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1. Introduction Concepts of “equilibrium” have long been connected with maximization or min-
imization. In economic and social situations, game theory has provided formulations in which different
entities, or agents, with possibly conflicting interests seek to optimize in circumstances where the actions
of any one of them may have consequences for the others. The notion of Nash equilibrium has that
form, for instance, as do various models of traffic equilibrium. More complicated versions of equilibrium
can to be brought into play for applications where the determination of market prices is crucial. Such
applications come up now in areas like electrical power deregulation but also underlie classical economic
equilibrium as originally described by Walras.

From a mathematical perspective, it is tempting to think that the many advances in optimization
technology in recent decades ought to have major implications for equilibrium problems, not just in
analysis but also in computation. Bridges are only starting to be built, however. Within the economics
community, studies of equilibrium have centered mainly on existence theorems with increasingly subtle
features. Beyond theoretical schemes of tdtonnment (see [11] for a later contribution) and the early efforts
of Scarf [53], [54] involving fixed-point algorithms (cf. also Todd [55]), relatively little attention has been
paid to numerical approaches, not to speak of practical approaches that aim to take advantage of what
has been learned in optimization. In the survey of Judd, Kubbler and Schmedders [33], for instance, the
computational picture is that of reducing everything to solving large systems of nonlinear equations; see
also [32].

In the optimization community, on the other hand, interest in equilibrium problems has definitely taken
hold, at least in certain settings which include game equilibria. In some cases linearization methods have
been tried [I] and also homotopy methods; cf. [12], [19]. Variational inequality formulations, including
complementarity formulations in particular, have been brought in; cf. [1], [15], [36], [38], [39], [40], [29],
[23], [22], and the book of Facchinei and Pang [21]. Results on determining a Nash equilibrium have been
obtained in [45] and [46]. Meanwhile, work in other quarters has begun on the design and complexity
analysis of algorithms for determining equilibrium in pure exchange economies in some special formats
not covered just by complementarity; cf. [30], [14], [57]. Just recently, interior-point methods have been
put to use [20].
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Our intention here is to help this work along by laying out, as a fundamental test case, a fairly
general version of Walrasian equilibrium in a format conducive to optimization developments. We want to
contribute insights coming from optimization theory, including duality, which could be valuable in making
further progress. Part of our goal also is to illuminate the complications that must be surmounted for
success in coping broadly with economic equilibrium, inasmuch as most of the work cited above has, for
technical reasons, been limited in the scope of the models that are covered. For instance, no producers,
only consumers have usually been admitted, and feasible consumption sets have simply been taken to be
nonnegative orthants. Utility functions have mostly been assumed to be continuously differentiable even
along the boundaries of those orthants, or have been set up so that the boundaries never come into play.

We channel our efforts into showing how classical assumptions, along with the introduction of Lagrange
multipliers for translating between prices and consumer utility, allow equilibrium to be represented by a
variational inequality problem, moreover in a manner which allows treatment of a satisfactory range of
utility functions for the economic agents. We show in fact that variational inequalities of “functional”
type, generalizing the more common “geometric” type, are needed for this purpose. Variational inequali-
ties of functional type have so far received scant notice among optimizers, although they have an equally
long history going back to the 1960’s, cf. [35], [5], [6], and for the sake of applications in mechanics and
engineering have further been extended to “hemivariational inequalities,” which revolve around Clarke
generalized subgradients of nonconvex functions, cf. [42], [43], [44]. By exhibiting the versatility of the
functional variational inequality format, we hope to arouse interest in solving problems in that format,
even beyond the ones described here. Another of our aims is to stimulate the analysis of equilibrium
models by way of auxiliary results available for variational inequalities, such as the theory of solution
perturbations in [I§].

A significant difficulty for our economic application, both for the existence of an equilibrium and
the possibilities for computing it, is that the variational inequality we arrive at is mot monotone. The
established literature offers no existence theorem for solutions to nonmonotone variational inequalities of
functional type. A result which potentially might be used has recently been formulated in [2T, Exercise
2.9.11], but our model is excluded by its assumptions. Without very much difficulty we are able to develop
an existence theorem under a simple boundedness condition, but that condition isn’t satisfied directly by
our variational inequality either, because of inherent unboundedness which arises from the introduction
of Lagrange multipliers. However, the possibility arises of a truncation to achieve the boundedness. The
struggle then is to demonstrate that, under the economic assumptions we impose, a truncation can be
introduced so as to arrive at a bounded variational inequality which has the same solutions as the original
one. In our contribution to establishing the existence of economic equilibrium, this is where the really
hard work comes in.

