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Let p be a prime, and Zp be the set of the residues
classes modulo p. Then Z

∗

p = Zp \ {0} is the multi-
plicative group of the field Zp. We take an arbitrary
subgroup G of the group Z

∗

p.

For u ∈ R we denote e(u) = exp(2πiu). Observe
that e(x/p) = e(y/p) if x ≡ y(modp). Thus, e(a/p) is
correctly defined for a ∈ Zp.

The main subject of my talks is the estimation of
exponential sums over G:

S(a, G) =
∑

x∈G

e(ax/p), a ∈ Zp.

Typeset by AMS-TEX

1



2 SERGEI KONYAGIN

These sums have numerous applications in additive
problems modulo p, pseudo-random generators, coding
theory, theory of algebraic curves and other problems.

Trivially,
|S(a, G)| ≤ |G|.

We are interested in obtaining nontrivial estimates for
S(a, G):

S(a, G) = o(|G|) (p → ∞, a ∈ Z
∗

p)

or, for some δ > 0,

S(a, G) ≤ C(δ)|G|p−δ (a ∈ Z
∗

p).

Also, related combinatorial problems including the
sums-products problem in Zp and additive properties of
groups G will be discussed.

The first lecture will be introductory. In the second
lecture I suppose to talk about the using of Stepanov’s
method for study additive properties of groups G and
exponential sums over G and also about the sums- prod-
ucts problem modulo p. In the concluding lecture some
recent results related to exponential sums and additive
properties of subsets of Zp will be discussed.



Let m ∈ N, Zm = Z/mZ be the set of the residues
modulo m. If p is a prime, then Zp is a field of order
p. Let Z

∗

p = Zp \ {0} be the set of invertible elements in
Zp. We take an arbitrary subgroup G of the group Z

∗

p.
Let t = |G|. For brevity, we will write a ≡ b instead of
a ≡ b(modp).

For u ∈ R we denote e(u) = exp(2πiu). The function
e(·) is 1-periodic, and this allows us to talk about e(a/p)
for a ∈ Zp.

The main subject of my talks is the estimation of
exponential sums over G:

S(a, G) =
∑

x∈G

e(ax/p), a ∈ Zp.

There are some equivalent and related problems.

1



2

1. Exponential sums with exponential func-

tions. Let g ∈ Z
∗

p and ordp(g) = t, namely

t = {min{k > 0 : gk ≡ 1}}.

For a ∈ Zp we consider

S(a, g) =
t−1∑

k=0

e(agk/p).

Let G be the group generated by g. We have

G = {gk : k = 0, . . . , t − 1}.

Hence,
S(a, g) = S(a, G).

Conversely, if G is an arbitrary subgroup of Z
∗

p then G
is generated by some g ∈ Z

∗

p as a subgroup of a cyclic
group Z

∗

p, and we can consider an exponential sum over
G as an exponential sum with an exponential function.
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2. Gaussian sums. Let n ∈ N, m ∈ N, a ∈ Zm.
Consider the sum

Sn(a, m) =
∑

x∈Zm

e(axn/m).

Clearly, Sn(0, m) = m. The simplest case is n = 1. For
a ∈ Zm \ {0} we have

S1(a, m) =

m−1∑

x=0

e(ax/m) =
e(ma/m) − e(0)

e(a/m) − 1
= 0.

Thus, we have

∑

x∈Zm

e(ax/m) =

{
m, a = 0,

0, a ∈ Zm \ {0}.

This simple property is a basic tool for using exponential
sums in study of different problems modulo m.

K. Gauss evaluated S2(a, m) and, in particular,
proved that |S2(a, p)| =

√
p for a ∈ Z

∗

p. Sometimes
Sn(a, m) are called Gaussian sums.
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For arbitrary n ∈ N denote d = gcd(n, p − 1),
t = (p − 1)/d. Consider the congruence

(1.1) xn ≡ 1.

Let g0 be a primitive root modulo p. If x = gu
0 , 0 ≤ u <

p − 1, then (1.1) is equivalent to the congruence

nu ≡ 0(mod(p − 1)),

or

(1.2) u ≡ 0(modt).

The number of u, 0 ≤ u < p − 1, satisfying (1.2), is
(p−1)/t = d. Therefore, for every y ∈ Z

∗

p the congruence

xn ≡ y

either does not have solutions or has d solutions. It is
easy to see that G = {xn : x ∈ Z

∗

p} is a subgroup of Z
∗

p

and |G| = t.
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Now we can write Sn(a) as follows

Sn(a) = 1 +
∑

x∈Z∗

p

e(axn/p)

= 1 +
∑

y∈Z∗

p

e(ay/p)|{x ∈ Z
∗

p : xn ≡ y}|

= 1 +
∑

y∈G

de(ax/p) = 1 +
p − 1

t
S(a, G).

We can estimate S(a, G) trivially:

(1.3) |S(a, G)| ≤
∑

x∈G

|e(ax/p)| =
∑

x∈G

1 = |G|.

This estimate corresponds to a trivial estimate for
Gaussian sums

|Sn(a)| ≤ p.

Clearly, inequality (1.3) is equality if a = 0. We are
interested in obtaining nontrivial estimates for S(a, G):

(1.4) S(a, G) = o(|G|) (p → ∞, a ∈ Z
∗

p)

or, for some δ > 0.

(1.5) S(a, G) � |G|p−δ (a ∈ Z
∗

p).
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Recall that U � V means |U | ≤ CV where C > 0
may be an absolute constant or depend on some speci-
fied parameters. Of course, in (1.4) and (1.5) we assume
that a pair (p, G) belongs to some set of pairs. Trivially,
(1.4) does not hold in general. If |G| = 1, then for any
a ∈ Zp we have |S(a, G)| = 1. If p > 2, |G| = 2, that is,
G = {1,−1}, then

S(1, G) = e(1/p) + e(−1/p) = 2 cos(2π/p)

= |G| + O(p−2).

We can expect that (1.4) or (1.5) holds if |G| is not too
small comparatively to p.
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If maxa∈Z∗

p
|S(a, G)| is small comparatively to

t = |G|, then we can deduce that for any a ∈ Z
∗

p the frac-
tional parts {ax/p}, x ∈ G, are well-distributed on [0, 1).
To formulate this precisely, let us take an arbitrary real
sequence {u1, . . . , ut} and define its discrepancy as

D = Dt(u1, . . . , ut)

= sup
0≤α<β≤1

∣∣∣∣
A([α, β); t)

t
− (β − α)

∣∣∣∣ ,

where A([α, β); t) = |{j : {uj} ∈ [α, β)}|. Thus, D is
small if the distribution of the sequence {u1, . . . , ut} is
close to the uniform one. The theorem of Erdős and
Turan asserts that for any n ∈ N

D ≤
6

m + 1
+

4

π

m∑

h=1

(
1

h
−

1

m + 1

) ∣∣∣∣∣∣
1

t

t∑

j=1

e(huj)

∣∣∣∣∣∣
.

Take a0 ∈ Z
∗

p and {u1, . . . , ut} = {a0x/p : x ∈ G}.
Then the last inequality can be written as

D ≤
6

m + 1
+

4

πt

m∑

h=1

(
1

h
−

1

m + 1

)
|S(a0h, G)|.
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Therefore, if m < p, then

(1.6) D �
1

m
+ log(m + 1) max

a∈Z∗

p

|S(a, G)|/t.

Assume that for some η ∈ [1/p, 1] we have the estimate

(1.7) max
a∈Z∗

p

|S(a, G)|/t ≤ η.

Then, taking

m =

[
η−1

log(η−1) + 1

]
,

we deduce from (1.6)

(1.8) D � η(log(η−1) + 1).

In particular,

(1.4) S(a, G) = o(|G|) (p → ∞, a ∈ Z
∗

p)

implies
D → 0 (p → ∞).
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From the definition of the discrepancy we see that
if 0 ≤ α < β ≤ 1 and β − α > Dt(u1, . . . , ut) then
[α, β) ∩ {u1, . . . , ut} 6= ∅. In our case {u1, . . . , ut} =
{a0x/p : x ∈ G} we get from (1.8) under supposition
(1.7) that there is an absolute constant C > 0 such that
for h ∈ N, h ≥ Cη(log(η−1) + 1)p, n ∈ Z, and a0 ∈ Z

∗

p

the congruence

(1.9) n + j ≡ a0x, x ∈ G, |j| ≤ h,

has at least one solution. For small η this holds under
weaker restrictions on h.

Proposition 1.1. Assume that (1.7) holds, h ∈ N,
h = [ηp/(1 + η)], n ∈ Z, and a0 ∈ Z

∗

p. Then (1.9) has
at least one solution.

Thus, Proposition 1.1 asserts that if exponential sums
over G are small then a0G does not produce large gaps.
To prove of Proposition 1.1 we use the following Lemma.

Lemma 1.2. Let X ⊂ Zp. Then

∑

a∈Zp

∣∣∣∣∣
∑

x∈X

e(ax/p)

∣∣∣∣∣

2

= p|X|.
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Proof of Lemma 1.2. We have

∑

a∈Zp

∣∣∣∣∣
∑

x∈X

e(ax/p)

∣∣∣∣∣

2

=
∑

a∈Zp

∑

x∈X

e(ax/p)
∑

x∈X

e(−ax/p)

=
∑

a∈Zp

∑

x1∈X

e(ax1/p)
∑

x2∈X

e(−ax2/p)

=
∑

a∈Zp

∑

x1,x2∈X

e(a(x1 − x2)/p)

=
∑

x1,x2∈X

∑

a∈Zp

e(a(x1 − x2)/p)

=
∑

x1=x2∈X

p = p|X|,

as required.

