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Local Approximation Methods

e Use information about f : R — R only at a point, xy € R, to construct an approximation valid
near I

e Taylor Series Approximation

f(x) = f(wo) + (v — m9) f'(w0) +
=pn () + Oz — z|"™)

(z — x0)?

2 F(@o) + - 4+ ——— f"(x) + O]z — o)

e Power series: >~ a,2"

— The radius of convergence is
0.9)
r = supq{|z| : | Zanz“] < o0},
n=>0

— >, a2 converges for all |z| < r and diverges for all |z]| > 7.
e Complex analysis

— f:Q C C — C on the complex plane C'is analytic on €2 iff

Va € Q dr, ¢ (‘v’Hz —all <r (f(z) = ch(z—a)k>>

k=0
— A singularity of f is any a s. t. f is analytic on 2 — {a} but not on 2.

— If f or any derivative of f has a singularity at z € C', then the radius of convergence in C' of
Yoy (z=zo)? f)(z0), is bounded above by || zo — z ||.

n:



— One singularity at z = 0

e Example: f(z) = 2% where 0 < a < 1.

— Radius of convergence for power series around x = 1 is 1.

— Taylor series coeflicients decline slowly:
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Table 6.1 (corrected): Taylor Series Approximation Errors for 2!/

Taylor series error /4
r N: 5) 10 20 50
30  5(—1) 8(1) 33 1(12) 1.3161
20  1(=2) 5(=3) 2(-3) 8(—4) 1.1892
1.8 4(=3) 5(—4) 2(—4) 9(—-9) 1.1583
15 2(—4) 3(=6) 1(—9) 0(—12) 1.1067
12 1(—6) 2(—10) 0(=12) 0(—12) 1.0466
80 2(—6) 3(—10) 0(—12) 0(—12) .9457
50 6(—4) 9(—6) 4(—9) 0(—12) .8409
25 1(=2) 1(=3) 4(-5) 3(-9) .7071
10 6(=2) 2(-2) 4(=3) 6(=5) .5623
05 1(=1) 5(=2) 2(-2) 2(-3) 4729



Implicit Function Theorem
e Suppose h: R" — R™ is defined in H(z,h(z)) =0, H : R" x R™ — R™, and h(xg) = .
— Implicit differentiation shows
H,(z,h(x))+ Hy(x, h(z))h(x) =0
— At x = x(, this implies

hx<x0) — —Hy(an yO)_lHJS('xO) yO)

if H,(xo,yo) is nonsingular. More simply, we express this as

= — (H)) " HY

T

— Linear approximation for h(z) is
hh(x) = h(xo) + he(x0)(z — 0)

e To check on quality, we compute
E = ]:I(a:, hh(x))

where H is a unit free equivalent of H. If E < ¢, then we have an e-solution.



o If hl(y) is not satisfactory, compute higher-order terms by repeated differentiation.
— D, H(z, h(x)) = 0 implies
H,.+2H,,h, + H,h,h, + Hh,, =0
— At x = x, this implies
B, = — (HY) " (HY, +2HO 1O + HO hOh0)
— Construct the quadratic approximation

h@(x) = h(xo) + Rz — x0) + %(:U —x0) A (2 — )

and check its quality by computing E = H(z, h%(z)).



Regular Perturbation: The Basic Idea

e Suppose z is an endogenous variable, € a parameter

— Want to find z(¢) such that f(z(e),e) =0
— Suppose z(0) known.

e Use Implicit Function Theorem
— Apply implicit differentiation:
fo(x(e),e)2' () + fe(z(e),e) =0 (13.1.5)
— At € =0, 2(0) is known and (13.1.5) is linear in 2/(0) with solution
2'(0) = — fo((0),0) " f-(2(0), 0)

— Well-defined only if f, # 0, a condition which can be checked at x = x(0).

— The linear approximation of z(¢) for e near zero is

2(e) = 2L(e) = 2(0) — fo(2(0),0)"L £.(x(0), 0)e (13.1.6)



e Can continue for higher-order derivatives of ().
— Differentiate (13.1.5) w.r.t. ¢
Foa + fu(@)? 4 2! + oo = 0 (13.1.7)
— At £ =0, (13.1.7) implies that

2"(0)=—f2(2(0),0)"" (fau(2(0), 0) ('(0))°
+2f2e(2(0), 0) 2'(0) + fee(2(0),0))

— Quadratic approximation is

2(0) + e2/(0) + %g%"m) (13.1.8)
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e General Perturbation Strategy

— Find special (likely degenerate, uninteresting) case where one knows solution

+ (General relativity theory: begin with case of a universe with zero mass: ¢ is mass of universe

* Quantum mechanics: begin with case where electrons do not repel each other: ¢ is force of
repulsion

« Business cycle analysis: begin with case where there are no shocks: ¢ is measure of exogenous
shocks

— Use local approximation theory to compute nearby cases

x Standard implicit function may be applicable
* Sometimes standard implicit function theorem will not apply; use appropriate bifurcation
or singularity method.

