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Local Approximation Methods

• Use information about f : R → R only at a point, x0 ∈ R, to construct an approximation valid
near x0

• Taylor Series Approximation
f(x)

.
=f(x0) + (x− x0) f

0(x0) +
(x− x0)

2

2
f 00(x0) + · · · + (x− x0)

n

n!
f (n)(x0) +O(|x− x0|n+1)

=pn (x) +O(|x− x0|n+1)
• Power series: P∞n=0 anzn
— The radius of convergence is

r = sup{|z| : |
∞X
n=0

anz
n| <∞},

—
P∞

n=0 anz
n converges for all |z| < r and diverges for all |z| > r.

• Complex analysis
— f : Ω ⊂ C → C on the complex plane C is analytic on Ω iff

∀a ∈ Ω ∃r, ck
Ã
∀ kz − ak < r

Ã
f(z) =

∞X
k=0

ck(z − a)k

!!
— A singularity of f is any a s. t. f is analytic on Ω− {a} but not on Ω.

— If f or any derivative of f has a singularity at z ∈ C, then the radius of convergence in C ofP∞
n=0

(x−x0)n
n! f (n)(x0), is bounded above by k x0 − z k.
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• Example: f(x) = xα where 0 < α < 1.

— One singularity at x = 0

— Radius of convergence for power series around x = 1 is 1.

— Taylor series coefficients decline slowly:

ak =
1

k!

dk

dxk
(xα)|x=1 = α(α− 1) · · · (α− k + 1)

1 · 2 · · · · · k .

Table 6.1 (corrected): Taylor Series Approximation Errors for x1/4

Taylor series error x1/4

x N: 5 10 20 50
3.0 5(−1) 8(1) 3(3) 1(12) 1.3161
2.0 1(−2) 5(−3) 2(−3) 8(−4) 1.1892
1.8 4(−3) 5(−4) 2(−4) 9(−9) 1.1583
1.5 2(−4) 3(−6) 1(−9) 0(−12) 1.1067
1.2 1(−6) 2(−10) 0(−12) 0(−12) 1.0466
.80 2(−6) 3(−10) 0(−12) 0(−12) .9457
.50 6(−4) 9(−6) 4(−9) 0(−12) .8409
.25 1(−2) 1(−3) 4(−5) 3(−9) .7071
.10 6(−2) 2(−2) 4(−3) 6(−5) .5623
.05 1(−1) 5(−2) 2(−2) 2(−3) .4729
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Implicit Function Theorem

• Suppose h : Rn → Rm is defined in H(x, h(x)) = 0, H : Rn ×Rm → Rm, and h(x0) = y0.

— Implicit differentiation shows

Hx(x, h(x)) +Hy(x, h(x))hx(x) = 0

— At x = x0, this implies
hx(x0) = −Hy(x0, y0)

−1Hx(x0, y0)

if Hy(x0, y0) is nonsingular. More simply, we express this as

h0x = −
¡
H0

y

¢−1
H0

x

— Linear approximation for h(x) is

hL(x)
.
= h(x0) + hx(x0)(x− x0)

• To check on quality, we compute
E = Ĥ(x, hL(x))

where Ĥ is a unit free equivalent of H. If E < ε, then we have an ε-solution.
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• If hL(y) is not satisfactory, compute higher-order terms by repeated differentiation.
— DxxH(x, h(x)) = 0 implies

Hxx + 2Hxyhx +Hyyhxhx +Hyhxx = 0

— At x = x0, this implies

h0xx = −
¡
H0

y

¢−1 ¡
H0

xx + 2H
0
xyh

0
x +H0

yyh
0
xh
0
x

¢
— Construct the quadratic approximation

hQ(x)
.
= h(x0) + h0x(x− x0) +

1

2
(x− x0)

>h0xx(x− x0)

and check its quality by computing E = H(x, hQ(x)).
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Regular Perturbation: The Basic Idea

• Suppose x is an endogenous variable, ε a parameter
— Want to find x(ε) such that f(x(ε), ε) = 0

— Suppose x(0) known.

