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Subshifts.

Let Σ be a finite alphabet. By a subshift X ⊂ ΣZ is meant a
closed subset of ΣZ that is invariant under the shift S,

S(xi)i∈Z = (xi+1)i∈Z, (xi)i∈Z ∈ ΣZ.

A word is called admissible for a subshift if it appears in some
point of the subshift. We denote the language of admissible
words of a subshift X ⊂ ΣZ by L(X ).
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Notation for subshifts.

Given a subshift X ⊂ ΣZ we set for a ∈ L(X ),

Γ+(a) = {b ∈ L(X ) : ab ∈ L(X )}.

Γ− has the symmetric meaning. With

X[1,∞) = {(xi)1≤i<∞ : x ∈ X}

we also set

Γ+
∞(a) = {x+ ∈ X[1,∞) : ax+ ∈ X[1,∞)},

and
ω−(a) =

⋂
x+∈Γ+

∞(a)

{x− ∈ Γ−∞(a) : x−ax+ ∈ X}.
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Semisynchronization.

A word v ∈ L(X ) is called synchronizing for a subshift X ⊂ ΣZ if
for u,w ∈ L(X ), uv , vw ∈ L(X ) implies uvw ∈ L(X ). A
topologically transitive subshift with a synchronizing word is
called synchronizing.
A word v ∈ L(X ) is called semisynchronizing for a subshift
X ⊂ ΣZ if there is a transitive point in ω−(v). A subshift is called
semisynchronizing if it has a semisynchronizing word. A
semisynchronizing subshift is called standard
semisynchronizing if for all a ∈ L(X ) there exists an
x− ∈ Γ−∞(a) such that for all b ∈ Γ+(a), x− /∈ ω−(ab).
Synchronization, semisynchronization and standard
semisynchronization are invariants of topological conjugacy.
Here we consider standard semisynchronizing,
non-synchronizing subshifts.
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Shannon graphs.

We will consider directed graphs and denote she source vertex
of an edge by s, and the target vertex of an edge by t .
A labeled directed graph (V, E , λ) with labeling alphabet Σ is
called a Shannon graph if for all V ∈ V and for σ ∈ Σ there is at
most one edge that leaves V and that carries the label σ. We
consider here only Shannon graphs in which every vertex has a
finite number of incoming edges.
We extend the label map to paths in the graph by
concatenation. We say that a Shannon graph presents a
subshift X ⊂ ΣZ if L(X ) coincides with the labels of the finite
non-empty paths in the graph.
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The semisynchronizing Shannon graph of a semisynchronizing
subshift.

If v is a semisynchronizing word of a subshift, then for all
σ ∈ Γ+(v), vσ is also semisynchronizing. It follows that a
semisynchronizing subshift gives rise to its semisynchronizing
Shannon graph, that has as vertex sets the sets Γ+

∞(v), v a
semisynchronizing word of X , and where there is an edge
leaving a vertex V that carries the label σ, if and only if there is
a right-infinite sequence in V that starts with σ and the target
vertex of this edge is the set

{x+
(1,∞) : x+

[1,∞) ∈ V : x+
1 = σ}.

.
A semisynchronizing subshift is presented by its
semisynchronizing Shannon graph.
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Strong shift equivalence of Shannon graphs.

Call two Shannon graphs G(V, E , λ) and G̃(Ṽ, Ẽ , λ̃) strong shift
equivalent if they can be connected by a chain
Gm,1 ≤ m ≤ M,M ∈ N, of Shannon graphs, G1 = G, GM = G̃,
such that Gm, and Gm+1, are bipartitely related, 1 ≤ m < M.
The semisynchronizing Shannon graphs of topologically
conjugate semisynchronizing subshifts are strong shift
equivalent.
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Notation for Shannon graphs.

Given an Shannon graph G(V, E , λ), a vertex V ∈ V, and a finite
set A ⊂ V, we denote by ∆(V ,A) the minimal length of a path
in G that starts at V and ends in A, and we set

SA(K ) = {V ∈ V : ∆(V ,A) ≤ K}, K ∈ N,

and
S◦A(K ) = {V ∈ V : ∆(V ,A) = K}, K ∈ N.
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Subgraphs of Shannon graphs.

Given a Shannon graph G(V, E , λ) and a set V◦ ⊂ V we denote
by GV◦ the Shannon graph with vertex set V◦, and edge set

EV◦ = {e ∈ E : s(e), t(e) ∈ V◦ },

that has as labeling map the restriction of the labeling map to
EV◦ .
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A lemma

We denote for m ∈ N,E and K > M ,V ∈ S◦A(K ), by T (V ,M)
the set of final vertices of the paths in of length M that start at V
and that approach A strictly.
Lemma.
Let G(V, E , λ) be an irreducible Shannon graph. Let B ⊂ V be a
finite set, and let M ∈ N,K◦ ≥ M, such that for K ≥ K◦ and
V ,V ′ ∈ S one has the equality

TB(V ,M) = TB(V ′,M).

Then for all finite sets A ⊂ V there exist Q◦ ∈ N and R ∈ Z such
that for Q ≥ Q◦,

S◦A(Q) = S◦B(Q + R).
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H1.