— Check to see if solution is good for problem of interest

* Use unit-free formulation of problem
* (Go to higher-order terms until error is reduced to acceptable level

x Always check solution for range of validity



Single-Sector, Deterministic Growth - canonical problem

e Consider dynamic programming problem
max/ e lu(c)dt
ct) Jo
k=f(k)—c

e Ad-Hoc Method: Convert to a wrong L(Q) problem

— McGrattan, JBES (1990)

+ Replace u(c) and f(k) with approximations around ¢* and k*

* Solve linear-quadratic problem

max. fOOO e (u(c*) + () (e — &) + 5u"(c")(c — ¢*)?) dt
st. k= f(E)+ fl(E)(k*—k)—c

* Resulting approximate policy function is
CMC () = f(k) + plk — k) # C(K) + C'(k") (b — k)
+ Local approximate law of motion is & = 0; add noise to get
dk =0-dt +dz

x Approximation is random walk when theory says solution is stationary

— Fallacy of McGrattan noted in Judd (1986, 1988); point repeated in Benigno-Woodford (2004).



e Kydland-Prescott

— Restate problem so that k is linear function of state and controls
— Replace u(c) with quadratic approximation

— Note 1: such transformation may not be easy
— Note 2: special case of Magill (JET 1977).

e [.esson

— Kydland-Prescott, McGrattan provide no mathematical basis for method
— Formal calculations based on appropriate IFT should be used.

— Beware of ad hoc methods based on an intuitive story!



Perturbation Method for Dynamic Programming
e Formalize problem as a system of functional equations

— Bellman equation:
pV (k) = max u(c) + V'(k)(f(k) — c) (1)

c

— C(k): policy function defined by
0=u'(C(k)) = V'(k) (2)
pV (k) =u(C(k)) + V'(k)(f(k) — C(k))
— Apply envelope theorem to (1) to get
pV'(k) = V(k)(f (k) — C(k)) + V' (k) f'(K) (1x)
— Steady-state equations

¢t = f(k) pV(E) = u(c”) + VI(E*)(f(k*) = )
0='(c) =V'(k) pV'(k) = V"(E)(f(E") — ") + VI(E)f'(F)

— Steady State: We know k*, V(k*), C(k*), f'(k*), V'(k*):
p=f(k), CK&)=[f(k), V(E)=p lulc), V(E)=u(c)
— Want Taylor expansion:

C(k)=C(E*) + C"(K*)(k — k") + C"(k*)(k — K*)? /2 + ...
V)=V (E) + V() k- E) + V(B (k — k)2 /2 + ...



e Linear approximation around a steady state
— Differentiate (1;, 2) w.r.t. k:

pV”:VH/<f . C) _|_ V//(f/ . O/) _|_ V//f/ _|_ V/f//
OZUHO/ . V//

— At the steady state
O — _V//<k*)cl<k.>k) _|_ V//<k*)f/<k*) _|_ V/(k*)f//<k*)
— Substituting (2;) into (1}) yields

0 = —U//<O/)2 + UIIO/f/ + V/f//

ey P A (C(F)) f" (k)
C (k ) o 2 <1 + \/1 + u//(C/(k*Df/(k*)f/(k*))

— However, we know C’(k*) > 0; hence, take positive solution

— T'wo solutions

(Lk)
(2r)

(17)



e Higher-Order Expansions

— Conventional perception in macroeconomics: “perturbation methods of order higher than one
are considerably more complicated than the traditional linear-quadratic case ...” — Marcet
(1994, p. 111)

— Mathematics literature: No problem (See, e.g., Bensoussan, Fleming, Souganides, etc.)
e Compute C"(k*) and V"' (k*).

— Differentiate (1, 2;):

pvl//zv////(f . C) 4 2V///<f/ . O/) 4 V//( " O//) (Lclck)
—I—V/”f/ 4 QVHf” + V/f///
Ozu///(cl)z Y e vl (Zkk)

— At k%, (1) reduces to
0=2V"(f'=C)+3V"f" =Vv"'"C"+ V' f" (15,0)
— Equations (13,,,2;,) are LINEAR in unknowns C”(k*) and V"' (k*):
(st ) () =)
V=20 =c" ) \V"” Ay

— Unique solution since determinant —2u"(f" — C") + V" < 0.



e Compute C"(k*) and V" +D (k).