In fact, we can treat

{
∑

x∈X

e(ax/p)}a∈Zp

as the Fourier transform of the characteristic function of
the set X, and Lemma 1.2 is merely Parseval’s identity.
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Proposition 1.1. Assume that (1.7) holds, h ∈ N,
h = [ηp/(1 + η)], n ∈ Z, and a0 ∈ Z

∗

p. Then the congru-
ence

(1.9) n + j ≡ a0x, x ∈ G, |j| ≤ h,

has at least one solution.

Proof of Proposition 1.1. Assume that congruence (1.9)
is unsolvable. Then

0 =
∑

x∈G

h∑

u,v=0

∑

a∈Z∗

p

e(a(a0x − n − u + v)/p).

Changing the order of summation, separating the term
t(h+1)2 corresponding to a = 0, and using (1.7) we get

t(h + 1)2 ≤
∑

a∈Z∗

p

∣∣∣∣∣
∑

x∈G

h∑

u,v=0

e(a(a0x − n − u + v)/p)

∣∣∣∣∣

=
∑

a∈Z∗

p

∣∣∣∣∣
∑

x∈G

e(aa0x/p)

∣∣∣∣∣

∣∣∣∣∣

h∑

u=0

e(au/p)

∣∣∣∣∣

2

≤ ηt
∑

a∈Z∗

p

∣∣∣∣∣

h∑

u=0

e(au/p)

∣∣∣∣∣

2

.(1.10)
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Next, by Lemma 1.2,

∑

a∈Z∗

p

∣∣∣∣∣

h∑

u=0

e(au/p)

∣∣∣∣∣

2

=
∑

a∈Zp

∣∣∣∣∣

h∑

u=0

e(au/p)

∣∣∣∣∣

2

− (h + 1)2

= p(h + 1) − (h + 1)2.

After substitution of this equality into inequality (1.10)
we get

t(h + 1)2 ≤ ηt
(
p(h + 1) − (h + 1)2

)
,

or, equivalently,

1 ≤ η

(
p

h + 1
− 1

)
,

h + 1 ≤ ηp/(1 + η).

But this does not agree with the choice of h
(h = [ηp/(1 + η)]). This completes the proof of the
proposition.
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Exponential sums over subgroups can be applied to
the study of 1/p-pseudo-random generators of Blum,
Blum, and Shub. Let g ≥ 2 be an integer. We consider
the g-ary expansion of 1/p. If g is fixed then we can
expect (and this is true indeed) that for many primes p
there is no large correlation among close digits in this
expansion, and we can talk about a pseudo-random gen-
erator. Let G be the subgroup of Z

∗

p generated by g,
t = |G|. It is easy to see that t is the (least) period
of the g-ary expansion of 1/p. We are interested in ap-
pearances of a sequence (d1, . . . , dk) of g-ary digits in
the expansion. Denote by σj , 0 ≤ σj ≤ g − 1, the g-ary
digits of 1/p:

1

p
=

∞∑

j=1

σjg
−j .

We observe that, for j and any g-ary string we have
σj+i = di for all i = 1, . . . , k, if and only if

(1.11)
E

gk
≤

{
gj

p

}
<

E + 1

gk
,

where E = d1g
k−1 + d2g

k−2 + · · · + dk.
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Solvability of inequalities (1.11) both together is
equivalent to solvability of the congruence y ≡ x ∈ G
for some y from the interval

Ep

gk
≤ y <

(E + 1)p

gk
,

which follows from the solvability of the congruence

n + j ≡ x, x ∈ G, |j| ≤ h,

where

n =

[
(2E + 1)p

2gk

]
, h =

[
p

2gk
− 1

]
.

By Proposition 1.1, this congruence is solvable if

(1.7) max
a∈Z∗

p

|S(a, G)|/t ≤ η

and
p

2gk
− 1 ≥ ηp/(1 + η).

So, the g-ary expansion of 1/p contains any string of
length k if k ≤ c log(1/η)/ log g for some absolute con-
stant c > 0.
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Moreover, we can estimate the number Np(d1, . . . , dk)
of appearances of the string (d1, . . . , dk) in the period of
the g-ary expansion of 1/p in terms of the discrepancy
D of the set {x/p : x ∈ G}. Observe that

Np(d1, . . . , dk) =

∣∣∣∣

{
x ∈ G :

E

gk
≤ {x/p} <

(E + 1)

gk

}∣∣∣∣ .

By the definition of the discrepancy, we have

∣∣∣∣Np(d1, . . . , dk) −
t

gk

∣∣∣∣ ≤ Dt.

Hence, if D is much smaller than 1/gk then all strings of
length k appear approximately with the same frequency.
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The following magnitude is important in the study of
hyperelliptic curves. Let T (p) be the largest t with the
property that there exists a group G ⊂ Z

∗

p, |G| = t, such
that for some a0 ∈ Z

∗

p all the smallest positive residues of
a0x, x ∈ G, belong to the interval [1, (p− 1)/2]. Clearly
T (p) is odd. Also, we claim that the following inequality
holds

max
a∈Z∗

p

|S(a, G)| > t/3.

Indeed, otherwise (1.7) holds with η = 1/3, and we can
use Proposition 1.1 with h = [p/4] and n = (p+1)/2+h.
Hence, for some x ∈ G we have

n + j ≡ a0x, x ∈ G, |j| ≤ h.

Therefore, a0x is not congruent to any number from the
interval [1, (p − 1)/2]. Thus, we get the following.

Proposition 1.3. Let t0 be such that for every group
G ⊂ Z

∗

p of an odd order with |G| > t0 we have

max
a∈Z∗

p

|S(a, G)| ≤ |G|/3.

Then T (p) ≤ t0.
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Estimates for exponential sums over subgroups are
closely related to additive properties of subgroups.

Proposition 1.4. Let δ > 0 be such that

(1.5’) |S(a, G)| ≤ |G|p−δ (a ∈ Z
∗

p),

b1, . . . , bd ∈ Z
∗

p. Then the number N of the solutions to
the congruence

(1.12)
∑

j=1

bjxj ≡ 0 (x1, . . . , xd ∈ X)

satisfies the inequality

(1.13)

∣∣∣∣N −
|G|d

p

∣∣∣∣ < |G|dp−δd.

In particular, N > 0 if d ≥ 1/δ.

We note that if δ and d > 1/δ are fixed and (1.5)
holds for the family of pairs (p, G) then (1.13) gives an
asymptotic formula for the number of the solutions of
(1.12) as p → ∞.
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Proof of Proposition 1.4. We have

pN =
∑

x1,...,xd∈G

∑

a∈Zp

e



a
∑

j=1

bjxj/p





=
∑

a∈Zp

d∏

j=1

∑

xj∈G

e(abjxj/p)

=
∑

a∈Zp

d∏

j=1

S(abj , G).(1.14)

Separating the term |G|d corresponding to a = 0, we
get

|pN − |G|d| =

∣∣∣∣∣∣

∑

a∈Z∗

p

d∏

j=1

S(abj , G)

∣∣∣∣∣∣

≤ (p − 1)

(
max
a∈Z∗

p

|S(a, G)|

)d

,

and using (1.5’) completes the proof of the proposition.
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In a particular case b1 = · · · = bd−1 = −1, bd = b,
congruence (1.12) has a form

bxd ≡
d−1∑

j=1

xj ,

or

b ≡
d−1∑

j=1

xj/xd.

Observing that xj/xd ∈ G we obtain the following.

Corollary 1.5. If (1.5’) holds and d ≥ 1/δ then for
every b ∈ Z

∗

p the congruence

b ≡
d−1∑

j=1

xj , xj ∈ X

is solvable.

Corollary 1.5 gives a simple estimate for a number of
summands in Waring problem for G.
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To estimate S(a, G) we need one more simple lemma.

Lemma 1.6. For any a ∈ Zp and x ∈ G we have
S(a, G) = S(ax, G).

Proof.

S(ax, G) =
∑

y∈G

e(axy/p) =
∑

z=xy,y∈G

e(az/p)

=
∑

z∈G

e(az/p) = S(a, G).

Now we are ready to prove the simplest estimate for
|S(a, G)|.

Theorem 1.7. We have

(1.15) |S(a0, G)| ≤
√

p (a0 ∈ Z
∗

p).

Proof. By Lemma 1.6 and Lemma 1.2, we get

|G||S(a0, G)|2 =
∑

x∈G

|S(a0x, G)|2

≤
∑

a∈G

|S(a, G)|2 = p|G|,

and the theorem follows.
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So, we have a nontrivial estimate for exponential
sums over G (namely, (1.5’)) provided that |G| ≥ p1/2+δ.
Our aim is to weaken this inequality for |G|.

However, it turns out that there is no nontrivial esti-
mate

(1.4) S(a, G) = o(|G|) (p → ∞, a ∈ Z
∗

p)

if |G| � log p.

