NUMERICAL DYNAMIC PROGRAMMING

Kenneth L. Judd

Hoover Institution and NBER

June 28, 2006

Dynamic Programming

- Foundation of dynamic economic modelling
	- Individual decisionmaking
	- Social ^planners problems, Pareto ^efficiency
	- Dynamic games
- Computational considerations
	- Applies ^a wide range of numerical methods: Optimization, approximation, integration

2

— Can exploit any architecture, including high-power and high-throughput computing

Outline

- Review of Dynamic Programming
- Necessary Numerical Techniques
	- Approximation
	- Integration
- Numerical Dynamic Programming

Discrete-Time Dynamic Programming

• Objective:

$$
E\left\{\sum_{t=1}^{T} \pi(x_t, u_t, t) + W(x_{T+1})\right\},\tag{12.1.1}
$$

- $-X$ is set of states and D is the set of controls
- $-\pi(x, u, t)$ payoffs in period t, for $x \in X$ at the beginning of period t, and control $u \in \mathcal{D}$ is applied in period t.
- $-D(x,t) \subseteq \mathcal{D}$: controls which are feasible in state x at time t.
- $-F(A; x, u, t)$: probability that $x_{t+1} \in A \subset X$ conditional on time t control and state
- Value function definition

$$
V(x,t) \equiv \sup_{\mathcal{U}(x,t)} E\left\{ \sum_{s=t}^{T} \pi(x_s, u_s, s) + W(x_{T+1}) | x_t = x \right\}.
$$
 (12.1.2)

• Bellman equation

$$
V(x,t) = \sup_{u \in D(x,t)} \pi(x, u, t) + E \{ V(x_{t+1}, t+1) | x_t = x, u_t = u \}
$$
(12.1.3)

• Existence: boundedness of π is sufficient

Autonomous, Infinite-Horizon Problem:

• Objective:

$$
\max_{u_t} E\left\{\sum_{t=1}^{\infty} \beta^t \pi(x_t, u_t)\right\} \tag{12.1.1}
$$

• Value function definition: if $\mathcal{U}(x)$ is set of all feasible strategies starting at x.

$$
V(x) \equiv \sup_{\mathcal{U}(x)} E\left\{ \sum_{t=0}^{\infty} \beta^t \pi(x_t, u_t) \middle| \ x_0 = x \right\},\tag{12.1.8}
$$

• Bellman equation for $V(x)$

$$
V(x) = \sup_{u \in D(x)} \pi(x, u) + \beta E \{ V(x^+) | x, u \} \equiv (TV)(x), \tag{12.1.9}
$$

• Optimal policy function, $U(x)$, if it exists, is defined by

$$
U(x) \in \arg \max_{u \in D(x)} \pi(x, u) + \beta E \{V(x^+) | x, u\}
$$

• Standard existence theorem: If X is compact, $\beta < 1$, and π is bounded above and below, then

$$
TV = \sup_{u \in D(x)} \pi(x, u) + \beta E \left\{ V(x^+) \mid x, u \right\}
$$
 (12.1.10)

is monotone in V, and a contraction mapping with modulus β in the space of bounded functions, and has ^a unique fixed point.

Deterministic Growth Example

• Problem:

$$
V(k_0) = \max_{c_t} \sum_{t=0}^{\infty} \beta^t u(c_t),
$$

\n
$$
k_{t+1} = F(k_t) - c_t
$$
 (12.1.12)
\n
$$
k_0 \text{ given}
$$

— Euler equation:

$$
u'(c_t) = \beta u'(c_{t+1}) F'(k_{t+1})
$$

— Bellman equation

$$
V(k) = \max_{c} u(c) + \beta V(F(k) - c).
$$
 (12.1.13)

— \blacktriangleright Solution to (12.1.12) is a policy function $C(k)$ and a value function $V(k)$ satisfying

$$
0 = u'(C(k))F'(k) - V'(k)
$$
\n(12.1.15)

$$
V(k) = u(C(k)) + \beta V(F(k) - C(k))
$$
\n(12.1.16)

- (12.1.16) defines the value of an arbitrary policy function $C(k)$, not just for the optimal $C(k)$.
- The pair (12.1.15) and (12.1.16)
	- expresses the value function given ^a policy, and
	- ^a first-order condition for optimality.