After formulating in Section 2 the particular Walrasian model we adopt for economic equilibrium
(Definition 1), we lay out in Section 3 the general facts we will need about variational inequalities,
including the new existence result for the functional case (Theorem 1). Although our proof of that result
comes down in the end to invoking a standard fixed point theorem, we present it in a format suggestive of
the forward-backward interations investigated in [I3] for monotone variational inequalities of geometric
type, even though monotonicity now is lacking.

In Section 4 we get down to the details of the economic model, providing the technical assumptions
in full and explaining some of their consequences. In Section 5 we state our results about economic
boundedness (Theorem 2) and the existence of a Walrasian economic equilibrium (Theorem 3), comparing
them to what has already been known. As a matter of fact, we achieve an equilibrium under assumptions
which in some respects are distinctly weaker than those previously in the economic literature (although
focusing on concave utility functions to describe preferences). A complementary result about the existence
of a kind of e-equilibrium is presented in Section 5 as well (Theorem 4).

A classical “strong survivability” assumption is shown in Section 6 to guarantee that Lagrange mul-
tipliers are available for the so-called budget constraints in the model (Theorem 5). Such multipliers
serve to convert utility values for the consumers into market costs and lead to what we call an enhanced
economic equilibrium. We demonstrate that an enhanced equilibrium in this sense can be represented by
a functional variational inequality (Theorem 6) and moreover has an interesting interpretation involving
the maximization of a “collective” utility function formed by assigning weights to the different consumers
(Theorem 7).



Jofré, Rockafellar, Wets: VI & Economic Equilibrium 3
Mathematics of Operations Research xx(x), pp. xxx—xxx, ©200x INFORMS

Section 7 is devoted to the effort of obtaining, from the economic assumptions, estimates of bounds
on the elements that enter into an enhanced equilibrium. These bounds support a truncation of the
variational inequality to which our general solution criterion can be applied (Theorems 8, 9 and 10).
The specific bounds we are able to give for the Lagrange multipliers depend on the strong survivabiity
assumption.

Some of the ideas in this paper appeared in our earlier work [3I], but with significant differences. Only
a pure exchange equilibrium, without producer agents, was treated there. Equilibrium was represented by
a geometric variational inequality, but at the expense of seriously limiting the utility functions that could
be admitted. Although truncations likewise entered the picture, they were tied to penalties for violations
of the budget constraints. A sequence of looser and looser truncations was employed to establish the
existence of a “virtual equilibrium” characterized by properties weaker than those in a classical Walrasian
equilibrium but approximated arbitrarily closely by them. A concept of virtual equilibrium could similarly
be developed in the present context, but we leave that project and its ramifications for another time.

While we hope that our efforts here may eventually lead to the further development of numerical
techniques for determining an economic equilibrium, it must be emphasized that the nonmonotonicity of
our variational inequality presents a challenge. The existing methodology, such as in [3], [4], [13], [21],
[277], [28], relies on monotonicity. It may be envisioned nontheless that, sooner or later, approaches may be
found which, in parallel to the use of convex subproblems in nonlinear programming, solve nonmonotone
variational inequalities through a sequence of monotone variational inequality subproblems.

2. Equilibrium Model In the classical circumstances we address, there are agents called con-
sumers, indexed by ¢ = 1,..., I, along with agents called producers, indexed by 7 = 1,...,J. Both deal
with “goods,” indexed by k = 1,..., K. Vectors in IR® having components that stand for quantities
of these goods will be involved in both consumption and production. For each consumer ¢ there is a
consumption set X; ¢ R¥ (also sometimes called a survival set), whereas for each producer j there is
a production set Y; C RY. Consumer i will choose a consumption vector z; € X;, and producer j will
choose a production vector y; € Y;. Production vectors y; may have some components negative, for
goods that are inputs, and others positive, for goods that are outputs.