Theorem 1.8. For every u > 0 there are p(u) and
v > 0 such that for p ≥ p(u) inequality

(1.16) |G| ≤ u log p

implies
max
a∈Z∗

p

|S(a, G)| ≥ v|G|.

Proof. Take some T ∈ N, T ≤ t = |G|, and some X ⊂
G with |X| = T . By pigeonhole principle, there is an
integer a, 1 ≤ a < p, such that ‖ax/p‖ ≤ p−1/T for all
x ∈ X, where ‖z‖ denotes the distance form z to the
nearest integer. Therefore, there is an interval
[α, β) ∈ [0, 1), β − α ≤ p−1/T , and a set Y ⊂ X, |Y | ≥
T/2, such that {ax/p} ∈ [α, β) for all x ∈ Y . Thus, we
have the following estimate for the discrepancy D of the
set {ax/p : x ∈ G}:
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(1.17) D ≥
|Y |

t
− (β − α) ≥

|Y |

t
− p1/T .

If |G| ≤ log p we take T = t. Then |Y | ≥ t/2, and (1.17)
implies

D ≥ 1/2 − 1/e.

If |G| > log p (and, thus, u > 1) we take T = [log p/(3u)]
and p(u) so that T ≥ 1 for p ≥ p(u). Then

|Y | ≥ max(1, [log p/(6u)] > log p/(12u),

and, by (1.17),

D >
(log p)/(12u)

u log p
− e−3u =

1

12u2
− e−3u > 0.

So, in both cases we have D ≥ c(u) > 0, and inequality

(1.7) max
a∈Z∗

p

|S(a, G)|/t ≤ η

cannot hold for small η > 0 since it would imply

D � η(log(η−1) + 1).
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But the last inequality is not compatible with our
lower estimates for D if η is small enough. This com-
pletes the proof of Theorem 1.8.

Also, one can prove lower estimates for |S(a, G)| using
results on Turan’s problem. Let t and N be positive
integers. It is required to evaluate or to estimate

Ut(N) = min
α1,...,αt

max
a=1,...,N

∣∣∣∣∣∣

t∑

j=1

e(aαj)

∣∣∣∣∣∣
.

Taking G = {x1, . . . , xt}, αj = e(xj/p), we see that

max
a∈Z∗

p

|S(a, G)| ≥ Ut(p − 1).

Theorem 1.8 follows from H. Montgomery’s lower esti-
mates for Ut(p − 1). H. Montgomery conjectured that
for a ∈ Z

∗

p

|S(a, G)| ≤ (1 + η)

(
2t log

p2

t

)1/2

,

where η → 0 as p → ∞. If this is true, then S(a, G) =
o(|G|) as |G|/ log p → ∞.
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Observe that neither of these proofs uses that G is a
group. Thus, the following is true.

Theorem 1.8’. For every u > 0 there are p(u) and
v > 0 such that for p ≥ p(u) and X ⊂ Zp inequality

(1.16’) |X| ≤ u log p

implies

max
a∈Z∗

p

∣∣∣∣∣
∑

x∈X

e(ax/p)

∣∣∣∣∣ ≥ v|X|.

To get better estimates for S(a, G) we define, for
k ∈ N, Tk(G) as the number of the solutions to the
congruence

x1 + · · · + xk ≡ xk+1 + · · · + x2k, xj ∈ G.

Clearly, T1(G) = t, and, for any k,

(1.17) tk ≤ Tk(G) ≤ t2k−1.

Identity (1.14) in our case can be written as

(1.18) pTk(G) =
∑

a∈Zp

|S(a, G)|2k.
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It easily follows from (1.18) that

(1.19) Tk(G) ≥ |S(0, G)|2k/p = t2k/p

and

(1.20) Tk+1(G)/t2(k+1) ≤ Tk(G)/t2k.

Moreover, (1.18) shows that Tk(G)/t2k is close to 1/p
for large k if all sums |S(a, G)|, a ∈ Z

∗

p, are small. In
particular, it follows from Proposition 1.4 or directly
from (1.18) that if we have

(1.5’) S(a, G) ≤ |G|p−δ (a ∈ Z
∗

p),

and 2k ≥ 1/δ, then Tk(G) ≤ 2t2k/p. We will show now
that, conversely, if Tk(G) is close to t2k/p for some small
k, then we can get bound |S(a, G)| well.

Proposition 1.9. We have

(1.21) |S(a0, G)| ≤ (pTk(G)/t)
1/(2k)

(a0 ∈ Z
∗

p).
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Proof. By Lemma 1.6 and (1.18), we get

t|S(a0, G)|2k =
∑

x∈G

|S(a0x, G)|2

≤
∑

a∈G

|S(a, G)|2k = pTk(G),

and the proposition follows.

In particular, if Tk(G)/t2k ≤ tp−ε/p then

|S(a, G)| ≤ |G|p−ε/(2k) (a ∈ Z
∗

p).

Observe that Theorem 1.7 is a particular case of Pro-
position 1.9 for k = 1. If we use a trivial estimate
Tk(G) ≤ t2k−1 we get only

|S(a, G)| ≤
(
pt2k−1/t

)1/(2k)
= t(p/t2)1/(2k).

This estimate is worse than the trivial one
|S(a, G)| ≤ t if |G| < p1/2 and worse than the simplest
estimate |S(a, G)| ≤ p1/2 if |G| > p1/2. However, if
|G| is close to p1/2 then any improvement of the triv-
ial inequality Tk(G) ≤ t2k−1 will improve estimates for
|S(a, G)|.



Let m ∈ N, Zm = Z/mZ be the set of the residues
modulo m. If p is a prime, then Zp is a field of order
p. Let Z

∗

p = Zp \ {0} be the set of invertible elements in
Zp. We take an arbitrary subgroup G of the group Z

∗

p.
Let t = |G|. For brevity, we will write a ≡ b instead of
a ≡ b(modp).

For u ∈ R we denote e(u) = exp(2πiu). The function
e(·) is 1-periodic, and this allows us to talk about e(a/p)
for a ∈ Zp.

The main subject of my talks is the estimation of
exponential sums over G:

S(a, G) =
∑

x∈G

e(ax/p), a ∈ Zp.

1



2

We can estimate S(a, G) trivially:

(1.3) |S(a, G)| ≤
∑

x∈G

|e(ax/p)| =
∑

x∈G

1 = |G|.

Clearly, inequality (1.3) is equality if a = 0. We are
interested in obtaining nontrivial estimates for S(a, G):

(1.4) S(a, G) = o(|G|) (p → ∞, a ∈ Z
∗

p)

or, for some δ > 0.

(1.5) S(a, G) � |G|p−δ (a ∈ Z
∗

p).

We proved the simplest estimate for |S(a, G)|.

Theorem 1.7. We have

(1.15) |S(a, G)| ≤
√

p (a ∈ Z
∗

p).

So, we have a nontrivial estimate for exponential
sums over G (namely, (1.5)) provided that |G| ≥ p1/2+δ.
Our aim is to weaken this inequality for |G|.
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To get better estimates for S(a, G) we define, for
k ∈ N, Tk(G) as the number of the solutions to the
congruence

x1 + · · · + xk ≡ xk+1 + · · · + x2k, xj ∈ G.

Clearly, T1(G) = t, and, for any k,

(1.17) tk ≤ Tk(G) ≤ t2k−1.

Also, we have

(1.18) pTk(G) =
∑

a∈Zp

|S(a, G)|2k.

It easily follows from (1.18) that

(1.19) Tk(G) ≥ |S(0, G)|2k/p = t2k/p.

We proved the following.

Proposition 1.9. We have

(1.21) |S(a, G)| ≤ (pTk(G)/t)
1/(2k)

(a ∈ Z
∗

p).

In particular, if Tk(G)/t2k ≤ tp−ε/p then

|S(a, G)| ≤ |G|p−ε/(2k) (a ∈ Z
∗

p).
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Observe that Theorem 1.7 is a particular case of Pro-
position 1.9 for k = 1. If we use a trivial estimate
Tk(G) ≤ t2k−1 we get only

|S(a, G)| ≤
(
pt2k−1/t

)1/(2k)
= t(p/t2)1/(2k).

This estimate is worse than the trivial one
|S(a, G)| ≤ t if |G| < p1/2 and worse than the simplest
estimate |S(a, G)| ≤ p1/2 if |G| > p1/2. However, if
|G| is close to p1/2 then any improvement of the triv-
ial inequality Tk(G) ≤ t2k−1 will improve estimates for
|S(a, G)|.

Such an improvement was made by Shparlinski who
used the following result of A. Garcia and J. F. Voloch.

Theorem 2.1. For b ∈ Zp denote by N2(b) the number
of solutions to the congruence x1 + x2 ≡ b, x1, x2 ∈ G.
If

(2.1) |G| <
p − 1

(p − 1)1/4 + 1
,

then for any b ∈ Z
∗

p we have

(2.2) N2(b) ≤ 4|G|2/3.
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Using (2.2), one can nontrivially estimate T2(G) pro-
vided that (2.1) holds. Recall that T2(G) is the number
of solutions to

(2.3) x1 + x2 ≡ x3 + x4, xj ∈ G.