Stochastic Growth Accumulation

• Problem:

$$
V(k, \theta) = \max_{c_t, \ell_t} E\left\{ \sum_{t=0}^{\infty} \beta^t u(c_t) \right\}
$$

$$
k_{t+1} = F(k_t, \theta_t) - c_t
$$

$$
\theta_{t+1} = g(\theta_t, \varepsilon_t)
$$

$$
\varepsilon_t : \text{ i.i.d. random variable}
$$

$$
k_0 = k, \ \theta_0 = \theta.
$$

• State variables:

— k: productive capital stock, endogenous

 $-\theta$: productivity state, exogenous

• The dynamic programming formulation is

$$
V(k, \theta) = \max_{c} u(c) + \beta E \{ V(F(k, \theta) - c, \theta^{+}) | \theta \}
$$
(12.1.21)

$$
\theta^{+} = g(\theta, \varepsilon)
$$

• The control law $c = C(k, \theta)$ satisfies the first-order conditions

$$
0 = u_c(C(k, \theta)) - \beta E\{u_c(C(k^+, \theta^+))F_k(k^+, \theta^+) | \theta\},\tag{12.1.23}
$$

where

$$
k^+ \equiv F(k, L(k, \theta), \theta) - C(k, \theta),
$$

Discrete State Space Problems

- State space $X = \{x_i, i = 1, \cdots, n\}$
- Controls $\mathcal{D} = \{u_i|i=1,...,m\}$
- $q_{ij}^t(u) = \Pr(x_{t+1} = x_j | x_t = x_i, u_t = u)$
- $Q^t(u) = (q_{ij}^t(u))_{i,j}$: Markov transition matrix at t if $u_t = u$.

Value Function Iteration: Discrete-State Problems

- State space $X = \{x_i, i = 1, \cdots, n\}$ and controls $\mathcal{D} = \{u_i | i = 1, ..., m\}$
- Terminal value:

$$
V_i^{T+1} = W(x_i), \ i = 1, \cdots, n.
$$

• Bellman equation: time t value function is

$$
V_i^t = \max_u \; [\pi(x_i, u, t) + \beta \sum_{j=1}^n q_{ij}^t(u) \, V_j^{t+1}], \; i = 1, \cdots, n
$$

• Bellman equation can be directly implemented - called *value function iteration*. Only choice for $\mathrm{finite}\ T.$

- Infinite-horizon problems
	- $-$ Bellman equation is now a simultaneous set of equations for V_i values:

$$
V_i = \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^{n} q_{ij}(u) V_j \right], i = 1, \dots, n
$$

— Value function iteration is

$$
V_i^{k+1} = \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j^k \right], i = 1, \dots, n
$$

$$
U_i^{k+1} = \arg \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j^k \right], i = 1, \dots, n
$$

- —- Can use value function iteration with arbitrary V_i^0 and iterate $k \to \infty$.
- Error is given by contraction mapping property:

$$
||V^k - V^*|| \le \frac{1}{1 - \beta} ||V^{k+1} - V^k||
$$

î

—- Stopping rule: continue until $||V^k - V^*|| < \varepsilon$ where ε is desired accuracy. Policy Iteration (a.k.a. Howard improvement)

- Value function iteration is a slow process
	- $-$ Linear convergence at rate β
	- \sim Convergence is particularly slow if β is close to 1.
- Policy iteration is faster
	- Current guess:

$$
V_i^k, i=1,\cdots,n.
$$

- Iteration: compute optimal policy today if V^k is value tomorrow:

$$
U_i^{k+1} = \arg \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j^k \right], i = 1, \cdots, n,
$$

- Compute the value function if the policy U^{k+1} is used forever, which is solution to the linear system

$$
V_i^{k+1} = \pi\left(x_i, U_i^{k+1}\right) + \beta \sum_{j=1}^n q_{ij}(U_i^{k+1}) V_j^{k+1}, \ i = 1, \cdots, n,
$$

- Policy iteration depends on only monotonicity
	- ∗ If initial guess is above or below solution then policy iteration is between truth and value function iterate
	- $*$ Works well even for β close to 1.

Linear Programming Approach

- If D is finite, we can reformulate dynamic programming as a linear programming problem.
- $(12.3.4)$ is equivalent to the linear program

$$
\min_{V_i} \sum_{i=1}^n V_i
$$

s.t. $V_i \ge \pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u)V_j, \ \forall i, u \in \mathcal{D},$ (12.4.10)

- Computational considerations
	- — $(12.4.10)$ may be a large problem
	- —Trick and Zin (1997) pursued an acceleration approac^h with success.
	- Recent work by Daniela Pucci de Farias and Ben van Roy has revived interest.

Continuous states: Discretization

- Method:
	- — \mathcal{L} "Replace" continuous X with a finite $X^* = \{x_i, i = 1, \cdots, n\} \subset X$
	- Proceed with ^a finite-state method.
- Problems:
	- $-$ Sometimes need to alter space of controls to assure landing on an x in X.