• Use Implicit Function Theorem
— Apply implicit differentiation:

fx(x(ε), ε)x
0(ε) + fε(x(ε), ε) = 0 (13.1.5)

— At ε = 0, x(0) is known and (13.1.5) is linear in x0(0) with solution

x0(0) = −fx(x(0), 0)−1fε(x(0), 0)

— Well-defined only if fx 6= 0, a condition which can be checked at x = x(0).

— The linear approximation of x(ε) for ε near zero is

x(ε)
.
= xL(ε) ≡ x(0)− fx(x(0), 0)

−1fε(x(0), 0)ε (13.1.6)
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• Can continue for higher-order derivatives of x(ε).
— Differentiate (13.1.5) w.r.t. ε

fxx
00 + fxx(x

0)2 + 2fxεx0 + fεε = 0 (13.1.7)

— At ε = 0, (13.1.7) implies that

x00(0)=−fx(x(0), 0)−1
¡
fxx(x(0), 0) (x

0(0))2

+2fxε(x(0), 0) x
0(0) + fεε(x(0), 0))

— Quadratic approximation is

x(ε)
.
= xQ(ε) ≡ x(0) + εx0(0) +

1

2
ε2x00(0) (13.1.8)
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• General Perturbation Strategy
— Find special (likely degenerate, uninteresting) case where one knows solution

∗ General relativity theory: begin with case of a universe with zero mass: ε is mass of universe
∗ Quantum mechanics: begin with case where electrons do not repel each other: ε is force of
repulsion

∗ Business cycle analysis: begin with case where there are no shocks: ε is measure of exogenous
shocks

— Use local approximation theory to compute nearby cases

∗ Standard implicit function may be applicable
∗ Sometimes standard implicit function theorem will not apply; use appropriate bifurcation
or singularity method.

— Check to see if solution is good for problem of interest

∗ Use unit-free formulation of problem
∗ Go to higher-order terms until error is reduced to acceptable level
∗ Always check solution for range of validity
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Single-Sector, Deterministic Growth - canonical problem

• Consider dynamic programming problem

max
c(t)

Z ∞
0

e−ρtu(c)dt

k̇ = f(k)− c

• Ad-Hoc Method: Convert to a wrong LQ problem
— McGrattan, JBES (1990)

∗ Replace u(c) and f(k) with approximations around c∗ and k∗
∗ Solve linear-quadratic problem

maxc
R∞
0 e−ρt

¡
u(c∗) + u0(c∗)(c− c∗) + 1

2u
00(c∗)(c− c∗)2

¢
dt

s.t. k̇ = f(k∗) + f 0(k∗)(k∗ − k)− c

∗ Resulting approximate policy function is
CMcG(k) = f(k∗) + ρ(k − k∗) 6= C(k∗) + C 0(k∗)(k − k∗)

∗ Local approximate law of motion is k̇ = 0; add noise to get
dk = 0 · dt + dz

∗ Approximation is random walk when theory says solution is stationary
— Fallacy of McGrattan noted in Judd (1986, 1988); point repeated in Benigno-Woodford (2004).

10



• Kydland-Prescott
— Restate problem so that k̇ is linear function of state and controls

— Replace u(c) with quadratic approximation

— Note 1: such transformation may not be easy

— Note 2: special case of Magill (JET 1977).

• Lesson
— Kydland-Prescott, McGrattan provide no mathematical basis for method

— Formal calculations based on appropriate IFT should be used.

— Beware of ad hoc methods based on an intuitive story!
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Perturbation Method for Dynamic Programming

• Formalize problem as a system of functional equations
— Bellman equation:

ρV (k) = max
c

u(c) + V 0(k)(f(k)− c) (1)

— C(k): policy function defined by

0=u0(C(k))− V 0(k) (2)

ρV (k)=u(C(k)) + V 0(k)(f(k)−C(k))

— Apply envelope theorem to (1) to get

ρV 0(k) = V 00(k)(f(k)− C(k)) + V 0(k)f 0(k) (1k)

