
PROJECTION METHODS FOR DYNAMIC MODELS

Kenneth L. Judd

Hoover Institution and NBER

June 28, 2006

1

Functional Problems

• Many problems involve solving for some unknown function
— Dynamic programming

— Consumption and investment policy functions

— Pricing functions in asset pricing models

— Strategies in dynamic games

• The projection method is a robust method for solving such problems

2

An Ordinary Differential Equation Example

• Consider the differential equation
y0 − y = 0, y(0) = 1, 0 ≤ x ≤ 3. (11.1.1)

• Define L
Ly ≡ y0 − y . (11.1.2)

— L is an operator mapping functions to functions; domain is C1 functions and range is C0.

— Define Y = {y(x)|y ∈ C1, y(0) = 1}
— (11.1.1) wants to find a y ∈ Y such that Ly = 0.

• Approximate functions: consider family

ŷ(x; a) = 1 +
nX

j=1

ajx
j. (11.1.3)

— An affine subset of the vector space of polynomials.

— Note that ŷ(0; a) = 1 for any choice of a, so ŷ(0; a) ∈ Y for any a.

• Objective: find a s.t. ŷ(x; a) “nearly” solves differential equation (11.1.1).

3

• Define residual function

R (x; a) ≡ Lŷ = −1 +
nX

j=1

aj(jx
j−1 − xj) (11.1.4)

— R (x; a) is deviation of Lŷ from zero, the target value.

— A projection method adjusts a until it finds a “good” a that makes R(x; a) “nearly” the zero
function.

— Different projection methods use different notions of “good” and “nearly.”

• Consider
ŷ(x; a) = 1 +

3X
j=1

ajx
j

• Least Squares:
— Find a that minimizes the total squared residual

min
a

Z 3

0

R(x; a)2 dx. (11.1.5)

4

• Method of moments:
— Idea: If R(x; a) were zero, then

R 3
0 R(x; a) f(x) dx = 0 for all f(x).

— Use low powers of x to identify a via projection conditions

0 =

Z 3

0

R(x; a)xj dx , j = 0, 1, 2. (11.1.9)

• Galerkin
— Idea: use basis elements, x, x2, and x3 in projection conditions

— Form projections of R against the basis elements

0 =

Z 3

0

R(x; a)xj dx , j = 1, 2, 3.

• Collocation
— Idea: If R(x; a) = 0 then it is zero at all x.

— Specify a finite set of X and choose a so that R(x; a) is zero x ∈ X. If X = {0, 3/2, 3}, the
uniform grid, this reduces to linear equations

• Chebyshev Collocation
— Idea: interpolation at Chebyshev points is best

— List the zeroes of T3(x) adapted to [0,3]

X =

½
3

2
(cos

π

6
+ 1),

3

2
,
3

2
(cos

5π

6
+ 1)

¾
5

• Solutions
Table 11.1: Solutions for Coefficients in (11.1.3)

Scheme: a1 a2 a3
Least Squares 1.290 -.806 .659

Galerkin 2.286 -1.429 .952
Chebyshev Collocation 1.692 -1.231 .821
Uniform Collocation 1.000 -1.000 .667

Optimal L2 1.754 -.838 .779

Table 11.2: Projection Methods Applied to (11.1.2): L2 errors of solutions
Uniform Chebyshev Least

n Collocation Collocation Squares Galerkin Best poly.
3 5.3(0) 2.2(0) 3.2(0) 5.3(-1) 1.7(-1)
4 1.3(0) 2.9(-1) 1.5(-1) 3.6(-2) 2.4(-2)
5 1.5(-1) 2.5(-2) 4.9(-3) 4.1(-3) 2.9(-3)
6 2.0(-2) 1.9(-3) 4.2(-4) 4.2(-4) 3.0(-4)
7 2.2(-3) 1.4(-4) 3.8(-5) 3.9(-5) 2.8(-5)
8 2.4(-4) 9.9(-6) 3.2(-6) 3.2(-6) 2.3(-6)
9 2.2(-5) 6.6(-7) 2.3(-7) 2.4(-7) 1.7(-7)
10 2.1(-6) 4.0(-8) 1.6(-8) 1.6(-8) 1.2(-8)

6

Simple Example: One-Sector Growth

• Consider

max
ct

∞X
t=1

βtu(ct)

kt+1 = f(kt)− ct

• Optimality implies that ct satisfies
u0(ct) = βu0(ct+1)f 0(kt+1)

• Problem: The number of unknowns ct, t = 1, 2, ... is infinite.
• Step 0: Express solution in terms of an unknown function

ct = C(kt) : consumption function

— Consumption function C(k) must satisfy the functional equation:

0=u0(C(k))− βu0(C(f(k)− C(k)))f 0(f(k)− C(k))

≡(N (C))(k)
— This defines the operator

N : C0+ → C0+

— Equilibrium solves the operator equation

0 = N (C)

13

• Step 1: Create approximation:
— Find bC ≡ nX

i=0

aik
i

which “nearly” solves
N (bC) = 0

— Convert an infinite-dimensional problem to a finite-dimensional problem in Rn

∗ No discretization of state space
∗ A form of discretization, but in spectral domain

• Step 2: Compute Euler equation error function:
R (k; a) = u0(bC(k))− βu0(bC(f(k)− bC(k)))f 0(f(k)− bC(k))

14

• Step 3: Choose a to make R(·; a) “small” in some sense:
— Least-Squares: minimize sum of squared Euler equation errors

min
a

Z
R(·; a)2dk

— Galerkin: zero out weighted averages of Euler equation errors

Pi(a) ≡
Z

R(k; a)ψi(k)dk = 0, i = 1, · · · , n

for n weighting functions ψi(k).