10

— A fine discretization often necessary to get accurate approximations

Continuous Methods for Continuous-State Problems

• Basic Bellman equation:

$$
V(x) = \max_{u \in D(x)} \pi(u, x) + \beta E\{V(x^+)|x, u\} \equiv (TV)(x). \tag{12.7.1}
$$

- Discretization essentially approximates V with ^a step function
- Approximation theory provides better methods to approximate continuous functions.
- General Task
	- Choose ^a finite-dimensional parameterization

$$
V(x) \doteq \hat{V}(x; a), \ a \in R^m \tag{12.7.2}
$$

and ^afinite number of states

$$
X = \{x_1, x_2, \cdots, x_n\},\tag{12.7.3}
$$

– Find coefficients $a \in \mathbb{R}^m$ such that $\hat{V}(x; a)$ "approximately" satisfies the Bellman equation.

General Parametric Approach: Approximating T

• For each x_j , $(TV)(x_j)$ is defined by

$$
v_j = (TV)(x_j) = \max_{u \in D(x_j)} \pi(u, x_j) + \beta \int \hat{V}(x^+; a) dF(x^+|x_j, u) \tag{12.7.5}
$$

• In practice, we compute the approximation \hat{T}

$$
v_j = (\hat{T}V)(x_j) \doteq (TV)(x_j)
$$

- Integration step: for ω_j and x_j for some numerical quadrature formula

$$
E\{V(x^+;a)|x_j,u\} = \int \hat{V}(x^+;a)dF(x^+|x_j,u)
$$

=
$$
\int \hat{V}(g(x_j,u,\varepsilon);a)dF(\varepsilon)
$$

$$
= \sum_{\ell} \omega_{\ell} \hat{V}(g(x_j,u,\varepsilon_{\ell});a)
$$

 \blacksquare Maximization step: for $x_i \in X$, evaluate

$$
v_i = (T\hat{V})(x_i)
$$

- Fitting step:
	- * Data: $(v_i, x_i), i = 1, \cdots, n$
	- ∗ Objective: find an $a \in \mathbb{R}^m$ such that $\hat{V}(x; a)$ best fits the data
	- $*$ Methods: determined by $\hat{V}(x; a)$

Approximation Methods

- General Objective: Given data about $f(x)$ construct simpler $g(x)$ approximating $f(x)$.
- Questions:
	- What data should be produced and used?
	- What family of "simpler" functions should be used?
	- What notion of approximation do we use?
- Comparisons with statistical regression
	- Both approximate an unknown function and use ^a finite amount of data
	- Statistical data is noisy but we assume data errors are small
	- Nature produces data for statistical analysis but we produce the data in function approximation

Interpolation Methods

- Interpolation: find $g(x)$ from an n-D family of functions to exactly fit n data items
- Lagrange polynomial interpolation
	- — $-$ Data: (x_i, y_i) , $i = 1, ..., n$.
	- —- Objective: Find a polynomial of degree $n-1$, $p_n(x)$, which agrees with the data, i.e.,

$$
y_i = f(x_i), \ i = 1,..,n
$$

 $\mathbf{-}$ Result: If the x_i are distinct, there is a unique interpolating polynomial

• Does $p_n(x)$ converge to $f(x)$ as we use more points? Consider $f(x) = \frac{1}{1+x^2}$, x_i uniform on $[-5, 5]$

Figure 1:

- Hermite polynomial interpolation
	- — $-$ Data: (x_i, y_i, y'_i) , $i = 1, ..., n$.
	- —- Objective: Find a polynomial of degree $2n-1$, $p(x)$, which agrees with the data, i.e.,

$$
y_i = p(x_i), \ i = 1, ..., n
$$

 $y'_i = p'(x_i), \ i = 1, ..., n$

 $-$ Result: If the x_i are distinct, there is a unique interpolating polynomial

- Least squares approximation
	- — $\hbox{- Data: A function, } f(x)$.
	- — \bullet Objective: Find a function $g(x)$ from a class G that best approximates $f(x)$, i.e.,

$$
g = \arg\max_{g \in G} \|f - g\|^2
$$

Orthogonal polynomials

- General orthogonal polynomials
	- Space: polynomials over domain D
	- —- weighting function: $w(x) > 0$
	- —- Inner product: $\langle f, g \rangle = \int_D f(x)g(x)w(x)dx$
	- —- Definition: $\{\phi_i\}$ is a family of orthogonal polynomials w.r.t $w(x)$ iff

$$
\left\langle \phi_i, \phi_j \right\rangle = 0, \ i \neq j
$$

— We like to compute orthogonal polynomials using recurrence formulas

$$
\phi_0(x) = 1
$$

\n
$$
\phi_1(x) = x
$$

\n
$$
\phi_{k+1}(x) = (a_{k+1}x + b_k) \phi_k(x) + c_{k+1} \phi_{k-1}(x)
$$

• Chebyshev polynomials

$$
-[a, b] = [-1, 1] \text{ and } w(x) = (1 - x^2)^{-1/2}
$$

\n
$$
-T_n(x) = \cos(n \cos^{-1} x)
$$

\n
$$
T_0(x) = 1
$$

\n
$$
T_1(x) = x
$$

\n
$$
T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x),
$$

- General Orthogonal Polynomials
	- Few problems have the specifi^c intervals and weights used in definitions
	- — \sim One must adapt interval through linear COV: If compact interval $[a, b]$ is mapped to $[-1, 1]$ by

$$
y = -1 + 2\frac{x - a}{b - a}
$$

then ϕ_i (-1+2 $\frac{x-a}{b-a}$) are orthogonal over $x \in [a, b]$ with respect to w (-1+2 $\frac{x-a}{b-a}$) iff $\phi_i(y)$ are orthogonal over $y \in [-1,1]$ w.r.t. $w\left(y\right)$