The number of solutions to (2.3) with x3 + x4 ≡ 0 is at
most |G|2. Next, if x3 +x4 6≡ 0, then, by (2.2), there are
at most 4|G|2/3 pairs (x1, x2) satisfying (2.3) Therefore,

(2.4) T2(G) ≤ p2 + 4p8/3 < 5p8/3.

Now we can estimate exponential sums using Propo-
sition 1.9

(1.21) |S(a, G)| ≤ (pTk(G)/t)1/(2k) (a ∈ Z
∗

p).

for k = 2:

|S(a, G)| ≤ (5p)1/4|G|5/12 (a ∈ Z
∗

p).

This is better than the estimate p1/2 for |G| ≤ p3/5−δ,
p ≥ p(δ), and better than the trivial |G| for |G| ≥
p3/7+δ, p ≥ p(δ). Observing that (2.1) holds for |G| ≤
p3/4−δ, p ≥ p(δ). Thus, the improvement was made for
p3/7+δ ≤ |G| ≤ p3/5−δ, p ≥ p(δ).
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D. R. Heath-Brown succeeded in applying Stepanov’s
method to the proof of the theorem of Garcia and Vo-
loch. Moreover, in our joint paper we used his technique
to improve estimate (2.4) for T2(G) if |G| ≤ p2/3.

Theorem 2.2. If |G| ≤ p2/3, then

(2.5) T2(G) � |G|5/2.

We are not able to improve the estimate of Garcia
and Voloch

N2(b) � |G|2/3

for all b ∈ Z
∗

p, but it can be improved in average, and
this implies (2.5). I shall present the proof of (2.5), but
first let us discuss its applications. To estimate exponen-
tial sums S(a, G), one can use Proposition 1.9; however,
the following more general fact sometimes gives better
estimates.
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Theorem 2.3. If k, l ∈ N, a ∈ Z
∗

p, then

(2.6) |S(a, G)| ≤ (pTk(G)Tl(G))1/(2kl) t1−1/k−1/l.

Clearly, for l = 1 Theorem 2.3 is just Proposition 1.9.
For k = l (2.6) can be written as

(2.7) |S(a, G)| ≤

(
Tk(G)p1/2

t2k

)1/(k2)

t.

Clearly, (2.7) supersedes the trivial estimate
|S(a, G)| ≤ t if and only if

(2.8) Tk(G) < t2kp−1/2.

In the most interesting case |G| < p1/2 (2.8) is
weaker than the condition Tk(G) < t2kt/p required to
have any benefit from Proposition 1.9.

Theorem 2.3 probably has to be attributed to
A. A. Karatsuba who in fact proved the following.
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Theorem 2.4. Let X ⊂ Z
∗

p. For k ∈ N by Tk(X)
denote the number of the solutions to the congruence

x1 + · · · + xk ≡ xk+1 + · · · + x2k, xj ∈ X.

Then for k, l ∈ N, a ∈ Z
∗

p, we have

∣∣∣∣∣∣

∑

x,y∈X

e(axy/p)

∣∣∣∣∣∣
≤ (pTk(X)Tl(X))1/(2kl) |X|2−1/k−1/l.

Theorem 2.4 is similar to the results proven for esti-
mates of H. Weil’s sums by I. M. Vinogradov’s method.
Theorem 2.3 is contained in Theorem 2.4 since

∑

x,y∈G

e(axy/p) = |G|
∑

z∈G

e(az/p) = |G|S(a, G).

Combining Theorem 2.2 with Theorem 2.3 for k =
1, l = 2 if p1/2 < |G| ≤ p2/3 and for k = l = 2 if
|G| ≤ p1/2 we get for a ∈ Z

∗

p

(2.9) |S(a, G)| � p1/4|G|3/8 (p1/2 < |G| ≤ p2/3),

(2.10) |S(a, G)| � p1/8|G|5/8 (|G| ≤ p1/2).
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Observe that (2.9) supersedes the simplest estimate
|S(a, G)| ≤ p1/2 for |G| ≤ p2/3−δ, p ≥ p(δ), and (2.10)
supersedes the trivial estimate |S(a, G)| ≤ |G| for |G| ≥
p1/3+δ, p ≥ p(δ). For |G| ≥ p2/3 we cannot prove any-
thing better than |S(a, G)| � p1/2.

Let me recall the definition of 1/p-pseudo-random
generators of Blum, Blum, and Shub. Take an integer
g ≥ 2. We consider the g-ary expansion of 1/p. If g is
fixed then we can expect (and this is true indeed) that
for many primes p there is no large correlation among
close digits in this expansion, and we can talk about a
pseudo-random generator. Let G be the subgroup of Z

∗

p

generated by g, t = |G|. It is easy to see that t is the
(least) period of the g-ary expansion of 1/p. We are
interested in appearances of a sequence (d1, . . . , dk) of
g-ary digits in the expansion. We have proved that if

(1.7) max
a∈Z∗

p

|S(a, G)|/t ≤ η

and

(2.11)
p

2gk
− 1 ≥ ηp/(1 + η)

then the g-ary expansion of 1/p contains any string of
length k. It is easy to see that (2.11) holds if k ≤
(log(1/η) − C)/ log g for some absolute constant C.
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Let me stress that we do not expect that the digits of
the g-ary expansion of 1/p are well-distributed for ALL
large p. For example, take g = 2. If p is a Mersenne
prime (that is, p = 2q − 1), then the expansion has the
string (0, . . . , 0, 1) of size q as its period; thus, the se-
quence is very far from being pseudo-random. However,
we can say that for ALMOST ALL primes the sequence
of digits is in a sense well-distributed.

Fix g and take a large L ∈ N. Also,let T ∈ N. Let us
estimate the number N of primes p ≤ gL such that the
order of g in Zp is at most T . We have

N ≤
∑

t≤T

|{p : gt ≡ 1(modp)}| =
∑

t≤T

w(gt − 1)

�
∑

t≤T

t ≤ T 2.

On the other hand, the number of primes p ≤ gL is
� gL/L. Therefore, for every fixed ε > 0, specifying
T = g(1/2−ε)L, we see that for almost all primes p ≤ gL

the order of g in Zp is > T ≥ p1/2−ε. This means that
the proportion of exceptional primes amongst all the
primes ≤ gL tends to 0 as L → ∞.
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Next, if G is the subgroup of Z
∗

p generated by g, t =

|G| > p1/2−ε, than, by (2.9) and (2.10),

(2.9) |S(a, G)| � p1/4|G|3/8 (p1/2 < |G| ≤ p2/3),

(2.10) |S(a, G)| � p1/8|G|5/8 (|G| ≤ p1/2).

we have
max
a∈Z∗

p

|S(a, G)|/t ≤ η

with η � p−
1

16
+ 3

8
ε. This implies, that the g-ary expan-

sion of 1/p contains any string of length
≤ ( 1

16−
3
8ε)L−C. Moreover, for large L all the strings of

length ≤ ( 1
16 − ε)L will appear with approximately the

same frequency. Observe that we cannot prove any re-
sults of this type using the simplest estimate |S(a, G)| ≤
p1/2.

We (SK, I. Shparlinski) can prove more: for almost
all primes p ≤ gL the g-ary expansion of 1/p contains
any string of length ≤ 3

37L.
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Now we shall make some preparations to prove the
estimate for T2(G). Take some cosets G1, . . . , Gs of the
group G in Z

∗

p. For any coset Gj denote

Nj = |{x ∈ G : x − 1 ∈ Gj}|.

Lemma 2.5. Let |G| = t and suppose that a positive
integer L satisfies the conditions

(2.12) L < t, tL ≤ p, s < L3/(2t).

Then
s∑

j=1

Nj ≤
2tL

[t/L]
.

Proof. Let K = [t/L]. We shall begin by taking a poly-
nomial Φ(X, Y, Z), for which

degX Φ < K, degY Φ < L, degZ Φ < L.

For j = 1, . . . , s we define the sets

Rj = {x ∈ G : x − 1 ∈ Gj}, R =
s⋃

j=1

Rj .

Clearly,
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s∑

j=1

Nj = |R|.

The underlying idea is then to arrange that the polyno-
mial

Ψ(X) = Φ(X, Xt, (X − 1)t)

has a zero of order at least K at each point x ∈ R. We
will therefore be able to conclude that

K
s∑

j=1

Nj ≤ deg Ψ,

provided that Ψ does not vanish identically. We note
that

deg Ψ ≤ degX Φ+t degY Φ+t degZ Φ ≤ K−1+2t(L−1),

whence

s∑

j=1

Nj ≤
K − 1 + 2t(L − 1)

K
<

2tL

[t/L]
,

provided that Ψ does not vanish identically.
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In order for Ψ to have a zero of multiplicity at least
K at a point x, we need

(
d

dx

)n

Ψ(X)

∣∣∣∣
X=x

= 0 (n < K).

Since x 6= 0, 1 for x ∈ R, this will be equivalent to

(2.13) (X(X − 1))n

(
d

dx

)n

Ψ(X)

∣∣∣∣
X=x

= 0.

We now observe that

Xm

(
d

dx

)m

Xu =
u!

(u − m)!
Xu,

Xm

(
d

dx

)m

Xtv =
(tv)!

(tv − m)!
Xtv,

(X − 1)m

(
d

dx

)m

(X − 1)tw =
(tw)!

(tw − m)!
(X − 1)tw.