We say that a Shannon graph satisfies Hypothesis H1, if for a
finite set A ⊂ V (and therefore by the Lemma, for every finite
set A ⊂ V ) there exist M ∈ N,K◦ ≥ M, such that one has for
K ≥ K◦ and V ,V ′ ∈ S the equality

TA(V ,M) = TA(V ′,M).

Hypothesis H1 is an invariant of the strong shift equivalence of
Shannon graphs.
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Approach from infinity

Given a Shannon graph G(V, E , λ), that satisfies hypothesis H1,
and a finite set A ⊂ V and K ∈ N and a vertex V ∈ S◦A(K ), we
say that V can be approached from infinity, if there exists an
infinite path in V \ SA(K − 1) that ends at V . We denote the set
of vertices that can be approached from infinity by V∞.
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H2.

We say that a Shannon graph G(V, E , λ), that satisfies
Hypothesis H1, satisfies Hypothesis H2, if for a finite set A ⊂ V
(and therefore by the Lemma, for every finite set A ⊂ V ) there
exist K◦,Q ∈ N such that in every connected componentW of
V∞ \ SA(K − 1) there is a path from every vertex in
W ∩S◦A(K + Q) to every vertex inW ∩S◦A(K ). Hypothesis H2 is
an invariant of the strong shift equivalence of Shannon graphs.
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Context-free Shannon graphs.

We say that a Shannon graph G(V, E , λ) is context-free, if it
satisfies Hypothesis H1 and Hypothesis H2, and if there are
finitely many isomorphism types among the pairs that consist of
a connected componentW of V∞ \ SA(K − 1) and its boundary
W ∩ S◦A(K ), K ∈ N (see Muller and Schupp, Bull. AMS 19 ).
Context-freeness is is an invariant of the strong shift
equivalence of Shannon graphs.
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Hypothesis 3.

In view of the construction of the push-down automaton that is
isomorphic to the context-free Shannon graph denote by Ξ the
set of isomorphism types that appear infinitely often among the
pairs (W,W ∩ S◦A(K )),K ∈ N. Also let for ξ, ξ′ ∈ Ξ, A(ξ, ξ′) be
the number of isomorphism types of embeddings of connected
components with boundary in S◦A(K + 1) as subgraphs
connected components with boundary in S◦A(K ). We call the
topological Markov chain with state space Ξ and transition
matrix A the stack topological Markov chain of the Shannon
graph. We say that the Shannon graph satisfies hypothesis H3
if its stack topological Markov chain is irreducible. Hypothesis 3
is an invariant of the strong shift equivalence of Shannon
graphs.
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Hypothesis 4.

The subshift whose admissible words are the label sequences
of finite paths in the Shannon graph whose target vertex is in
the boundary of a connected component with an isomorphism
type in Ξ, we call the stack shift of the Shannon graph. We say
that a Shannon graph that satisfies hypothesis 3, satisfies
hypothesis 4, if there is a ξ◦ ∈ Ξ and a word v of length 2I, I ∈ N
that is admissible for the stack shift, such that for a path
(bi)1≤i≤2I.I∈N with label sequence v t(bi)1≤i≤I is necessarily in
the boundary of a connected componen twith isomorphism type
ξ◦. For a Shannon graph that satisfies hypothesis 4 the stack
shift is sofic. Hypothesis 4 is an invariant of the strong shift
equivalence of Shannon graphs.
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A theorem.

We will not describe here the construction of the finite control of
the push-down automaton, beyond saying that the finite control
of the automaton also contains information on a distinguished
vertex in the Shannon graph which acts as a present state, and
also a description of the push-down mechanism.
Theorem.
For a standard semisynchronizing non-synchronizing subshift
whose semisynchronizing Shannon graph is context-free and
satisfies Hypothesis 3 and Hypothesis 4, the stack topological
Markov chain is the left Fischer cover of its stack sofic shift.
This left Fischer cover is an invariant of topological conjugacy.
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The polycyclic monoid.

Let N > 1, and let α−(n), α+(n),0 ≤ n < N, be the generators
of the polycyclic monoid monoid DN with the rules

α−(n), α+(n) = 1, 1 ≤ n ≤ N,

α−(n), α+(m) = 0, 1 ≤ n ≤ N,1 ≤ m ≤ N,n 6= m.

(See Nivat, Perrot, Une généralisation du monoîde bicyclique,
C. R. Acad. Sc. Paris (1970))
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An open problem.

With the semigroup D−N (D+
N ) that is generated by

{α−(n) : 0 ≤ n < N} ({α+(n) : 0 ≤ n < N}), let

Σ ⊂ D−N ∪ {1} ∪ D
+
N ,

be a generating set of DN , and let X (Σ) ⊂ ΣZ be the subshift
with admissible words (σi)1≤i≤I , I ∈ N, given by the condition∏

1≤i≤I

σi 6= 0.

The subshifts X (Σ) are standard semisynchronizing.
Problem:
Prove or disprove that the subshifts X (Σ) are context-free
semisynchronizing.
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