Regression

- Data: (x_i, y_i) , $i = 1, ..., n$.
- Objective: Find a function $f(x; \beta)$ with $\beta \in R^m$, $m \leq n$, with $y_i \doteq f(x_i)$, $i = 1, ..., n$.
- Least Squares regression:

$$
\min_{\beta \in R^m} \sum (y_i - f(x_i; \beta))^2
$$

18

Chebyshev Regression

- Chebyshev Regression Data:
- \bullet $(x_i, y_i), i = 1, ..., n > m, x_i$ are the *n* zeroes of $T_n(x)$ adapted to [a, b]
- Chebyshev Interpolation Data:

 $(x_i, y_i), i = 1, ..., n = m, x_i$ are the n zeroes of $T_n(x)$ adapted to $[a, b]$

Algorithm 6.4: Chebyshev Approximation Algorithm in R^1

- Objective: Given $f(x)$ defined on $[a, b]$, find its Chebyshev polynomial approximation $p(x)$
- Step 1: Compute the $m \geq n+1$ Chebyshev interpolation nodes on $[-1, 1]$:

$$
z_k = -\cos\left(\frac{2k-1}{2m}\pi\right), \ k = 1, \cdots, m.
$$

• Step 2: Adjust nodes to $[a, b]$ interval:

$$
x_k = (z_k + 1) \left(\frac{b-a}{2} \right) + a, k = 1, ..., m.
$$

• Step 3: Evaluate f at approximation nodes:

$$
w_k = f(x_k) , k = 1, \cdots, m.
$$

• Step 4: Compute Chebyshev coefficients, $a_i, i = 0, \cdots, n$:

$$
a_i = \frac{\sum_{k=1}^{m} w_k T_i(z_k)}{\sum_{k=1}^{m} T_i(z_k)^2}
$$

to arrive at approximation of $f(x, y)$ on $[a, b]$:

$$
p(x) = \sum_{i=0}^{n} a_i T_i \left(2\frac{x-a}{b-a} - 1 \right)
$$

Minmax Approximation

- Data: (x_i, y_i) , $i = 1, ..., n$.
- Objective: L^{∞} fit

$$
\min_{\beta \in R^m} \max_i \|y_i - f(x_i; \beta)\|
$$

- Problem: Difficult to compute
- Chebyshev minmax property

Theorem 1 Suppose $f : [-1,1] \to R$ is C^k for some $k \geq 1$, and let I_n be the degree n polynomial interpolation of f based at the zeroes of $T_n(x)$. Then

$$
\| f - I_n \|_{\infty} \le \left(\frac{2}{\pi} \log(n+1) + 1 \right)
$$

$$
\times \frac{(n-k)!}{n!} \left(\frac{\pi}{2} \right)^k \left(\frac{b-a}{2} \right)^k \| f^{(k)} \|_{\infty}
$$

- Chebyshev interpolation:
	- converges in L^{∞}
	- essentially achieves minmax approximation
	- easy to compute
	- $-$ does not approximate f'

Splines

Definition 2 A function $s(x)$ on $[a, b]$ is a spline of order n iff

1. s is C^{n-2} on $[a, b]$, and

2. there is a grid of points (called nodes) $a = x_0 < x_1 < \cdots < x_m = b$ such that $s(x)$ is a polynomial of degree $n-1$ on each subinterval $[x_i, x_{i+1}], i = 0, \ldots, m-1.$

 \sim

Note: an order 2 spline is the piecewise linear interpolant.

- Cubic Splines
	- —- Lagrange data set: $\{(x_i, y_i) | i = 0, \cdots, n\}.$
	- $-$ Nodes: The x_i are the nodes of the spline
	- —- Functional form: $s(x) = a_i + b_i x + c_i x^2 + d_i x^3$ on $[x_{i-1}, x_i]$
	- Unknowns: $4n$ unknown coefficients, $a_i, b_i, c_i, d_i, i = 1, \cdots n$.