Consumption vectors x; are rated by agent ¢ according their wutility, which is described by a function
u; on X;; the higher the utility value w;(x;), the better. Each agent ¢ also has an initial endowment, a
goods vector e;. Finally, the consumers share in the results of production:

consumer ¢ gets from y; the fixed fraction 6;;y;,
where 6;; > 0 and Zle O;j=1for j=1,...,J, (2.1)
The endowment e; of consumer 7 is thereby shifted to e; 4+ ijl 0;5y; as the net vector of goods available
to consumer 7. It should be noted, however, that negative components of y; may lead in this way to
supply obligations for the consumers: the resulting vector e; + ijl 0;;y; might itself have some negative
components.

Obviously the chosen z;’s and ¥;’s must turn out to be such that the total consumption Zle x;

doesn’t exceed the total (net) production ijl y; plus the total endowment Zle ;. In other words,
consumption and production must somehow be coordinated so that the associated excess demand vector

I

= Zj:l T = Z;']:1 Yi — Zizl e € RX. (2.2)

actually has no components positive.

The coordination is to be achieved by a market in which goods can be traded (both bought and sold)
at particular prices. The prices are not part of the given data. Instead, they must be determined from
interactions of the consumers and producers over availabilities and preferences. This is why finding an
equilibrium is much more than just a matter of optimization.

The price per unit of good k is denoted by px; the market is thus governed by a price vector p =
(p1,...,px) € R, The cost of z; is p-x; = p1x;1 + - pr ik, whereas the (net) profit from y; is
P-Y; = Py + - +pry;k. We speak of profit because of the convention that output components of y;
are positive and input components are negative.
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Most equilibrium models in the economics literature require prices to be nonnegative, although the
possibility of negative prices (for goods that turn out to be undesirable, like pollution byproducts) is
sometimes admitted. For us, in our wish at this level to avoid unduly troublesome complications en route
toward a variational inequality representation, the nonnegativity of prices is highly desirable. Consistent
with that, we allow so-called free disposal of goods: an agent can dispose of undesired quantities without
suffering any penalty. Indeed, this property is virtually equivalent to the a priori exclusion of negative
prices from the model, so we embrace it from the start for the convenience it affords.

Definition 1 (Walrasian equilibrium). An equilibrium consists of a price vector p, consumption vectors
z; fori=1,...,1, and production vectors y; for j =1,...,J, such that

(E1) (market nontriviality) p >0, p # 0,

(E2) (utility optimization) Z; maximizes u;(z;) over x; € X; subject to the budget constraint
J
pTi <P '[ei + Zj:1 0:5Y; } , (2.3)

(E3) (profit optimization) ¥; maximizes p-y; over y; € Yj,

(E4) (market clearing) supplies and demands are balanced in the sense that

I J I
z<0and p-z=0 for,E:E 41@—5 .1@—5 G (2.4)
1= Jj= 1=

The case in which there are no producers j (hence no production sets Y; or shares ;) is called a pure
exchange model of equilibrium. The consumers i start with goods vectors e; but want to trade them for
other goods vectors z; having higher utility. They are constrained in trading by their wealth, coming
from the market value of their endowments. The issue then is whether prices exist under which supplies
and demands balance when every agent optimizes utility subject to this budget constraint.

The inequalities, instead of equations, in (2.3) and (2.4) go along with our adoption of free disposal
of goods. Ultimately we’ll arrive at an equation in (2.3) anyway. When no prices are 0, it’s automatic
in (2.4) that z = 0. Price positivity can be guaranteed by extra assumptions on the utilities beyond the
ones we'll impose in Section 5, but we won’t go into that (cf. [24] 25]).

Elementary presentations often take X; to be the nonnegative orthant Bf , but other possibilities
have long been admitted in research on the existence of equilibrium in economics. Although we treat X;
and Y; abstractly here, these sets can be envisioned as specified by constraints which could further be
elaborated in an optimization setting. On the other hand, we are already taking a step away from the
abstractions of theoretical economics in posing the preferences of consumers in terms of utilities. Most of
the advanced literature in that field revolves around “preference relations” which need not have such an
expression, or indeed any other numerical representation. This modeling choice on our part is dictated
by our goal of opening the door wider to optimization analysis and computation.

In tandem with the price nonnegativity in (E1), the market clearing requirement in (E4) comes out as
a linear complementarity condition on p and the excess demand vector Z. It says that the supply must
exactly equal the demand for a good k with price p > 0, but it can exceed the demand for a good k with
price pr = 0. Thus, in equilibrium, free disposal is possible only for goods having no value in the market.