It follows that



15

(X(X − 1))k

(
d

dX

)k

XuXtv(X − 1)tw

= Pk,u,v,w(X)Xtv(X − 1)tw

where Pk,u,v,w either vanishes or is a polynomial of de-
gree at most k + u. We therefore deduce that for any
j = 1, . . . , s and for any x ∈ Rj , we have

(X(X − 1))k

(
d

dx

)k

XuXtv(X − 1)tw

∣∣∣∣
X=x

= aw
j Pk,u,v,w(x)

where aj = yt for y ∈ Gj ; the crucial argument here
is that yt does not depend on the choice of y ∈ G or
y ∈ Gj .

We now write

Φ(X, Y, Z) =
∑

u,v,w

λu,v,wXuY vZw

and
Pk,j(X) =

∑

u,v,w

λu,v,waw
j Pk,u,v,w(X)
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so that deg Pk,j < A + k and

(X(X − 1))k

(
d

dX

)k

Φ(X, Xt, (X − 1)t)

∣∣∣∣
X=x

= Pk,j(x)

for any x ∈ Rj . We shall arrange, by appropriate choice
of the coefficients λu,v,w, that Pk,j(X) vanishes identi-
cally for k < K. This will ensure that

(2.13) (X(X − 1))n

(
d

dx

)n

Ψ(X)

∣∣∣∣
X=x

= 0

holds at every point x ∈ R. Each polynomial Pk,j(X)
has at most K + k < 2K coefficients which are linear
forms in the original λu,v,w. Thus if

(2.14) sK(2K) < KL2,

there will be a set of coefficients λu,v,w, not all zero, for
which the polynomials Pk,j(X) vanish for all k < K.
But, since K = [t/L] ≤ t/L and s < L3/(2t),

sK(2K) = 2sK2 ≤ 2sKt/L < KL2,

and (2.14) holds.
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We must now consider whether the polynomial
Φ(X, Xt, (X − 1)t) can vanish if Φ(X, Y, Z) does not.
We shall write

Φ(X, Y, Z) =
∑

w

Φw(X, Y )Zw,

and take w0 to be the smallest value w for which
Φw(X, Y ) is not identically zero. It follows that

Φ(X, Xt, (X − 1)t)

= (X − 1)tw0

∑

w0≤w≤B

Φw(X, Xt)(X − 1)t(w−w0),

so that if Φ(X, Xt, (X−1)t) is identically zero, we must
have

(2.15) Φw0
(X, Xt) ≡ 0(mod(X − 1)t).
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We show, by induction on N , that if a polynomial
f(X) ∈ Zp[X] of degree deg f < p is a sum of N ≥ 1
distinct monomials, then (X − 1)N cannot divide f(X).
The case N = 1 is trivial. Now suppose that N > 1 and
let

f(X) =
∑

w

cwxW

where w runs over N distinct values. Then the polyno-
mial

g(X) = Xf ′(X) − Wf(X) =
∑

w

cw(w − W )Xw,

where W = deg w, contains exactly N − 1 terms. (No-
tice that cw(w − W ) ∈ Zp is nonzero for w < W since
W < p.) We then see that if (X − 1)N divides f(X),
then (X−1)N−1 divides g(X) contrary to our induction
hypothesis.

We have

deg Φw0
(X, Xt) ≤ K − 1 + t(L − 1) < tL.

Therefore, the congruence

(2.15) Φw0
(X, Xt) ≡ 0(mod(X − 1)t)

is impossible provided that KL ≤ t, tL ≤ p. But these
inequalities hold, and Lemma 2.5 is proven.
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Now take all the cosets G1, . . . , Gn of the group G
in Z

∗

p; thus, n = (p − 1)/t. Again, for any coset Gj we
denote

Nj = |{x ∈ G : x − 1 ∈ Gj}|.

Hence,

Nj = |{x ∈ G, y ∈ Gj : x − 1 ≡ y}|,

tNj = |{x1, x2 ∈ G, y ∈ Gj : x1 − x2 ≡ y}|,

and for any y ∈ Gj we have

Nj = |{(x1, x2) ∈ G : x1 − x2 ≡ y}|.

Therefore,

T2(G) = |{(x1, x2, x3, x4) : xj ∈ G, x1 − x2 ≡ x3 − x4}|

=
∑

y∈Zp

|{(x1, x2) : x1, x2 ∈ G, x1 − x2 ≡ y}|2

≤ t2 +
n∑

j=1

∑

y∈Gj

|{(x1, x2) : x1, x2 ∈ G, x1 − x2 ≡ y}|2

= t2 +
n∑

j=1

∑

y∈Gj

N2
j = t2 + t

n∑

j=1

N2
j .(2.16)
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Also, observe that

t2 =
∑

y∈Zp

|{(x1, x2) : x1, x2 ∈ G, x1 − x2 ≡ y}|

≥
n∑

j=1

∑

y∈Gj

|{(x1, x2) : x1, x2 ∈ G, x1 − x2 ≡ y}|

=
n∑

j=1

∑

y∈Gj

Nj = t
n∑

j=1

Nj .

Hence,

(2.17)
n∑

j=1

Nj ≤ t.

Now we are in position to prove Theorem 2.2.

Theorem 2.2. If |G| ≤ p2/3, then

(2.5) T2(G) � |G|5/2.

We assume that t = |G| is large enough and the cosets
G1, . . . , Gn are ordered in such a way that

N1 ≥ N2 · · · ≥ Nn.
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Then for 1 ≤ s ≤ t1/2/3 and L = [(2st)1/3] + 1 the
conditions

(2.12) L < t, tL ≤ p, s < L3/(2t).

of Lemma 2.5 are satisfied, and it can be applied giving

s∑

j=1

Nj � s2/3t2/3.

Hence,

(2.18) Ns � s−1/3t2/3 (s ≤ t1/2/3).

For s > t1/2/3 the following estimate holds:

(2.19) Ns ≤ N[t1/2/3] � t1/2.

Using (2.16) and combining the bounds (2.18) and (2.19)
with (2.17) we get
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T2(G) ≤ t2 + t
n∑

s=1

N2
s

≤ t2 + t
∑

s≤t1/2/3

N2
s + t

∑

s>t1/2/3

N2
s

� t2 + t
∑

s≤t1/2/3

(
s−1/3t2/3

)2

+ t
∑

s>t1/2/3

t1/2Ns

� t2 + t
∑

s≤t1/2/3

(
s−1/3t2/3

)2

+ t(t1/2)t � t5/2,

and we have the desired result.
Now we will prove a corollary from Lemma 2.5. If ∗

is a binary operation on Zp, A, B ⊂ Zp, then we denote

A ∗ B = {a ∗ b : a ∈ A, b ∈ B}.
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Corollary 2.7. (A. Glibichuk.) Let B ⊂ G and 0 <
|B| ≤ p1/2. Then

(2.20) |G(B − B)| � |B|3/2.

Proof. Let G1, . . . , Gs be all the cosets of G in Z
∗

p con-
taining elements from B −B. Then Gj ⊂ G(B −B) for
j = 1, . . . , s, and hence

(2.21) |G(B − B)| = s|G| + 1.

Inequality (2.20) follows immediately from (2.21) for s >
|B|3/2/(17|G|) (and, in particular, for |G| > |B|3/2/17).
Thus, we can assume that

(2.22) |G| ≤ |B|3/2/17, s ≤ |B|3/2/(17|G|).

Also, assume that |B| is large enough. Fixed x0 ∈ B.
Recall that

Nj = |{x ∈ G : x − 1 ∈ Gj}|.

Equivalently,

Nj = |{x ∈ G : x − x0 ∈ Gj}|.
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Since for every x ∈ B \ {x0} we have x− x0 ∈ Gj for
some j = 1, . . . , s,

(2.23) |B|− 1 =

s∑

j=1

|{x ∈ B : x−x0 ∈ Gj}| ≤

s∑

j=1

Nj .

Take L = [(2st)1/3] + 1. Now we can use Lemma 2.5.

Lemma 2.5. Let |G| = t and suppose that a positive
integer L satisfies the conditions

(2.12) L < t, tL ≤ p, s < L3/(2t).

Then
s∑

j=1

Nj ≤
2tL

[t/L]
.

We have

(2.24) L ≤ [(2|B|3/2/17)1/3] + 1 < (|B| − 1)1/2/2.

Therefore,
L < |B|1/2 ≤ |B| ≤ t,

tL < (|B|3/2/17)(|B|1/2) < |B|2 < p.

So, (2.12) are fulfilled. By Lemma 2.5 and (2.24),
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s∑

j=1

Nj ≤ 4L2 < |B| − 1,

but his does not agree with (2.23), and Corollary 2.7
follows.

Using Stepanov— Heath-Brown’s method, Theorem
2.2 can be extended to k > 2 provided that |G| ≤ p1/2.

Theorem 2.8. If |G| ≤ p1/2, k ∈ N, then

(2.25) Tk(G) �k |G|2k−2+21−k

.

It follows from Theorem 2.3 that we can get nontrivial
estimates for exponential sums if for some k and ε > 0
we have

(2.26) Tk(G) �k,ε |G|2kp−1/2−ε.