— Steady-state equations

c∗ = f(k∗) ρV (k∗) = u(c∗) + V 0(k∗)(f(k∗)− c∗)
0 = u0(c∗)− V 0(k∗) ρV 0(k) = V 00(k)(f(k∗)− c∗) + V 0(k)f 0(k)

— Steady State: We know k∗, V (k∗), C(k∗), f 0(k∗), V 0(k∗):

ρ = f 0(k∗), C(k∗) = f(k∗), V (k∗) = ρ−1u(c∗), V 0(k∗) = u0(c∗)

— Want Taylor expansion:

C(k)
.
=C(k∗) + C 0(k∗)(k − k∗) + C 00(k∗)(k − k∗)2/2 + ...

V (k)
.
=V (k∗) + V 0(k∗)(k − k∗) + V 00(k∗)(k − k∗)2/2 + ...
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• Linear approximation around a steady state
— Differentiate (1k, 2) w.r.t. k:

ρV 00=V 000(f − C) + V 00(f 0 − C 0) + V 00f 0 + V 0f 00 (1kk)

0=u00C 0 − V 00 (2k)

— At the steady state

0 = −V 00(k∗)C 0(k∗) + V 00(k∗)f 0(k∗) + V 0(k∗)f 00(k∗) (1∗k)

— Substituting (2k) into (1∗k) yields

0 = −u00(C 0)2 + u00C 0f 0 + V 0f 00

— Two solutions

C 0(k∗) =
ρ

2

Ã
1±

s
1 +

4u0(C(k∗))f 00(k∗)
u00(C 0(k∗))f 0(k∗)f 0(k∗)

!
— However, we know C 0(k∗) > 0; hence, take positive solution
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• Higher-Order Expansions
— Conventional perception in macroeconomics: “perturbation methods of order higher than one
are considerably more complicated than the traditional linear-quadratic case ...” — Marcet
(1994, p. 111)

— Mathematics literature: No problem (See, e.g., Bensoussan, Fleming, Souganides, etc.)

• Compute C 00(k∗) and V 000(k∗).

— Differentiate (1kk, 2k):

ρV 000=V 0000(f − C) + 2V 000(f 0 −C 0) + V 00(f 00 − C 00) (1kkk)

+V 000f 0 + 2V 00f 00 + V 0f 000

0=u000(C 0)2 + u00C 00 − V 000 (2kk)

— At k∗, (1kkk) reduces to

0 = 2V 000(f 0 − C 0) + 3V 00f 00 − V 00C 00 + V 0f 000 (1∗kkk)

— Equations (1∗kkk,2
∗
kk) are LINEAR in unknowns C

00(k∗) and V 000(k∗):Ã
u00 −1
V 00−2(f 0 − C 0)

!Ã
C 00

V 000

!
=

Ã
A1
A2

!
— Unique solution since determinant −2u00(f 0 −C 0) + V 00 < 0.
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• Compute C(n)(k∗) and V (n+1)(k∗).

— Linear system for order n is, for some A1 and A2,Ã
u00 −1
V 00−n(f 0 − C 0)

!Ã
C(n)

V (n+1)

!
=

Ã
A1
A2

!
— Higher-order terms are produced by solving linear systems

— The linear system is always determinate since −nu00(f 0 −C 0) + V 00 < 0

• Conclusion:
— Computing first-order terms involves solving quadratic equations

— Computing higher-order terms involves solving linear equations

— Computing higher-order terms is easier than computing the linear term.
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Accuracy Measure
Consider the one-period relative Euler equation error:

E(k) = 1− V 0(k)
u0(C(k))

• Equilibrium requires it to be zero.
• E(k) is measure of optimization error
— 1 is unacceptably large

— Values such as .00001 is a limit for people.

— E(k) is unit-free.

• Define the Lp, 1 ≤ p <∞, bounded rationality accuracy to be
log10 k E(k) kp

• The L∞ error is the maximum value of E(k).
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Global Quality of Asymptotic Approximations

Graph of log10 |E(k|

• Linear approximation is very poor even for k close to steady state
• Order 2 is better but still not acceptable for even k = .9, 1.1

• Order 10 is excellent for k ∈ [.6, 1.4]
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Bifurcation Methods

• Suppose H(h(ε), ε) = 0 but H(x, 0) = 0 for all x.
— IFT says

h0(0) = −Hε(x0, 0)

Hx(x0, 0)

— H(x, 0) = 0 implies Hx(x0, 0) = 0, and h0(0) has the form 0/0 at x = x0.