Of course, even with complementarity and the stipulation that p # 0, there is nothing in the model
to pin down the scale of p. An equilibrium with price vector p is also an equilibrium for any positive
multiple of p. Only the ratios of the positive prices to each other truly matter. For economists, this is as
it should be, because various forms of “money” may best be viewed as special goods, the values of which
ought to be derived from an equilibrium model.

The optimality requirements in (E2) and (E3) might, in some situations, be translated into comple-
mentarity conditions as well. This would involve passing from specific constraint representations for X;
and Y; to optimality conditions in terms of Lagrange multipliers. Nonetheless, there are fundamental ob-
stacles to capturing economic equilibrium entirely through complementarity. The indeterminate scaling
of the price vector p is one source of trouble in achieving a formulation in which the existence of equilib-
rium is adequately supported, but deeper difficulties come from the broad range of utility functions that
must be admitted in order to maintain a strong connection with economic applications.
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Although the existence of a “coordinating” price vector p is the central idea in an equilibrium, a kind
of of economic feasibility, described next, must be present first. Usually, for technical reasons, a certain
boundedness property must be on hand as well. The assumptions we impose later will have to address
these concerns.

Definition 2 (economic feasibility and boundedness). In the context of the model for Walrasian equi-
librium, the economy is said to be bounded if the set

I J I
A :{(xlv"wvayla"'vyc]) Z; EXZ" Yj E)/_ﬁ Zi:lxi_ZjZij_Zizlei SO} (25)

is bounded in (IR®)! x (IR*)”. The economy is said to be feasible if this set A is nonempty, or in other
words, if z < 0 for the excess demand vector z associated with at least some choice of x; € X; and
y; € Y,. The economy is strictly feasible if the choice can made so that actually z < 0 (where the strict
vector inequality refers to strict inequality component by component).

A customary approach to the issue of price scaling is to restrict price vectors p to lie in the price
simplex

so that (E1) turns into p € P. For any p € P, whether or not part of an equilibrium, conditions (E2)
and (E3) can be expressed in terms of

T; € Xz(]i Y1y ,QJ) with Yj € Y}(ﬁ), (27)
where
Y;(p) = Argmax p-y;,
Y;i€Y;
J (2.8)
Xi(py1s--yg) = argn;(ax{pmi < p'[ei +Z_j:1 91‘1‘%} }
x;,€X;

This leads to the idea of capturing all the conditions for equilibrium, including (E4), simultaneously in
terms of a mapping from price vectors p to goods vectors z, namely the excess demand mapping Z having

2(p) = {Z - Zjﬂ T Zjﬂ Yi— Zj:1 €

y; € Yi(p), xi € Xi(p,y1,---,Y7) } (2.8)

Clearly
P € P yields equilibrium <= 3z € Z(p) such that 2 <0, p-z=0. (2.9)

Much of the equilibrium existence theory in economics has focused on the criterion in (2.9), or some
variant, in which the compactness of the price simplex P has a major role along with assumptions that
guarantee the desired behavior of the mapping Z. The feasibility and boundedness properties in Definition
2 are called upon, in particular, and have to be guaranteed by reasonable assumptions on the sets X; and
Y;.

Can the excess demand mapping Z be the centerpiece of a computational scheme for determining an
equilibrium on the basis of (2.9)? This has been investigated by Dafermos [I5] through a variational
inequality reformulation in the case of a pure exchange economy for which Z is single-valued. Of course,
such single-valuedness depends on assumptions like strict concavity of the utility functions and can’t
readily be extended to models that incorporate production. Properties like differentiability are even
harder to pin down for the mapping Z without serious restrictions, not to speak of utilizing them effectively
in an algorithm.

For this reason we won'’t take that route here, preferring rather to handle p, z; and g; directly. A
variational inequality representation can’t be achieved with these elements alone, however. Lagrange mul-
tipliers for the budget constraints (2.3) have to be brought in. Those additional elements have economic
significance and contribute in a positive way to the notion of equilibrium (we speak of obtaining an “en-
hanced equilibrium”). But they cause trouble by introducing a further, intrinsic source of unboundedness,
even when the economic boundedness in Definition 2 can be guaranteed.
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3. Variational Inequalities and Their Solvability A variational inequality of geometric type
concerns a nonempty, closed, convex set C' C IR" and a mapping F : C' — IR". The associated problem
is

VI(C, F) find ¥ € C such that — F(v) € N¢(9),
where N¢(0) denotes the normal cone to C at ¥ in the sense of convex analysis:
w € Ne(0) <= w-(v—10) <0 forall veC. (3.1)
If C is a cone, N¢o(¥) consists of the vectors w in the polar cone
C*z{w|w-u§0|f0rallv€0} (3.2)

that satisfy w-o = 0. The best studied case occurs for C = R", with C* = IR". Then VI(C, F') reduces
to a standard complementarity problem:

VI(R, F) find ¥ > 0 such that F(7) >0 and F(v) L @.