• Conditions:

 $-2n$ interpolation and continuity conditions:

$$
y_i = a_i + b_i x_i + c_i x_i^2 + d_i x_i^3,
$$

\n
$$
i = 1, .., n
$$

\n
$$
y_i = a_{i+1} + b_{i+1} x_i + c_{i+1} x_i^2 + d_{i+1} x_i^3,
$$

\n
$$
i = 0, .., n - 1
$$

 $-2n-2$ conditions from C^2 at the interior: for $i=1,\cdots n-1$,

$$
b_i + 2c_i x_i + 3d_i x_i^2 = b_{i+1} + 2c_{i+1} x_i + 3d_{i+1} x_i^2
$$

$$
2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1} x_i
$$

- — $-$ Equations (1–4) are $4n-2$ linear equations in $4n$ unknown parameters, a, b, c, and d.
- construct 2 side conditions:
	- * natural spline: $s'(x_0)=0=s'(x_n)$; it minimizes total curvature, $\int_{x_0}^{x_n} s''(x)^2 dx$, among solutions to (1-4).
	- ∗ Hermite spline: $s'(x_0) = y'_0$ and $s'(x_n) = y'_n$ (assumes extra data)
	- * Secant Hermite spline: $s'(x_0)=(s(x_1)-s(x_0))/(x_1-x_0)$ and $s'(x_n)=(s(x_n)-s(x_{n-1}))/(x_n-p)$ x_{n-1}).
	- * not-a-knot: choose $j = i_1, i_2$, such that $i_1 + 1 < i_2$, and set $d_j = d_{j+1}$.
- —Solve system by special (sparse) methods; see spline fi^t packages
- Shape-preservation
	- —Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.
	- Example

- Schumaker Procedure:
	- 1. Take level (and maybe slope) data at nodes x_i
	- 2. Add intermediate nodes $z_i^+ \in [x_i, x_{i+1}]$
	- 3. Run quadratic spline with nodes at the ^x and ^z nodes which intepolate data and preserves shape.
	- 4. Schumaker formulas tell one how to choose the z and spline coefficients (see book and correction at book's website)
- Many other procedures exist for one-dimensional problems, but few procedures exist for twodimensional problems
- Spline summary:
	- Evaluation is cheap
		- ∗ Splines are locally low-order polynomial.
		- $*$ Can choose intervals so that finding which $[x_i, x_{i+1}]$ contains a specific x is easy.
		- $*$ Finding enclosing interval for general x_i sequence requires at most $\lceil \log_2 n \rceil$ comparisons
	- Good fits even for functions with discontinuous or large higher-order derivatives. E.g., quality of cubic splines depends only on $f^{(4)}(x)$, not $f^{(5)}(x)$.
	- Can use splines to preserve shape conditions

Multidimensional approximation methods

- Lagrange Interpolation
	- $\mathcal{I} = \{ (x_i, z_i) \}_{i=1}^N \subset R^{n+m}$, where $x_i \in R^n$ and $z_i \in R^m$
	- Objective: find $f: R^n \to R^m$ such that $z_i = f(x_i)$.
	- Need to choose nodes carefully.
	- Task: Find combinations of interpolation nodes and spanning functions to produce ^a nonsingular (well-conditioned) interpolation matrix.

Tensor products

- General Approach:
	- If A and B are sets of functions over $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, their tensor product is

$$
A \otimes B = \{ \varphi(x)\psi(y) \mid \varphi \in A, \, \psi \in B \}.
$$

—– Given a basis for functions of x_i , $\Phi^i = {\{\varphi_k^i(x_i)\}}_{k=0}^{\infty}$, the *n-fold tensor product* basis for functions of (x_1, x_2, \ldots, x_n) is

$$
\Phi = \left\{ \prod_{i=1}^{n} \varphi_{k_i}^i(x_i) \mid k_i = 0, 1, \cdots, i = 1, \ldots, n \right\}
$$

- Orthogonal polynomials and Least-square approximation
	- —- Suppose Φ^i are orthogonal with respect to $w_i(x_i)$ over $[a_i, b_i]$
	- —- Least squares approximation of $f(x_1, \dots, x_n)$ in Φ is

$$
\sum_{\varphi\in \Phi}\,\frac{\langle\varphi,f\rangle}{\langle\varphi,\varphi\rangle}\;\varphi,
$$

where the product weighting function

$$
W(x_1, x_2, \cdots, x_n) = \prod_{i=1}^n w_i(x_i)
$$

defines $\langle \cdot, \cdot \rangle$ over $D = \prod_i [a_i, b_i]$ in

$$
\langle f(x), g(x) \rangle = \int_D f(x)g(x)W(x)dx.
$$

Algorithm 6.4: Chebyshev Approximation Algorithm in R^2

- Objective: Given $f(x, y)$ defined on $[a, b] \times [c, d]$, find its Chebyshev polynomial approximation $p(x, y)$
- Step 1: Compute the $m \geq n+1$ Chebyshev interpolation nodes on $[-1, 1]$:

$$
z_k = -\cos\left(\frac{2k-1}{2m}\pi\right), \ k = 1, \cdots, m.
$$

• Step 2: Adjust nodes to $[a, b]$ and $[c, d]$ intervals:

