to suppose that effort is not contractible.
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organization can respond to an incentive problem by altering the net benefits through internal

prices that internalize the nonappropriated returns. Or it can constrain the agent’s decisions

in some dimensions and ensure that the externalities are internalized in the unrestrained

dimensions.

We apply these simple principles in this paper to the coordination of price and inventory

decisions in a distribution system. The strategies take the form of reward parameters (the

wholesale price, royalties, and buy-backs) and vertical restraints on downstream prices. The

incentive problem that leads to the failure of the price system and to the need for more

complex contracts we characterize, ironically, as a missing externality.

Price floors and price ceilings are used to address the opposite types of incentive problems.

Our starting lemma showed that the need for restraints - price floors, for example - hinges not

on whether outlets priced too low, but on whether the optimal mix of instruments or decisions

at the retail level mirrored the efficient mix. Price floors are optimal in the newsvendor model

to counter the missing externality. Contractual parameters apart from price restraints aim to

internalize externalities in downstream outlets’ decisions. The two instruments, a buyback

price and a wholesale price, elicit the efficient pair of targets, p∗ and y∗, without the need for

any restraints at all, when these instruments are set at levels that create exactly offsetting

externalities on price and inventory decisions. The most direct role of the buy-back price is

to correct for the missing-externality distortion in the pricing decision - contrary to what one

might expect, in that buybacks seems directed towards inventory decisions. Royalties play a

parallel role, but revenue royalties are unable to correct price distortions. We characterize a

subset of the efficient contracts for which the optimal parameters are independent of the size

of the market and which are therefore robust to asymmetries in information about the size

of the market. The model is the simplest framework possible within which the full range of

vertical and horizontal interactions of price and inventory decisions are manifest, and yet it

yields a rich characterization of contractual resolutions to incentive problems arising in the

distribution of products.
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Figure 1: Spatial Model for Section 3
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Appendix

Proposition 2: Proof. When the outlets are constrained to charge p∗, then they play

a game in inventory decisions y1 and y2, with payoff functions are given by πi(p
∗, y, θ) =

p∗ min{yi, qi(p
∗, θ) + λj(p

∗, θ)[qj(p
∗, θ)− yj]

+} −wyi − F . Note that πi(p
∗, y, θ) is concave in

yi and therefore so is Eπi(p
∗, y, θ). This guarantees a pure strategy equilibrium in (y1, y2).

The assumption that the support of qi(p
∗, θ) is an interval of the real line can be used to

show that qi the payoffs are differentiable. Let y be the maximum possible qi(p, θ) at (p∗, p∗).

Within the range [0, y], the reaction function of each firm is differentiable, and has a strictly

negative slope.27 Note also that the optimal response to 0 is positive and that the optimal

response to y is less that y. It follows that a unique symmetric pure strategy exists.28

To prove (a), note that the optimal inventory y∗ is characterized by the first-order con-

dition (following from (7)) [
p∗

∂Et1
∂y1

− c + p∗
∂Et2
∂y1

]
|(p∗,y∗)= 0

From this equation, setting w = p∗ ∂Et1
∂y1

|(p∗,y∗) ensures that

w − c + p∗
∂Et2
∂y1

|(p∗,y∗)= 0

which then implies that the last two terms of (9) sum to zero, ensuring that the individual

and collective first-order conditions for y coincide. Note that ∂Et1
∂y1

|(p∗,y∗), proving (a).29

To prove (b), note that the outlet 1’s realized profit function with a buy-back price is

given by

πb
1(p, y; θ) = p1t1(p, y; θ) + bO1(p, y; θ) − wy1 − F

27This can be shown by taking the derivative of Eπi w.r.t. yj . The derivative and the expectation
operation can be switched by the dominated convergence theorem. We can then differentiate (piecewise) πi.
There will be a range of values of θ where ∂πi

∂yj
is negative, and a range where it is 0. Taking expectations

will give us a strictly negative value - assuming that ∂πi

∂yj
< 0 on a set of measure greater than 0.

28A similar argument shows that reaction curves are downward-sloping for the buy-back payoff functions
below.

29Note that Et1 = y1 − ∫
{θ|y1>D1(p,y2;θ)}(y1 − D1(p, y2; θ))dG(θ) and D1(p, y2; θ) is a random variable;

which we can denote by D̃1. Define F̃ (x) to be the distribution of D̃1, i.e, F̃ (x) = Prob(D̃1 ≤ x). Applying
Leibnitz Rule, we get that ∂Et1

∂y1
= 1 − ∫ y1

0
dF̃ (D̃1) = 1 − F̃ (y1), which is the probability of a stockout at

outlet 1.
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Note that

πb
1(p, y; θ) = π1(p, y; θ) + b(y1 − t1(p, y; θ))

Eπb
1(p, y; θ) = Eπ1(p, y; θ) + b(y1 − Et1(p, y; θ))

The now-familiar comparison of individual versus collective incentives at (p∗, y∗), with

the contractual parameter b, is given by the following.