In a variational inequality of functional type, the set C C IR" is replaced by a proper convex function
f on IR™ that is lower semicontinuous. Properness allows f to take on oo, as long as the convex set

domfz{v}f(v)<oo}, (3.3)

called the effective domain of f, is nonempty. Lower semicontinuity requires the closedness of all the
level sets of the form { v ‘ f(v) < ¢} for ¢ € R (but doesn’t necessarily entail dom f being closed). The
problem then is

VI(f, F) find © € dom f such that — F(v) € 9f(0),
where Jf(?) denotes the set of subgradients of f at o:
w e of(v) <= f(v) > f(v) +w-(v—1) for all v € dom f. (3.4)

We could just as well replace dom f in these conditions by its closure cl(dom f), or for that matter by
the whole space IR", since 9f(v) is empty when ¢ ¢ dom f.

The connection between the two types of variational inequalities resides in the fact that the subgradi-
ents of f are the normals to C' when f is the indicator d¢ of C:

O0f(v) = N¢(v) when f(v) =d¢c(v) = {

Thus, VI(f, F) = VI(C, F') when f = éc.

0 ifved,

oo ifvégC. (3:5)

The issue of when a variational inequality is guaranteed to have a solution is critical in guiding our
way. Variational inequalities that are monotone, i.e., with F satisfying

[F(v') — F(v)]-[v" —v] > 0 for all v,0, (3.6)

are especially favorable. They have a highly refined existence theory in finite dimensions, cf. Rockafellar
and Wets [52] Chapter 12], along with numerous solution techniques akin to decomposition in convex
optimization; cf. Chen and Rockafellar [I3] and its references. Infinite-dimensional existence results
under monotonicity both types, geometric and functional, go back to the earliest days of the subject in
connection with applications to partial differential equations; see [35], [B], [6], [7], [8], [@], [10], [34], [4]].
The monotone theory even includes extensions to set-valued mappings F'.

Much less is known about nonmonotone variational inequalities, however, and this poses a difficulty for
us because monotonicity isn’t readily available for the variational inequalities that can be used to describe
economic equilibrium. In finite dimensions there’s a well known existence criterion for the geometric case
which doesn’t invoke monotonicity: if C is bounded (in addition to being closed in IR", hence compact)
and F' is continuous, then VI(C, F') has a solution o; cf. the basic text of Kinderlehrer and Stampacchia
34 p. 12].

This criterion might, in principle, be exploited for economic equilibrium through the characterization
n (2.9). One could appeal to the fact that having z < 0 is equivalent to having p-z < 0 for all p € P,
and also to a property that follows when the budget constraints (2.3) are sure to be tight at equilibrium,
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namely that p-z = 0 whenever z € Z(p). Provided that the excess demand mapping Z is single-valued,
one could proceed from these observations to an equivalent formulation of (2.9) as concerned with finding

p € P such that Z(p)-(p—p) <0 for all p € P. (3.7)

This characterizes p as a solution to VI(P, Z). In situations where Z is also continuous, the result quoted
from [34] could be applied to confirm that such a vector p exists.

Unfortunately, things aren’t quite so simple, because the sets X;(p,y1,...,ys) in (2.7) and the defin-
ition of Z(p) might be empty if certain goods have zero price, and then the domain of Z would not be
all of P. Dafermos in [I5] found a condition for getting around that and nonetheless obtaining existence,
but that condition is beyond direct verification, and there would still be the drawbacks in guaranteeing
that Z is single-valued and continuous. On the plus side, however, Dafermos was able to identify in her
scheme a class of special models where the variational inequality (3.7) would be monotone.