$$
x_k = (z_k + 1) \left(\frac{b-a}{2}\right) + a, k = 1, ..., m.
$$

$$
y_k = (z_k + 1) \left(\frac{d-c}{2}\right) + c, k = 1, ..., m.
$$

• Step 3: Evaluate f at approximation nodes:

$$
w_{k,\ell}=f(x_k,y_\ell)\;,\;k=1,\cdots,m.\;, \;\ell=1,\cdots,m.
$$

• Step 4: Compute Chebyshev coefficients, $a_{ij}, i, j = 0, \cdots, n$:

$$
a_{ij} = \frac{\sum_{k=1}^{m} \sum_{\ell=1}^{m} w_{k,\ell} T_i(z_k) T_j(z_\ell)}{(\sum_{k=1}^{m} T_i(z_k)^2) \left(\sum_{\ell=1}^{m} T_j(z_\ell)^2\right)}
$$

to arrive at approximation of $f(x, y)$ on $[a, b] \times [c, d]$:

$$
p(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{n} a_{ij} T_i \left(2\frac{x-a}{b-a} - 1 \right) T_j \left(2\frac{y-c}{d-c} - 1 \right)
$$

Multidimensional Splines

- B-splines: Multidimensional versions of splines can be constructed through tensor products; here B-splines would be useful.
- Summary
	- $-$ Tensor products directly extend one-dimensional methods to n dimensions
	- Curse of dimensionality often makes tensor products impractical

Complete polynomials

• Taylor's theorem for R^n produces the approximation

$$
f(x) \doteq f(x^0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x^0) \ (x_i - x_i^0)
$$

$$
+\frac{1}{2}\sum_{i_1=1}^n\sum_{i_2=1}^n\frac{\partial^2 f}{\partial x_{i_1}\partial x_{i_k}}(x_0)(x_{i_1}-x_{i_1}^0)(x_{i_k}-x_{i_k}^0)+\dots
$$

 $-$ For $k = 1$, Taylor's theorem for n dimensions used the linear functions $\mathcal{P}_1^n \equiv \{1, x_1, x_2, \cdots, x_n\}$

- For $k = 2$, Taylor's theorem uses $\mathcal{P}_2^n \equiv \mathcal{P}_1^n \cup \{x_1^2, \cdots, x_n^2, x_1x_2, x_1x_3, \cdots, x_{n-1}x_n\}.$
- In general, the kth degree expansion uses the *complete set of polynomials of total degree* k in n variables.

$$
\mathcal{P}_k^n \equiv \{x_1^{i_1} \cdots x_n^{i_n} \mid \sum_{\ell=1}^n i_\ell \leq k, \ 0 \leq i_1, \cdots, i_n\}
$$

- Complete orthogonal basis includes only terms with total degree k or less.
- Sizes of alternative bases
	- degree k $\qquad \qquad \mathcal{P}_k^n \qquad \qquad \text{Tensor Prod}.$ 2 $1 + n + n(n+1)/2$ 3ⁿ 3 $1 + n + \frac{n(n+1)}{2} + n^2 + \frac{n(n-1)(n-2)}{6}$ 4ⁿ
	- Complete polynomial bases contains fewer elements than tensor products.
	- Asymptotically, complete polynomial bases are as good as tensor products.
	- $-$ For smooth *n*-dimensional functions, complete polynomials are more efficient approximations
- Construction
	- Compute tensor product approximation, as in Algorithm 6.4
	- — Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in complete basis).

29

— Complete polynomial version is faster to compute since it involves fewer terms

Integration

- Most integrals cannot be evaluated analytically
- Integrals frequently arise in economics
	- Expected utility and discounted utility and profits over ^a long horizon
	- Bayesian posterior
	- Solution methods for dynamic economic models

Gaussian Formulas

• All integration formulas choose quadrature nodes $x_i \in [a, b]$ and quadrature weights ω_i :

$$
\int_{a}^{b} f(x) dx \doteq \sum_{i=1}^{n} \omega_{i} f(x_{i})
$$
\n(7.2.1)

- — $-$ Newton-Cotes (trapezoid, Simpson, etc.) use arbitrary x_i
- Gaussian quadrature uses good choices of x_i nodes and ω_i weights.
- Exact quadrature formulas:
	- $-$ Let \mathcal{F}_k be the space of degree k polynomials
	- $-$ A quadrature formula is exact of degree k if it correctly integrates each function in \mathcal{F}_k

30

– Gaussian quadrature formulas use n points and are exact of degree $2n - 1$

Theorem 3 Suppose that $\{\varphi_k(x)\}_{k=0}^{\infty}$ is an orthonormal family of polynomials with respect to $w(x)$ on [a, b]. Then there are x_i nodes and weights ω_i such that $a < x_1 < x_2 < \cdots < x_n < b$, and

1. if $f \in C^{(2n)}[a, b]$, then for some $\xi \in [a, b]$,

$$
\int_a^b w(x) f(x) dx = \sum_{i=1}^n \omega_i f(x_i) + \frac{f^{(2n)}(\xi)}{q_n^2(2n)!};
$$

2. and $\sum_{i=1}^n\omega_if(x_i)$ is the unique formula on n nodes that exactly integrates $\int_a^b f(x)\,w(x)\,dx$ for all polynomials in \mathcal{F}_{2n-1} .