∂Eπb
1

∂y1

=
∂EΠ

∂y1

−

vertical externality︷ ︸︸ ︷[
(w − c) − b(1 − ∂Et1

∂y1

)

]
−

horizontal externality︷ ︸︸ ︷
p2

∂Et2
∂y1

(11)

∂Eπb
1

∂p1

=
∂EΠ

∂p1

−

vertical externality︷ ︸︸ ︷
b
∂Et1
∂p1

−

horizontal externality︷ ︸︸ ︷
p2

∂Et2
∂p1

(12)

Note that the collective profit function (7) is unchanged with the addition of the buy-

back price to the set of instruments, because the buy-back is pure transfer. Since price

is constrained, (11) but not (12) is relevant. The task is to find values for w and b that

(1) render the sums of the last two terms in (11) equal to zero and (2) ensure that the

downstream outlets earn zero profits. The first of these conditions ensures that aggregate

profits are maximized and the second ensures that all profits accrue to the manufacturer.

This task is met if, when the outlets are constrained by the manufacturer to charge p∗,

there is a pair (ŵ, b̂) that solves[
w − c − b(1 − ∂Et1

∂y1

) − p∗
∂Et2
∂y1

]
|(p∗,y∗)= 0 (13)

and

Eπb
1(p

∗, y∗; θ) = p∗Et1(p
∗, y∗; θ) + b(y1 − Et1(p

∗, y∗; θ)) − wy∗ = 0 (14)

The system of equations (13) and (14) is linear in b and w, and linearly independent in

these variables, implying that a solution (ŵ, b̂) exists.

To prove part (c), note that a contract with a linear price w and a royalty r per unit

sold, is pay-off equivalent to a contract with a linear price w + r and a buy-back price r. In

both cases, a downstream outlet pays w for all units not sold and w + r for units sold. (A
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fixed fee need not be part of each contract.) Part (c) then follow directly from part (b) of

the proposition.

Proposition 3: Proof. As long as one can show that the price floor is binding, then

part (a) follows from Proposition 2(a). To prove that a price floor is indeed binding, note

that equation (10) shows that ∂Eπi

∂pi
pi=p∗ < 0 and under the concavity assumption on πi the

price floor is binding; and the first-order condition on inventory is sufficient for the optimum,

implying that y∗ is elicited.

To prove (b), note that setting b = −p2
∂Et2
∂p1

/∂Et1
∂p1

makes the last two terms of (12) sum

to zero. Multiplying the numerator and denominator of the fraction by p∗/Et∗ yields the

expression for b∗/p∗ in the proposition, where t∗ is the transactions function evaluated at

the optimum. Setting w = c + b(1 − ∂Et1
∂y1

) − p2
∂Et2
∂y1

makes the last two terms of (11) equal

to zero. Since ∂Et2/∂y1 < 0, this also shows that w∗ > c.

To prove (c), we need to show that under b̂ (from Proposition 2(b)) the right hand side

of (12) is positive evaluated at (p∗, y∗), i.e.,[
∂EΠ

∂p1

− b̂
∂Et1
∂p1

− p2
∂Et2
∂p1

]
|(p∗,y∗)> 0 (15)

To show (15), note that (12) is zero evaluated at b∗ and (p∗, y∗), and that ∂Et1/∂p1 < 0;

it therefore suffices to show that b̂ > b∗. Note that w∗ < p∗ otherwise an outlet’s optimal y

is zero. The inequality w∗ < p∗ implies that F ∗ > 0 in order to meet the zero profit condition

under part (b) of Proposition 3. Comparing the zero profit condition (14) with the zero

profit condition under part (b), which is identical except for the addition of F ∗, we see that

b̂ > b∗ and/or ŵ > w∗. If the former, we are done. If the latter, then setting the last

two terms of equation (12) equal to zero (a condition which is satisfied by b∗and w∗); and

comparing this condition with (13) (which is satisfied by b̂ and ŵ), we have from ŵ > w∗

that b̂ > b∗.

Parts (d) and (e) of the proposition follow directly from parts (b) and (c), because of

pay-off equivalence between the buy-back and the per-unit royalty: given any two of the

three prices, w, b, u (where u is the per-unit royalty), the third is redundant.

Proposition 4: Proof. Letting the royalty rate be µ, the difference between individual
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and collective incentives can be written as

∂Eπ1

∂y1

=
∂EΠ

∂y1

− (w − c) − µp1
∂Et1
∂y1

− p2
∂Et2
∂y1

(16)

∂Eπ1

∂p1

=
∂EΠ

∂p1

− µ
∂(p1Et1)

∂p1

− p2
∂Et2
∂p1

(17)

Given any w, at the π1-maximizing price, ∂(p1Et1)/∂p1 is zero; hence the middle term of

(17) disappears. The last term of (17) is negative, showing that ∂(Eπ1)/∂p1 < ∂(EΠ)/∂p1.

At a dictated price at p∗ or – from the last inequality – a price floor at p∗ if profits are

quasi-concave, the first-best (p∗, y∗) can therefore be achieved if the externality terms on the

right hand side of (16) sum to zero, once µ is set to achieve π1(p
∗, y∗) = 0. This is achieved

simply by setting w = c − µp1
∂Et1
∂y1

− p2
∂Et2
∂y1

.
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