Economic equilibrium can be represented as a geometric variational inequality VI(C, F') in other ways
than (3.7), but with the underlying set C' unbounded and therefore having somehow to be truncated.
We have done that in [3T], but under strong restrictions on the utility functions u; which would best be
avoided. To get away from those restrictions, we need to deal here instead with functional variational
inequalities

What can be said about the existence of solutions for a functional variational inequality VI(f, F)
without monotonicity? Nothing is evident in the literature for cases in which dom f might not be closed,
but we’ll be able to fill the gap here by establishing a new result (Theorem 1 below) which relies on a
fundamental property of the subgradient mapping df. A result formulated in [2I, Exercise 2.9.11] would
apply to the case where f = dc + ¢ with C a closed convex set and ¢ a convex function on C' which is
continuous even along the boundary of C'. But this wouldn’t accommodate the complications associated
with the utility functions we need to work with, which will be explained in Section 4.

We present the proof of our existence result for VI(f, F') in the mode of a forward-backward splitting
algorithm of the kind analyzed in Chen and Rockafellar [I3]. Without the monotonicity of F (and
even some “strong monotonicity” besides), we are unable to say anything about the practicality of this
algorithm as a numerical method and merely employ it as a technical device for invoking a standard fixed
point theorem. But there might be situations where more could be made of it, under further assumptions
and analysis. Anyway, as a stepping stone towards a possibly constructive derivation of the existence of
equilibrium, this form of argument seems better than the typical nonconstructive fixed-point arguments
in the economics literature.

The crucial fact is that the set-valued subgradient mapping 0f is a mazimal monotone mapping from
R" to R™; cf. [62 12.17]. A well known property of any maximal monotone mapping 7" from R" to
IR" (as utilized in particular in the theory of the proximal point algorithm [50]) is that, for any constant
¢ > 0, the “resolvant” mapping (I + cT')~! is single-valued and continuous (actually nonexpansive) from
IR"™ onto the domain of T, that domain being by definition the set of v such that T'(v) # 0; see [52] 12.15,
12.19].

Proposition 1 (fixed point representation). In terms of the mapping M = (I +cdf)~to(I — cF) for any
¢ > 0, the solutions v to problem VI(f, F) are the fixed points of M :

—F(v) € 0f(v) < ve€ M(v). (3.8)

Proof. The left side of (3.8) can equally well be written as (I — cF)(v) € (I +¢df)(¥). This is the same
as ¥ € M(v) in view of the single-valuedness of (I + cdf)~L. O

Theorem 1 (solvability of bounded nonmonotone variational inequalities). In problem VI(f, F'), suppose
that dom f is bounded and that F' is defined and continuous not just on dom f but on cl(dom f). Then
at least one solution ¥ must exist.

Proof. Under our assumptions, cl(dom f) is a nonempty, compact, convex set, and the single-valued
mapping (I — ¢F) is continuous from cl(dom f) into IR™. On the other hand, the single-valued mapping
(I + cdf)~! is continuous from IR"™ onto the set of v for which df(v) # 0, which is a subset of dom f.
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The composed mapping M = (I + cdf) to(I — cF) is therefore continuous and carries cl(dom f) into
itself. Hence, by the Brouwer fixed-point theorem, it has a fixed point v, which by Proposition 1 is a
solution to problem VI(f, F). O

Theorem 1 reduces to the result quoted from Kinderlehrer and Stampacchia [34] for geometric varia-
tional inequalities VI(C, F') with compact C' when specialized through (3.9).

From the algorithmic perspective, one can imagine trying to locate a fixed point of the mapping M in
this framework by iterating with vi11 = M (vg), starting from some vg € dom f. Such iterations have a
“forward-backward” character, because they first take a “forward” step from vy to v, = [I — c¢F|(vx) =
vg — cF(vg) (think of —F as giving a direction in which to move and ¢ as the step size), and second
take a “backward” step by determining vjy+1 = (I + cdf) "' (v},) in effect as a solution to the relation

Vg € V41 + O f (Vg41); this means

1
Vg1 € argminv{ flv)+ %h} — v |? }, (3.9)

where |- | denotes the Euclidean norm in IR". Thus, the resolvent (I +cdf)~! can readily be handled in
a computational environment.

In the case of a geometric variational inequality as in (3.5), the backward step is executed by taking
Vg+1 to be the projection of vy, — ¢F(vx) on C. To help understand the picture, note that if F' were the
gradient mapping Vg of a smooth function g, for instance, the forward step v;, = vy — c¢F(vi) would
correspond to movement in the direction of steepest descent.