Namely, (2.26) implies |S(a, G)| �k,ε p−ε/k2

|G| for
a ∈ Z

∗

p. By Theorem 2.8, (2.26) holds for

(2.27) |G| ≥ p1/4+ε

and k ≥ k(ε). Thus, we have nontrivial estimates for
exponential sums under supposition (2.27).
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It is likely that Theorem 2.8 and restriction (2.27)
correspond to natural thresholds of Stepanov— Heath-
Brown’s method.

Let me mention a corollary from Theorem 2.8. For
b ∈ Zp, k ∈ N we denote by Nk(b) the number of the
solutions to the congruence

x1 + · · · + xk ≡ b, x1, . . . , xk ∈ G.

It is not difficult to prove that

∑

b∈kG

Nk(b) = |G|k,

∑

b∈kG

Nk(b)2 = Tk(G)

(we have checked this for k = 2). Hence, by Cauchy—
Schwartz inequality

|kG| ≥ |G|2k/Tk(G),

and from Theorem 2.8 we get the following.

Corollary 2.9. If |G| ≤ p1/2, k ∈ N, then

(2.28) |kG| �k |G|2−21−k

.
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To weaken restriction

(2.27) |G| ≥ p1/4+ε

we had to show that for |G| ≤ p1/4 and for some k and
ε

Tk(G) � |G|2k−2−ε.

This would imply

|kG| � |G|2+ε.

But before 2003 it was not clear how to exclude the
situation

(2.29) ∀k ∃p, G : |G| ≤ p1/4, |kG| < |G|2.

Now it is time to have an excursion to a very exciting
number theoretical and combinatorial problem.
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P. Erdős and E. Szemerédi asked the following ques-
tion.

Problem 2.9. Is it true that for every nonempty finite
A ⊂ Z and for every ε > 0

max(|A + A|, |AA|) �ε |A|2−ε?

They proved that for some α > 0

(2.30) max(|A + A|, |AA|) � |A|1+α.

M. Nathanson established (2.30) for α = 1/31. This
value was being improved by K. Ford, G. Elekes. J. Soly-
mosi proved (2.30) for α = 3/11 − ε with an arbitrary
ε > 0; moreover, (2.30) is true for any nonempty finite
A ⊂ C.

It was naturally to ask if (2.30) holds for Zp, but
it was clear that it could not hold in full generality:
indeed, for A = Zp we have A + A = AA = A. But
it was reasonable to conjecture the validity of (2.30) for
small A, say, |A| ≤ p1/2. This would exclude

(2.29) ∀k ∃p, G : |G| ≤ p1/4, Nk(G) < |G|2.
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Indeed, take a large k and use (2.29) with k replaced
by k2. Then we have |G| ≤ p1/4,

(2.28) |kG| �k |G|2−21−k

,

but, by (2.29),

(2.31) |k2G| < |G|2.

This inequality implies

|kG| ≤ |k2G| < p1/2.

Since

kG + kG = 2kG, (kG)(kG) ⊂ k2G,

we deduce from conjectural (2.30)

|k2G| ≥ max(kG + kG, (kG)(kG)) �k |G|(2−21−k)(1+α),

but this does not agree with (2.30) for k = k(α) and
sufficiently large p.

Unfortunately no existing proofs of (2.30) for integer,
real or complex numbers could be used for Zp.



Let m ∈ N, Zm = Z/mZ be the set of the residues
modulo m. If p is a prime, then Zp is a field of order p.
Let Z

∗

p = Zp\{0} be the set of invertible elements in Zp.
For brevity, we will write a ≡ b instead of a ≡ b( mod p).

If ∗ is a binary operation in a ring R (Zp or C) on
Zp, A, B ⊂ R, then we denote

A ∗ B = {a ∗ b : a ∈ A, b ∈ B}.

P. Erdős and E. Szemerédi asked the following ques-
tion.

Problem 2.9. Is it true that for every nonempty finite
A ⊂ Z and for every ε > 0

max(|A + A|, |AA|) �ε |A|2−ε?

They proved that for some α > 0

(2.30) max(|A + A|, |AA|) � |A|1+α.

M. Nathanson established (2.30) for α = 1/31. This
value was being improved by K. Ford, G. Elekes. J. Soly-
mosi proved (2.30) for α = 3/11 − ε with an arbitrary
ε > 0; moreover, (2.30) is true for any nonempty finite
A ⊂ C.

1
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It was naturally to ask if (2.30) holds for Zp, but
it was clear that it could not hold in full generality:
indeed, for A = Zp we have A + A = AA = A. But
it was reasonable to conjecture the validity of (2.30) for
small A, say, |A| ≤ p1/2.

Unfortunately no existing proofs of (2.30) for integer,
real or complex numbers could be used for Zp. The
assistance came from Algebra and Measure Theory.

G. A. Edgar and C. Miller gave a very elegant solution
to an old problem by proving that a Borel subring of R

either has Hausdorff dimension 0 or is equal to R. Using
their technique, among other deep ideas, J. Bourgain,
N. Katz, and T. Tao in the beginning of 2003 proved
the following.

Theorem 3.1. For any δ > 0 there exists ε > 0 such
that for any A ⊂ Zp with pδ < |A| < p1−δ we have

(3.1) max(|A + A|, |AA|) �δ |A|1+ε.

Actually, it is not difficult to see from the proof that
one can write

max(|A + A|, |AA|) � |A|pcδ

for p1/2 < |A| < p1−δ.



3

In the paper of J. Bourgain and SK (3.1) was im-
proved for small A.

Theorem 3.2. There exists c > 0 such that for any
nonempty A ⊂ Zp with |A| ≤ p1/2 we have

(3.2) max(|A + A|, |AA|) � |A|1+c.

Another, more important, result of that paper, was
related to exponential sums over subgroups.

We take an arbitrary subgroup G of the group Z
∗

p.
Let t = |G|. For u ∈ R we denote e(u) = exp(2πiu).
The function e(·) is 1-periodic, and this allows us to
talk about e(a/p) for a ∈ Zp. We denote

S(a, G) =
∑

x∈G

e(ax/p).

The following result has been established.

Theorem 3.3. For any δ > 0 there exists ε > 0 such
that for any G with |G| > pδ we have

(3.3) max
a∈Z∗

p

|S(a, G)| �δ |G|p−ε.
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The proof of Theorem 3.3 uses the estimates in the
sums— products problem. It suffices to use Theorem
3.1; using Theorem 3.2 gives

ε = exp(−(1/δ)C)

with an absolute constant C.
Now we will discuss the proof of Theorem 3.2. Denote

I(A) = {a1(a2 − a3) + a4(a5 − a6) : aj ∈ A}.

We proved the following estimates for |I(A)|.

Theorem 3.4. If |A| >
√

p then |I(A)| > p/2.

Theorem 3.5. If 0 < |A| ≤
√

p then

(3.4) |I(A)| × |A − A| � |A|5/2.

Take any element a0 ∈ A∩Z
∗

p. For any b ∈ A−A we
have a0b ∈ I(A). Therefore, |I(A)| ≥ |A−A|, and (3.4)
implies

(3.5) |I(A)| � |A|5/4.
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Now we comment how to get Theorem 3.2 from (3.5).
first, observe that

I(A) ⊂ AA − AA + AA − AA,

and (3.5) implies

(3.6) |AA − AA + AA − AA| � |A|5/4.

Combining Lemma 2.4 and Lemma 2.2 from the paper
of Bourgain, Katz, Tao, we have the following result
(Katz, Tao, Nathanson, Ruzsa).

Lemma 3.6. There exist an absolute constant C > 0
such that if

max(|A + A|, |AA|) ≤ K|A|,

then there exists a set A′ ⊂ A such that

|A′| ≥ C−1K−C |A|

and

|A′A′ − A′A′ + A′A′ − A′A′| � CKC |A′|.
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It is easy to see from Lemma 3.6 that if we take

|A| ≤ p1/2, K = α|A|1/(5C),

then

|A′A′ − A′A′ + A′A′ − A′A′| ≤ β|A′|5/4,

where β is small if α is. But the last inequality does not
agree with (3.6). This shows that

max(|A + A|, |AA|) � |A|1+1/(5C),

if |A| ≤ p1/2.
For ξ ∈ Zp we denote

Sξ(A) := {a + bξ : a, b ∈ A}.

To prove estimates for |I(A)| we need some Lemmas.

Lemma 3.7. Let ξ ∈ Zp. Then the condition

(3.7) |Sξ(A)| < |A|2

is equivalent to existence of a1, a2, a3, a4 from A such
that a2 6≡ a4 and ξ ≡ (a1 − a3)/(a4 − a2).
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Proof. Since the number of sums a1 + ξa2 with
a1, a2 ∈ A is |A|2 > |Sξ(A)|, then (3.7) is equivalent to
existence of a1, a2, a3, a4 such that a2 6≡ a4 and
a1 + ξa2 ≡ a3 + ξa4 as required.

Lemma 3.8. Let ξ ∈ Zp and (3.7) hold. Then

|I(A)| ≥ |Sξ(A)|.

Proof. By Lemma 3.7, there exist a1, a2, a3, a4 such that
a1 − a3 ≡ ξ(a4 − a2). Now for any a′, a′′ ∈ A we get

(a′ + ξa′′)(a4 − a2) ≡ a′(a4 − a2) + a′′(a1 − a3) ∈ I(A)

showing that (a4 − a2)Sξ(A) ⊂ I(A).