— Linear system for order n is, for some A; and A,

u” —1 C(n) o Al
V" —n(f’ . C/) 1V (n+1) o A

— Higher-order terms are produced by solving linear systems

— The linear system is always determinate since —nu"(f" — C") + V" < 0
e Conclusion:

— Computing first-order terms involves solving quadratic equations
— Computing higher-order terms involves solving linear equations

— Computing higher-order terms is easier than computing the linear term.



Accuracy Measure
Consider the one-period relative Euler equation error:

V'(F)

P =1= e

e Equilibrium requires it to be zero.
e F(k) is measure of optimization error

— 1 is unacceptably large
— Values such as .00001 is a limit for people.

— E(k) is unit-free.
e Define the L?, 1 < p < oo, bounded rationality accuracy to be

logyo || E(F) [l

e The L> error is the maximum value of E(k).



Global Quality of Asymptotic Approximations

-10

14

Graph of log,, | E (k]|

e Linear approximation is very poor even for k£ close to steady state
e Order 2 is better but still not acceptable for even k£ = .9,1.1
e Order 10 is excellent for k € [.6, 1.4]



Bifurcation Methods
e Suppose H(h(e),e) = 0 but H(z,0) =0 for all x.

— IF'T says

H€($07 O)

Hm ($0, 0)

— H(z,0) = 0 implies H,(x,0) =0, and h'(0) has the form 0/0 at x = xy.
— I'Hospital’s rule implies, if which is well-defined if H.,(xq,0) # 0,
H55<33(), O)

ng(x(b 0) .

H(0) = —

B(0) = -



Example: Portfolio Choices for Small Risks
e Simple asset demand model:

— safe asset yields R per dollar invested and risky asset yields Z per dollar invested

— If final value is Y = W((1 —w)R + wZ), then portfolio problem is

max E{u(Y)}

w

e Small Risk Analysis
— Parameterize cases
Z=R+tez+enm (1)
— Compute w(e) = w(0) 4+ ew'(0) + %w” (0).around the deterministic case of € = 0.

— Failure of IFT: at ¢ =0, Z = R, and w( ¢) is indeterminate, but we know that w( €) is unique
for e # 0



e Bifurcation analysis
— The first-order condition for w
0=FE{u (WR+wW(ez+em)) (z+em)} = G(w,e)
0=G(w,0), Vw.
— Solve for w(e) = w(0) + ew'(0) + %w’ '(0). Implicit differentiation implies
0=G.w + G,

G.=FE{u" (Y)W (wz + 2wem)W(z +em) + ' (Y)7}
G.=E{u"(Y)(z +en)’e}

— At e =0, G(w,0) = G,(w,0) =0 for all w.
— No point (w, 0) for application of IFT to (3) to solve for w'(0).



e We want wy = lim._qw(e).

— Bifurcation theorem keys on wy satisfying

0= GE (w07 0)
=u"(RW )woo*W + ' (RW)7
which implies
7 U (WR)
wo=— —5

o2 Wu'(WR)
— (8) is asymptotic portfolio rule

*x same as mean-variance rule

* wy is product of risk tolerance and the risk premium per unit variance.

* wy is the limiting portfolio share as the variance vanishes.

* wy is not first-order approximation.



e To calculate w'(0):

— differentiate (2.4) with respect to ¢
0=G W +2G,.+G W+ G. (9)
where (without loss of generality, we assume W = 1)

G.. = B{u" (Y)(wz + 2wem)*(z + em) + u"(Y)2wn (2 + &)
+2u"(Y )(wz + 2werm) T}

Gow =FE{u"(Y)(z + em)e}

G = E{u"(Y)(wz + 2wer)(z + em)?e + u"(Y)(2 + em)27e

+u"(Y)(z + em)?}
— At e =0,
G.. = u"(R)WIE{z*} G, =0
G =u"(R)E{2*} #0 Geee #0
— Therefore,

L WRIBEY
2u"(R) E{z2} "

(10)

— Equation (10) is a simple formula.

/u//

* w'(0) proportional to ratio of skewness to variance.

i

* w'(0) proportional to u

« If u is quadratic or z is symmetric, w does not change to a first order.

— We could continue this and compute more derivatives of w(e) as long as u is sufficiently differ-
entiable.



e Other applications - see Judd and Guu (ET, 2001)

— Equilibrium: add other agents, make m endogenous
— Add assets
— Produce a mean-variance-skewness-kurtosis-etc. theory of asset markets

— More intuitive approach to market incompleteness then counting states and assets