— Collocation: zero out Euler equation errors at k ∈ {k1, k2, · · · , kn} :
Pi(a) ≡ R(ki; a) = 0 , i = 1, · · · , n

15

• Details of R ...dk computation:
— Exact integration seldom possible in nonlinear problems.

— Use quadrature formulas — they tell us what are good points.

— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension

• Details of solving a:
— Jacobian, Pa(a), should be well-conditioned

— Newton’s method is quadratically convergent since it uses Jacobian

— Functional iteration and time iteration ignore Jacobian and are linearly convergent.

— Homotopy methods are almost surely globally convergent

— Least squares may be ill-conditioned (that is, be flat in some directions).

16

Bounded Rationality Accuracy Measure
Consider the one-period relative Euler equation error:

E(k) = 1− (u
0)−1 (βu0 (C (f(k)−C(k))) f 0 (f(k)−C(k)))

C(k)

• Equilibrium requires it to be zero.
• E(k) is measure of optimization error
— 1 is unacceptably large

— Values such as .00001 is a limit for people.

— E(k) is unit-free.

• Define the Lp, 1 ≤ p <∞, bounded rationality accuracy to be
log10 k E(k) kp

• The L∞ error is the maximum value of E(k).

Numerical Results

• Machine: Compaq 386/20 w/ Weitek 1167
• Speed: Deterministic case: < 15 seconds
• Accuracy: Deterministic case: 8th order polynomial agrees with 250,000—point discretization to
within 1/100,000.

17

Convergence Properties of Galerkin Methods

• Zeidler (1989): If the nonlinear operator N is monotone, coercive, and satisfies a growth condition
then Galerkin method proves existence and works numerically.

• Krasnosel’skii and Zabreiko (1984): If N satisfies certain degree conditions, then a large set of
projection methods (e.g., Galerkin methods with numerical quadrature) converge.

• Convergence is neither sufficient nor necessary
— Usually only locally valid

— Convergence theorems don’t tell you when to stop.

— Non-convergent methods are no worse if they satisfy stopping rules

22

Coefficients of Solution

• Theoretical predictions
— Approximation theory says that the Chebyshev coefficients should fall rapidly ifC(k) is smooth.

— Orthogonal basis should imply that coefficients do not change as we increase n.

• Table 16.1 verifies these predictions.
Table 16.1: Chebyshev Coefficients for Consumption Function

k n = 2 n = 5 n = 9 n = 15

1 0.0589755899 0.0600095844 0.0600137797 0.0600137922
2 0.0281934398 0.0284278730 0.0284329464 0.0284329804
3 −0.0114191783 −0.0113529374 −0.0113529464
4 0.0007725731 0.0006990930 0.0006988353
5 −0.0001616767 −0.0001633928 −0.0001634209
6 0.0000427201 0.0000430853
7 −0.0000123570 −0.0000122160
8 0.0000042498 0.0000036367
9 −0.0000011464 −0.0000011212
10 0.0000003557
11 −0.0000001147
12 0.0000000370

Each entry is the coefficient of the k ’th Chebyshev polynomial (over the interval [.333, 1.667]) in the n-term approximation of the consumption

policy function in (4.3) for the case discussed in Section 4.2.

31

Errors in Consumption Policy Function

• “Truth” computed by a 1,000,000 state discrete approximation
• “True solution” also has some error because of discretization
• Table 16.2 displays difference between approximations and “truth”

Table 16.2: Policy Function Errors
k y c n = 20 n = 10 n = 7 n = 4 n = 2

0.5 0.1253211 0.1010611 1(-7) 5(-7) 5(-7) 2(-7) 5(-5)
0.6 0.1331736 0.1132936 2(-6) 1(-7) 1(-7) 2(-6) 8(-5)
0.7 0.1401954 0.1250054 2(-6) 3(-7) 3(-7) 1(-6) 2(-4)
0.8 0.1465765 0.1362965 1(-6) 4(-7) 4(-7) 4(-6) 2(-4)
0.9 0.1524457 0.1472357 1(-6) 3(-7) 3(-7) 5(-6) 2(-4)
1.0 0.1578947 0.1578947 4(-6) 0(-7) 1(-7) 2(-6) 1(-4)
1.1 0.1629916 0.1683016 4(-6) 2(-7) 2(-7) 1(-6) 9(-5)
1.2 0.1677882 0.1784982 3(-6) 2(-7) 2(-7) 4(-6) 7(-6)
1.3 0.1723252 0.1884952 7(-7) 4(-7) 4(-7) 3(-6) 9(-5)

32

Summary of Projection Method

• Can be used for problems with unknown functions
• Uses approximation ideas
• Utilizes standard optimization and nonlinear equation solving software
• Can exploit a priori information about problem
• Flexible: users choose from a variety of approximation, integration, and nonlinear equation-solving
methods

Table 17.4: Projection Method Menu
Approximation Integration Projections Equation Solver
Piecewise Linear Newton-Cotes Galerkin Newton

Polynomials Gaussian Rules Collocation Powell
Splines Monte Carlo M. of Moments Fixed-pt. iteration

Neural Networks Quasi-M.C. Subdomain Time iteration
Rational Functions Monomial Rules Homotopy
Problem Specific Asymptotics

49

• Unifies literature: Previous work can be classified and compared
Choices

Authors Approximation Integration Sol’n Method
Gustafson(1959) piecewise linear Newt.-Cotes S.A.-time it.
Wright-W.(1982,4) poly. (of cond. exp.) Newt.-Cotes S.A.-time it.
Miranda-H.(1986) polynomials Newt.-Cotes S.A.-learning
Coleman(1990) finite element Gaussian S.A.-time it.
den Haan-M.(1990) poly. (of cond. exp.) Sim. M.C. S.A.-learning
Judd(1992) orthogonal poly. Gaussian Newton

50