Gauss-Chebyshev Quadrature

- Domain: [−1, 1]
- Weight: $(1 x^2)^{-1/2}$
- Formula:

$$
\int_{-1}^{1} f(x)(1 - x^2)^{-1/2} dx = \frac{\pi}{n} \sum_{i=1}^{n} f(x_i) + \frac{\pi}{2^{2n-1}} \frac{f^{(2n)}(\xi)}{(2n)!}
$$
(7.2.4)

for some $\xi \in [-1, 1]$, with quadrature nodes

$$
x_i = \cos\left(\frac{2i-1}{2n}\pi\right), \quad i = 1, ..., n. \tag{7.2.5}
$$

Arbitrary Domains

- Want to approximate $\int_a^b f(x) dx$ for different range, and/or no weight function
	- —- Linear change of variables $x = -1 + 2(y - a)(b - a)$
	- —- Multiply the integrand by $(1 - x^2)^{1/2} / (1 - x^2)^{1/2}$.

$$
\int_{a}^{b} f(y) dy = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{(x+1)(b-a)}{2} + a\right) \frac{(1-x^2)^{1/2}}{(1-x^2)^{1/2}} dx
$$

—– Gauss-Chebyshev quadrature uses the x_i Gauss-Chebyshev nodes over $[-1, 1]$

$$
\int_{a}^{b} f(y) \, dy \doteq \frac{\pi(b-a)}{2n} \sum_{i=1}^{n} f\left(\frac{(x_i+1)(b-a)}{2} + a\right) \left(1 - x_i^2\right)^{1/2}
$$

Gauss-Hermite Quadrature

- Domain is $[-\infty, \infty]$ and weight is e^{-x^2}
- Formula: for some $\xi \in (-\infty, \infty)$.

$$
\int_{-\infty}^{\infty} f(x)e^{-x^2}dx = \sum_{i=1}^{n} \omega_i f(x_i) + \frac{n!\sqrt{\pi}}{2^n} \cdot \frac{f^{(2n)}(\xi)}{(2n)!}
$$

• Normal Random Variables

- — $-Y$ is distributed $N(\mu, \sigma^2)$. Expectation is integration.
- —- Use Gauss-Hermite quadrature: Linear COV $x = (y - \mu)/\sqrt{2} \sigma$ implies

$$
E\{f(Y)\} = \int_{-\infty}^{\infty} f(y)e^{-(y-\mu)^2/(2\sigma^2)} dy = \int_{-\infty}^{\infty} f(\sqrt{2}\sigma x + \mu)e^{-x^2}\sqrt{2}\sigma dx
$$

$$
\doteq \pi^{-\frac{1}{2}} \sum_{i=1}^{n} \omega_i f(\sqrt{2}\sigma x_i + \mu)
$$

where the ω_i and x_i are the Gauss-Hermite quadrature weights and nodes over $[-\infty,\infty]$.

Multidimensional Integration

- Most economic problems have several dimensions
	- Multiple assets
	- Multiple error terms
- Multidimensional integrals are much more di fficult
	- Simple methods su ffer from curse of dimensionality
	- There are methods which avoid curse of dimensionality

Product Rules

- Build product rules from one-dimension rules
- Let $x_i^{\ell}, \omega_i^{\ell}, i = 1, \cdots, m$, be one-dimensional quadrature points and weights in dimension ℓ from ^a Newton-Cotes rule or the Gauss-Legendre rule.
- The *product rule*

$$
\int_{[-1,1]^d} f(x)dx \doteq \sum_{i_1=1}^m \cdots \sum_{i_d=1}^m \omega_{i_1}^1 \omega_{i_2}^2 \cdots \omega_{i_d}^d f(x_{i_1}^1, x_{i_2}^2, \cdots, x_{i_d}^d)
$$

- Gaussian structure prevails
	- —- Suppose $w^{\ell}(x)$ is weighting function in dimension ℓ
	- $-$ Define the *d*-dimensional weighting function.

$$
W(x) \equiv W(x_1, \cdots, x_d) = \prod_{\ell=1}^d w^{\ell}(x_\ell)
$$

- Product Gaussian rules are based on product orthogonal polynomials.
- Curse of dimensionality:
	- m^d functional evaluations is m^d for a *d*-dimensional problem with m points in each direction.