Many variants can be contemplated, for instance with ¢ replaced by a different ¢; in each iteration, or
even with the identity I replaced by a varying positive-definite, symmetric Hy; cf. [I3]. Again, though,
whether a good numerical procedure can be put together from this is unclear and not our topic here.

For comparison with some of the methodology for complementarity problems another observation can
be made. Recall that any lower semicontinuous, proper, convex function f on IR" is conjugate to another
such function f* under the relations

fw)=sw{wo—fw}, o) =sup{ww— @} (3.10)
Subgradients are connected to conjugacy through the fact that

. >0 forall (v,w) € R" x R",
f(v)+f(w)—v-w{:0 if and only if w € 9f(v),

cf. [52, 11.5]. This yields a basic characterization of solutions to variational inequalities as solutions to
(nonconvex) problems of optimization.

(3.11)

Proposition 2 (variational inequalities as optimization). In relation to problem VI(f, F), let
o) = f)+ f*(=F(v)) +v-F(v) for v € dom f. (3.12)
Then ¢ > 0, and in order that v solve VI(f, F'), it is necessary and sufficient that

v € argmin p(v), with min @(v) =0. (3.13)
vedom f vEdom f
Proof. This is immediate from (3.11). O

Observe that for a standard complementarity problem, which corresponds to

Proposition 2 gives the familiar characterization of solutions in terms of minimizing v -F'(v) subject to
v >0 and F(v) > 0. Also to note as furnishing a potentially interesting case in (3.12) is the fact that

[*(w) = f(—w) when f(vi,...,v,) =—=> 1 a;logv; — 3
with «; > 0, Z?:l a; =1, = %[1 — Z?:l «; log Ozi},
under the convention that logt = —oo when ¢t < 0. This case has ties to the Cobb-Douglas utility

functions often used in economic modeling (see below), as well as to barrier treatments of inequality
constraints.

(3.15)
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Whether optimization techniques already developed in the complementarity setting can find extensions
to functional variational inequalities of some kinds through Proposition 2, remains to be seen. Cases like
(3.15) where f is separable might be especially worth investigating, since then f* is easy to determine
and is separable as well; cf. [52], 11.22], [51, Chapter 8]. As another possibly useful tool, the condition
v-F(v) < e that appears in association with complementarity generalizes in Proposition 2 to f(v) +
f*(=F(v)) + v-F(v) < &, which means in convex analysis that —F(v) belongs to 0. f(v), the set of
e-subgradients of f at v; see [47, pp. 219-220].

4. Economic Assumptions Returning now to the economic setting, we work toward the statement
of an existence theorem for Walrasian equilibrium that will fit with our variational inequality framework.

An important consideration, leading to a degree of subtlety and novelty in our choice of assumptions,
is the need to take a wide range of utility functions u; into account. Although linear utility functions,
with X

ui(x;) = Zk:l Cin®ipe for x; = (T, -, Tx), (4.1)
can be useful for theoretical and computational experiments (cf. [26], [30], [57]), they may be unconvincing
as descriptions of an agent’s preferences. In general, if we wish maintain a strong bond with applications

in economics, we have to be careful not to suppose too much, especially about how u; behaves on the
boundary of X;.

A common class of utility functions which is very much appreciated in economics consists of those of
Cobb-Douglas type, where

K
N 7L 70} (£797¢ K —
wi(w;) = w; g o xt for x; € R where ayy, > 0, E oy Qi = 1. (4.2)

Further, there is the class of utility functions having constant elasticity of substitution (CES), where the
formula is

K 1/a
wi(x;) = {Zkzl[cikxik]o‘} for 2; € R with a € (0,1) or a € (—00,0) (4.3)

with coefficients ¢;;, > 0. When X; = Rf , both of these classes raise questions about boundary behavior.

Cobb-Douglas utilities, while unambiguously defined and continuous on all of Rf , are only differen-

tiable on the interior of Rf . Their gradients Vu;(x;) get unbounded as z; tends to the boundary of JRf ,
at least in some places. On the other hand, the rule of positive homogeneity holds, i.e., u;(Az;) = Au;(z;)
for all A > 0, and this has the consequence that Vu,;(Ax;) = Vu,;(z;) for all A > 0. Thus, gradient limits
along linear approaches to the origin exist but can differ, depending on the direction of approach; there’s
inherent discontinuity in the behavior of the gradient mapping Vu,; at the origin.