— l’Hospital’s rule implies, if which is well-defined if Hεx(x0, 0) 6= 0,

h0(0) = −Hεε(x0, 0)

Hεx(x0, 0)
.
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Example: Portfolio Choices for Small Risks

• Simple asset demand model:
— safe asset yields R per dollar invested and risky asset yields Z per dollar invested

— If final value is Y =W ((1− ω)R + ωZ), then portfolio problem is

max
ω

E{u(Y )}

• Small Risk Analysis
— Parameterize cases

Z = R + εz + ε2π (1)

— Compute ω(ε) .
= ω(0) + εω0(0) + ε2

2 ω
00(0).around the deterministic case of ε = 0.

— Failure of IFT: at ε = 0, Z = R, and ω( ε) is indeterminate, but we know that ω( ε) is unique
for ε 6= 0

23



• Bifurcation analysis
— The first-order condition for ω

0 = E{u0 ¡WR + ωW (εz + ε2π)
¢
(z + επ)} ≡ G(ω, ε) (2)

0 = G(ω, 0), ∀ω. (3)

— Solve for ω(ε) .
= ω(0) + εω0(0) + ε2

2 ω
00(0). Implicit differentiation implies

0 = Gωω
0 +Gε (4)

Gε=E{u00(Y )W (ωz + 2ωεπ)W (z + επ) + u0(Y )π} (5)

Gω=E{u00(Y )(z + επ)2ε} (6)

— At ε = 0, G(ω, 0) = Gω(ω, 0) = 0 for all ω.

— No point (ω, 0) for application of IFT to (3) to solve for ω0(0).

24



• We want ω0 = limε→0 ω(ε).

— Bifurcation theorem keys on ω0 satisfying

0=Gε(ω0, 0)

=u00(RW )ω0σ2zW + u0(RW )π (7)

which implies

ω0 = − π

σ2z

u0(WR)

Wu00(WR)
(8)

— (8) is asymptotic portfolio rule

∗ same as mean-variance rule
∗ ω0 is product of risk tolerance and the risk premium per unit variance.
∗ ω0 is the limiting portfolio share as the variance vanishes.
∗ ω0 is not first-order approximation.
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• To calculate ω0(0):
— differentiate (2.4) with respect to ε

0 = Gωωω
0ω0 + 2Gωεω

0 +Gωω
00 +Gεε (9)

where (without loss of generality, we assume W = 1)

Gεε = E{u000(Y )(ωz + 2ωεπ)2(z + επ) + u00(Y )2ωπ(z + επ)

+2u00(Y )(ωz + 2ωεπ)π}
Gωω =E{u000(Y )(z + επ)3ε}
Gωε = E{u000(Y )(ωz + 2ωεπ)(z + επ)2ε+ u00(Y )(z + επ)2πε

+u00(Y )(z + επ)2}
— At ε = 0,

Gεε = u000(R)ω20E{z3} Gωω = 0

Gωε = u00(R)E{z2} 6= 0 Gεεε 6= 0
— Therefore,

ω0 = −1
2

u000(R)
u00(R)

E{z3}
E{z2}ω

2
0. (10)

— Equation (10) is a simple formula.

∗ ω0(0) proportional to u000/u00
∗ ω0(0) proportional to ratio of skewness to variance.
∗ If u is quadratic or z is symmetric, ω does not change to a first order.

— We could continue this and compute more derivatives of ω(ε) as long as u is sufficiently differ-
entiable.
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• Other applications - see Judd and Guu (ET, 2001)
— Equilibrium: add other agents, make π endogenous

— Add assets

— Produce a mean-variance-skewness-kurtosis-etc. theory of asset markets

— More intuitive approach to market incompleteness then counting states and assets
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