35

– Problem worse for Newton-Cotes rules which are less accurate in R^1 .

General Parametric Approach: Approximating T

• For each x_j , $(TV)(x_j)$ is defined by

$$
v_j = (TV)(x_j) = \max_{u \in D(x_j)} \pi(u, x_j) + \beta \int \hat{V}(x^+; a) dF(x^+|x_j, u) \tag{12.7.5}
$$

• In practice, we compute the approximation \hat{T}

$$
v_j = (\hat{T}V)(x_j) \doteq (TV)(x_j)
$$

- Integration step: for ω_j and x_j for some numerical quadrature formula

$$
E\{V(x^+;a)|x_j,u\rangle\} = \int \hat{V}(x^+;a)dF(x^+|x_j,u) = \int \hat{V}(g(x_j,u,\varepsilon);a)dF(\varepsilon) = \sum_{\ell} \omega_{\ell} \hat{V}(g(x_j,u,\varepsilon_{\ell});a)
$$

 $-$ Maximization step: for $x_i \in X$, evaluate

$$
v_i = (T\hat{V})(x_i)
$$

∗ Hot starts

- ∗ Concave stopping rules
- Fitting step:
	- * Data: $(v_i, x_i), i = 1, \cdots, n$
	- ∗ Objective: find an $a \in \mathbb{R}^m$ such that $\hat{V}(x; a)$ best fits the data
	- $*$ Methods: determined by $\hat{V}(x; a)$

Approximating T with Hermite Data

• Conventional methods just generate data on $V(x_j)$:

$$
v_j = \max_{u \in D(x_j)} \pi(u, x_j) + \beta \int \hat{V}(x^+; a) dF(x^+|x_j, u)
$$
 (12.7.5)

- Envelope theorem:
	- $-$ If solution u is interior,

$$
v_j' = \pi_x(u, x_j) + \beta \int \hat{V}(x^+; a) dF_x(x^+|x_j, u)
$$

 $-$ If solution u is on boundary

$$
v'_{j} = \mu + \pi_x(u, x_j) + \beta \int \hat{V}(x^+; a) dF_x(x^+|x_j, u)
$$

where μ is a Kuhn-Tucker multiplier

- Since computing v_j' is cheap, we should include it in data:
	- — $-$ Data: $(v_i, v'_i, x_i), i = 1, \cdots, n$
	- Objective: find an $a \in \mathbb{R}^m$ such that \hat{V} $V(x; a)$ best fits Hermite data
	- Methods: determined by \hat{V} $V(x;a)$

General Parametric Approach: Value Function Iteration

guess
$$
a \longrightarrow \hat{V}(x; a)
$$

 $\longrightarrow (v_i, x_i), i = 1, \cdots, n$
 \longrightarrow new a

- Comparison with discretization
	- $-$ This procedure examines only a finite number of points, but does not assume that future points lie in same finite set.
	- \sim Our choices for the x_i are guided by systematic numerical considerations.
- Synergies
	- Smooth interpolation schemes allow us to use Newton's method in the maximization step.
	- —They also make it easier to evaluate the integral in (12.7.5).
- Finite-horizon problems
	- \blacktriangleright Value function iteration is only possible procedure since $V(x,t)$ depends on time t.

3î

- $-$ Begin with terminal value function, $V(x,T)$
- Compute approximations for each $V(x,t)$, $t = T 1, T 2$, etc.

Algorithm 12.5: Parametric Dynamic Programming with Value Function Iteration

Objective: Solve the Bellman equation, (12.7.1).

- Step 0: Choose functional form for $\hat{V}(x; a)$, and choose the approximation grid, $X = \{x_1, ..., x_n\}.$ Make initial guess $\hat{V}(x; a^0)$, and choose stopping criterion $\epsilon > 0$.
- Step 1: Maximization step: Compute $v_j = (T\hat{V}(\cdot; a^i))(x_j)$ for all $x_j \in X$.
- Step 2: Fitting step: Using the appropriate approximation method, compute the $a^{i+1} \in R^m$ such that $\hat{V}(x; a^{i+1})$ approximates the (v_i, x_i) data.
- Step 3: If $\|\hat{V}(x; a^i) \hat{V}(x; a^{i+1})\| < \epsilon$, STOP; else go to step 1.
- Convergence
	- T is a contraction mapping
	- \hat{T} may be neither monotonic nor ^a contraction
- Shape problems
	- An instructive example

Figure 2:

- Shape problems may become worse with value function iteration
- Shape-preserving approximation will avoid these instabilities

Summary:

- Discretization methods
	- Easy to implement
	- Numerically stable
	- Amenable to many accelerations
	- Poor approximation to continuous problems
- Continuous approximation methods
	- Can exploit smoothness in problems
	- Possible numerical instabilities
	- Acceleration is less possible