Lemma 3.9. For any H ⊂ Zp there exists ξ ∈ H such
that

|Sξ(A)| ≥
|A|2|H|

|A|2 + |H|
.

Proof. Set

νξ(b) = |{(a1, a2) : a1, a2 ∈ A, b ≡ a1 + ξa2}|,
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so that, by Cauchy—Schwartz inequality,

|A|4 =

(
∑

b

νξ(b)

)2

≤ |Sξ(A)|
∑

b

ν2
ξ (b).

Therefore,

|A|4 ≤ |Sξ(A)| × |{(a1, a2, a3, a4) : a1 + ξa2 ≡ a3

+ξa4}| = |Sξ(A)|(|A|2 + N), N = |{(a1, a2, a3, a4) :

a2 6≡ a4, a1 + ξa2 ≡ a3 + ξa4}|.

(We consider that all aj ∈ A.) Summing up over all ξ ∈
H and taking into account that for any a1, a2, a3, a4 ∈ A
with a2 6≡ a4 there exists at most one ξ ∈ H satisfying
a1 + ξa2 ≡ a3 + ξa4, we obtain

|A|4|H| ≤ max
ξ∈

|Sξ(A)|(|A|2|H| + |A|4)

as required.

Theorem 3.4. If |A| >
√

p then |I(A)| > p/2.

Theorem 3.4 is immediate from Lemmas 3.8 and 3.9:
choose H = Zp and notice that if |A|2 > p then
|Sξ(A)| ≤ p < |A|2 for any ξ and
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|A|2|H|

|A|2 + |H|
>

|A|2p

2|A|2
= p/2.

Estimate (3.4) from Theorem 3.5

(3.4) |I(A)| × |A − A| � |A|5/2

was improved by A. Glibichuk.

Theorem 3.10. If 0 < |A| ≤
√

p then

(3.8) |I(A)| � |A|3/2.

It is easy to see the gap between Theorem 3.4 and
Theorem 3.5 (or 3.10): if |A| >

√
p then we prove that

|I(A)| > p/2, but if |A| is close to
√

p/2 then we know

only that |I(A)| � p3/4. The proof of Theorem 3.4 can
be interpreted as the using of the observation that for
|A| >

√
p we have (A−A)/(A−A) = Zp, but for smaller

values of |A| we do not have satisfactory lower estimates
for |(A − A)/(A − A)|. It would be interesting to know
if (3.8) can be replaced by

(3.9) |I(A)| � |A|2.

It is not difficult to show that (3.9) holds for A ⊂ C.
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To prove Theorem 3.10, we can consider that

A ⊂ Z
∗

p, |A| ≥ 2.

We take
u := 2|A|2/(9|AA|),

R := {s ∈ Z
∗

p : |{(a, b) : a, b ∈ A, s ≡ a/b}| ≥ u}.

We observe that 1 ∈ R since u ≤ 2|A|2/(9|A|) ≤ |A|.
Define G as the multiplicative subgroup of Z

∗

p generated
by R. Also, let

F :=
A − A

A − A
, H = FG.

Recall that

Sξ(A) := {a + bξ : a, b ∈ A}.

Lemma 3.11. There exists ξ ∈ H such that

min
(
|A|u, |A|2|H|/(|A|2 + |H|)

)

≤ |Sξ(A)| < |A|2.(3.10)

Proof. We consider two cases.
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1. Case 1: RF 6= F . Thus, there exist r ∈ R and
ξ ∈ F such that h ≡ rξ 6∈ F . Clearly, h ∈ H. By
Lemma 3.7,

(3.11) |Sh(A)| = |A|2, |Sξ(A)| < |A|2.

Thus, the elements a+bh, a, b ∈ A are pairwise distinct.
Denote

Ar = {b ∈ A : b/r ∈ A}.

We have |Ar| ≥ u because r ∈ R. By our supposition on
h, all the sums a + bξ ≡ a + b(h/r) ≡ a + (b/r)h, a ∈ A,
b ∈ Ar, are distinct. Therefore, Sξ(A) ≥ |A|u. Taking
into account (3.11) we get (3.10).

2. Case 2: RF = F . By definition of the group
G, we conclude that F = GF = H. By Lemma 3.7,
|Sξ(A)| < |A|2 for every ξ ∈ H, and (3.10) follows from
Lemma 3.9.

Notice that

|A|2|H|/(|A|2 + |H|) ≥ min(|A|2/2, |H|/2).

Thus, by Lemmas 3.9 and 3.11,
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|I(A)| ≥ |Sξ(A)| ≥ min
(
|A|u, |A|2|H|/(|A|2 + |H|)

)

≥ min(2|A|3/(9|AA|), |A|2/2, |H|/2).(3.12)

The inequality |I(A)| � |A|3/2 obviously holds if
|I(A)| ≥ |A|2/2. Next, observe that

AA − AA ⊂ I(A).

Indeed,

a1a2 − a3a4 ≡ a1(a2 − a3) + a3(a1 − a4) ∈ I(A).

Hence,
|I(A)| ≥ |AA − AA| ≥ |AA|.

Therefore, in the case |I(A)| ≥ 2|A|3/(9|AA|) we again
have |I(A)| � |A|3/2. It remains to settle the case
|I(A)| ≥ |H|/2. So, it is enough to prove that

(3.13) |H| � |A|3/2.
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Lemma 3.12. There is a coset G1 of G such that

(3.14) |A ∩ G1| ≥ |A|/3.

Proof. Assume the contrary. Let A1, A2, . . . be the
nonempty intersections of A with cosets of G. Take a
minimal k so that

∣∣∣∣∣

k⋃

i=1

Ai

∣∣∣∣∣ > |A|/3

and denote

A′ =
k⋃

i=1

Ai, A′′ = A \ A′.

We have |A′| > |A|/3. On the other hand,

|A′| ≤

∣∣∣∣∣

k−1⋃

i=1

Ai

∣∣∣∣∣+ |Ak| < 2|A|/3.

Hence, |A|/3 < |A′| < 2|A|/3 and

(3.15) |A′| × |A′′| = |A′|(|A| − |A′|) > 2|A|2/9.
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Denote for s ∈ Z
∗

p

f(s) := {(a, b) : a ∈ A′, b ∈ A′′, a/b ≡ s}.

Note that if a ∈ A′, b ∈ A′′, then a/b 6∈ G and, therefore,
a/b 6∈ R. Hence, for any s we have the inequality
f(s) < 2|A|2/(9|A · A|). Thus,

∑

s∈F ∗

f(s)2 ≤
2|A|2

9|AA|

∑

s∈F ∗

f(s)

=
2|A|2|A′| × |A′′|

9|AA|
.(3.16)

Denote for s ∈ Z
∗

p

g(s) := {(a, b) : a ∈ A′, b ∈ A′′, ab ≡ s}.

By Cauchy—Schwartz inequality,

(
∑

s∈F

g(s)

)2

≤ |AA|
∑

s∈F

g(s)2.

Therefore,
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∑

s∈F ∗

g(s)2 ≥

(
∑

s∈F

g(s)

)2

/|AA|

=
(|A′| × |A′′|)2

|AA|
.(3.17)

Now observe that both the sums
∑

s∈F ∗ f(s)2 and∑
s∈F ∗ g(s)2 are equal to the number of solutions to

the congruence a′

1a
′′

1 ≡ a′

2a
′′

2 , a′

1, a
′

2 ∈ A′, a′′

1 , a′′

2 ∈ A′′.
Thus, comparing (3.16)

(3.16)
∑

s∈F ∗

f(s)2 ≤
2|A|2|A′| × |A′′|

9|AA|

and (3.17) we get

|A′| × |A′′| ≤ 2|A|2/9.

But the last inequality does not agree with (3.15), and
the proof is complete.
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We take a coset G1 of G in accordance with Lemma
3.12. Fix an arbitrary g1 ∈ G1. Let

B := {b ∈ G : g1b ∈ A}.

We have

g1B = A ∩ G1, |B| = |A ∩ G1| ≥ |A|/3.

Now we use the supposition |A| ≤
√

p and Corollary 2.7.

Corollary 2.7. Let B ⊂ G and 0 < |B| ≤ p1/2. Then

(2.20) |G(B − B)| � |B|3/2.

Therefore,

(3.18) |G(B − B)| � |A|3/2.

Fixing distinct a1, a2 ∈ A, we have

|G(B − B)| = |G(A ∩ G1 − A ∩ G1)| ≤ |G(A − A)|

= |G(A − A)/(a1 − a2)| ≤ |G(A − A)/(A − A)| = |H|.
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So, using (3.18), we get

(3.13) |H| � |A|3/2,

and this completes the proof of Theorem 3.10.
Now let us turn to estimates for exponential sums.

Theorem 3.3. For any δ > 0 there exists ε > 0 such
that for any G with |G| > pδ we have

(3.3) max
a∈Z∗

p

|S(a, G)| �δ |G|p−ε.

As the proof is quite long and technical, I can give
only a very short sketch now.

Recall, that by Tk(G) we denote the number of solu-
tions to the congruence

x1+ · · ·+xk ≡ y1+ · · ·+yk, x1, . . . , xk, y1, . . . , yk ∈ G.

Our aim is to show that the following inequality holds
for some k ≤ k(δ) and C = C(δ):

(3.19) Tk(G) ≤ C|G|2kp−0.6.

We have seen that for large p one can deduce (3.13) from
(3.19) sums using the inequality



18

∀a ∈ Z
∗

p

∣∣∣∣∣
∑

x∈G

e(ax/p)

∣∣∣∣∣ ≤ (pTk(G)2)1/2k2

|G|1−2/k.

Of course, the number 0.6 in (3.19) can be replaced by
any number greater than 1/2.

The main part of the proof is the following Lemma.

Lemma 3.13. There exists an absolute positive con-
stant β satisfying the following property: for some C =
C(δ) and any k ≥ k(δ) there exists k′ ≤ k3 such that

Tk′(G)|G|−2k′

≤ (Tk(G)|G|−2k)1+β

or
Tk′(G) ≤ C|G|2k′

p−0.6.

Starting with some k0 ≥ k(δ), using the trivial in-
equality

Tk0
(G)/|G|2k0 ≤ |G|−1

and iterating Claim 1 we get (3.19) for k ≤ k(δ) with
some computable k(δ).
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For the proof of Lemma 3.13, we take k′ as the largest
power of 2 not exceeding k3. Denote

ρ = Tk(G)|G|−2k

and assume that
(3.20)

Tk′(G)|G|−2k′

> ρ1+β, Tk′(G)|G|−2k′

> cp−0.6.

Our aim is to show that for some β > 0 (3.20) cannot
hold for large p, and this will prove Lemma 3.13.

Denote

A =

{
a ∈ Zp :

∣∣∣∣∣
∑

x∈G

e(ax/p)

∣∣∣∣∣ ≥ |G|p−1/k3

}
.

Using (3.20), it is easy to show that

|A| + 1 > pρ1+β, |A| + 1 > p0.4.

For an even positive integer k and y ∈ Zp let Bk(G, y)
be the number of solutions to the congruence

x1 − x2 + · · · + xk−1 − xk ≡ y, x1, . . . , xk ∈ G.
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Now observe that

∣∣∣∣∣
∑

x∈G

e(ax/p)

∣∣∣∣∣

k

=

(
∑

x∈G

e(ax/p)

)k/2(∑

x∈G

e(−ax/p)

)k/2

=
∑

x1,...,xk∈G

e (a(x1 − x2 + · · · + xk−1 − xk)/p)

=
∑

y

Bk(G, y)e(ay/p).

Hence, for any a ∈ A we have

(3.21)
∑

y

Bk(G, y)e(ay/p) ≥ |G|kp−1/k2

.

This is close to the trivial upper bound

∑

y

Bk(G, y)e(ay/p) ≤
∑

y

Bk(G, y) = |G|k.

By ω we denote any function on p satisfying inequality

ω � p−C/k2

; we allow ω and C to change line to line.
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We can choose sets Y1, A1 ⊂ A so that for Y ′ = Y1,
A′ = A1

(3.22) |A′| ≥ ω|A|,

(3.23)∣∣∣∣∣∣

∑

y∈Y ′

Bk(G, y)e(ay/p)

∣∣∣∣∣∣
≥ U := ω|G|k (a ∈ A′),

(3.24) min
y∈Y ′

Bk(G, y) ≤ max
y∈Y ′

Bk(G, y)/2.

Let us say that Y ′ is GOOD, if conditions (3.22)—(3.24)
are satisfied for some A′. So, Y1 is GOOD. Moreover,
we shall say that Y ′ is HEREDITARILY GOOD if for
any Y ′′ ⊂ Y ′ we have

∣∣∣∣∣∣




a ∈ A′ :

∣∣∣∣∣∣

∑

y∈Y ”

Bk(G, y)e(ay/p)

∣∣∣∣∣∣
≥

|Y ′′|

2|Y ′|
U






∣∣∣∣∣∣

≥
|Y ′′|

|Y ′|
|A′|.
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Both sets Y ′, Y ′′ are supposed to be invariant under
multiplication by G and −1.

We do not claim that Y1 is HEREDITARILY GOOD.
But it is not difficult to show that Y1 contains a HERED-
ITARILY GOOD subset Y2 (|Y2| ≥ ω|Y1|). Denote

A2 =




a ∈ A1 :

∣∣∣∣∣∣

∑

y∈Y1

Bk(G, y)e(ay/p)

∣∣∣∣∣∣
≥

|Y2|

2|Y1|
U




 .

So, for all a ∈ A2 we have

(3.25)

∣∣∣∣∣∣

∑

y∈Y1

Bk(G, y)e(ay/p)

∣∣∣∣∣∣
≥

|Y2|

2|Y1|
U.

Next step in the proof is to deduce from (3.25) that, if
k is a power of 2, then

∑

x1,...,xk∈G

∑

y∈Y2

Bk(G, y)e(a(x1 − x2 + · · · − xk)y/p)

≥ |G|kV

(∑
y∈Y2

Bk(G, y)e(axy/p)

V

)k

,

where V =
∑

y∈Y2
Bk(G, y).
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The last inequality implies

∑

x∈Zp

∑

y∈Y2

Bk(G, x)Bk(G, y)e(axy/p) ≥ U ′|H|2k

for all a ∈ A2, where

U ′ = p−C/k.

Similarly to the choice of Y1 one can choose X1, A3 ⊂ A2

so that
|A3| ≥ ω|A1|,

∣∣∣∣∣∣

∑

x∈X1

∑

y∈Y2

Bk(G, x)Bk(G, y)e(axy/p)

∣∣∣∣∣∣

≥ ωU ′|H|2k (a ∈ A3),(3.26)

min
x∈X1

Bk(G, x) ≤ max
x∈X1

Bk(G, x)/2.
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Setting z = xy we can rewrite the left-hand side of
(3.26) as ∣∣∣∣∣∣

∑

z∈Zp

P (z)e(az/p)

∣∣∣∣∣∣
,

where

P (z) =
∑

z=xy,
x∈X1,y∈Y2

Bk(G, x)Bk(G, y).

Using (3.26) and the identity

p
∑

z∈Zp

(P (z))2 =
∑

a∈Zp

∣∣∣∣∣∣

∑

z∈Zp

P (z)e(az/p)

∣∣∣∣∣∣

2

,

we can estimate
∑

z∈Zp
(P (z))2 from below; this gives

a lower bound for the number of the solutions to the
congruence

x1y1 ≡ x2y2, x1, x2 ∈ X1, y1, y2 ∈ Y2.

This, in turn, implies the estimate for the number N of
the solutions to the congruence

(3.27) y1y2 ≡ y3y4, yj ∈ Y2.
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We show that

N ≥ ρ2βp−C/k|Y3|
3.

Recall that
ρ = Tk(G)|G|−2k

and β is a small fixed positive number.
Now we can use the Balog—Szemeredi—Gowers the-

orem claiming that there is a subset Y3 ⊂ Y2 such that

|Y3| ≥
(
N |Y2|

−3
)C1

|Y2|,

|Y3Y3| ≤
(
N |Y2|

−3
)−C1

|Y3|.

At this point we use that the set Y2 is HEREDITARILY
GOOD: there is a large A4 ⊂ A2 such that all the sums

∣∣∣∣∣∣

∑

y∈Y3

Bk(G, y)e(ay/p)

∣∣∣∣∣∣
, a ∈ A4,

are large. This implies a lower estimate for the number
of the solutions to the congruence

y1 + y2 ≡ y3 + y4, yj ∈ Y3.
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Using the Balog—Szemeredi—Gowers theorem again
we get the existence of a large set Y4 ⊂ Y3 such that
Y4 + Y4 is small. Also, observing that

|Y4Y4| ≤ |Y3Y3|,

we conclude that both the sets Y4 + Y4, Y4Y4 are small.
But for a small β this does not agree with the sums–
products theorem asserting that

(3.2) max(|A + A|, |AA|) � |A|1+c

provided that |A| ≤ p2/3 (it is not difficult to check that
|Y1| ≤ p2/3; hence we can use (3.2) for A = Y4 ⊂ Y1).

So, we see that additive properties of subgroups of
Z
∗

p help us to prove sums– products estimates for ar-
bitrary subsets of Zp; conversely, sums– products esti-
mates imply advanced additive properties of subgroups
and estimates for exponential sums over subgroups.
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Recently J. Bourgain has proved estimates for expo-
nential sums over sets from a much wider class than
groups.

Theorem 3.14. For all Q ∈ N, there is τ > 0 and
k ∈ N with the following property.
Let H ⊂ Z

∗

p satisfy

|HH| < |H|1+τ .

Then

1

p

∑

a∈Zp

∣∣∣∣∣
∑

x∈H

e(ax/p)

∣∣∣∣∣

2k

< |H|2k
(
CQ|H|−Q + p−1+1/Q

)
.

Sometimes Theorem 3.14 implies uniform estimated
for

∑
x∈H e(ax/p). Theorem 3.3 can be generalized to

the following.

Theorem 3.15. For any δ > 0 there exists ε > 0 such
that for any g ∈ Z

∗

p and any T with T > pδ if the ele-

ments gj , 0 ≤ j < T , are distinct, then

max
a∈Z∗

p

∣∣∣∣∣∣

T−1∑

j=0

e(agj/p)

∣∣∣∣∣∣
�δ Tp−ε.