For CES utilities, likewise positively homogeneous, there are similar characteristics, but also, when
a < 0, additional trouble over making sense of [¢;rxik]* if ¢;xaix = 0. This can largely be handled by
taking u;(x;) to be —oo in those cases, but not entirely, since the function’s behavior of along linear
approaches to the origin dictates having u;(0) = 0. Utility functions with logarithmic terms can appear
also. Then u;(z;) may tend to —oo no matter how the boundary of Rf is approached from its interior.

It’s essential, therefore, to admit various utility functions w; which, on the boundary of X;, might
lack not only differentiability but also continuity, and which may even take on —oo. At such a level of
generality a simple complementarity representation, or even a standard geometric variational inequality
representation, is unattainable. The situation is not so bleak as it may seem, though, because all the
utility functions mentioned are concave and upper semicontinuous on Rf (when properly interpreted).
Functions in that category are fully understood from the standpoint of convex analysis and have many
features which can be exploited advantageously in optimization.

With this background, we are ready to state the assumptions on which our investigations will proceed.
Although weaker assumptions might suffice for some purposes, we forgo aspects of generality that may
be more apparent than real. We concentrate on features capable of producing the explicit bounds
which will serve in obtaining the existence of an equilibrium by way of a variational inequality, indeed,
a functional variational inequality that is open to truncation so that Theorem 1 can successfully be
applied.
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Basic Assumptions.
(A1) Each consumption set X; is a nonempty, closed, convex subset of Rf .

(A2) Each utility function w; is concave and upper semicontinuous on X; and finite on the interior of
X, although it may take on —oo on the boundary of X;.

(A3) If z; € X; and z}, > x;, then z; € X; and u;(x}) > wu;(x;); in particular, X; has nonempty

7
interior. Furthermore, u; is insatiable in the sense of not attaining a maximum on X;.

(A4) Each production set Y; is a nonempty, closed, convex subset of R¥.

(A5) There is at least one price vector p > 0 such that the set Y;(p) = argmax{p-y; |y; € Y;} is
nonempty and bounded for every producer j,

(A6) For each i there is a consumption vector &; € X; that satisfies &; < e; + 23'121 9,-]-@; for some
choice of production vectors § € Yj.

Some remarks on these assumptions are now in order. The closedness and convexity of X; are standard.
We would not really have to place X; within Rf , but with an eye toward achieving the boundedness
in Definition 2 we would anyway be led to supposing the existence of a lower bound vector z, such
that x; > z; for every x; € X; (as seen in classical theory). Then, however, we could make a change
of variables from x; to z; = x; — x; and translate X; into a set X/ lying in Rf , while replacing the

endowment e; by e, = e; = ;. Thus, we can just as well suppose from the beginning that X; C Rf.

We have already given reasons for caution in imposing conditions of continuity or even finiteness on
the utility functions, and this is reflected in (A2). The finiteness and concavity of u; on the interior of
X; ensure at least that wu; is continuous on that open convex set, and that its values at boundary points,
whether finite or infinite, are determined by the limits of u; along line segments from the interior; see
52, 2.35]. Tt’s good to observe, however, that only the preference mapping P; associated with u;, which
assigns to each z; € X; the set

Pi(z;) = { o} € Xi | ui(af) > ui(ws)}, (4.4)
really influences the consumer’s optimization. This leads to some flexibility which could well be helpful
in practice. Replacing u; by ¢;ou; for an increasing function ¢; has no effect on the maximization in

(E2), and it preserves concavity and upper semicontinuity when ¢; is concave (and continuous) on the
range of u; (with ¢;(—o0) interpreted as —oo, if need be); cf. [52], 2.20(b)].

For example, by composing a Cobb-Douglas utility function u; as in (4.2) with ¢(u) = logu, one
obtains, as an “equivalent” utility for equilibrium purposes, the separable concave function
Ui () = o log @y + -+ g log T (4.5)
(with log0 = —00). When every «;j is positive, the gradients of this equivalent utility unfailingly blow
up as the boundary of Rf is approached, and so too do the function values, which on the boundary must
everywhere be taken as —oo. This is simpler than the behavior of u; itself.

The insatiability in (A3) follows a tradition in economics and has a definite role in obtaining an
equilibrium. The monotonicity in (A3) is not a true restriction, in the light of our decision to allow free
disposal of goods. When z; > x; € X;, one can revert from ) to x; by getting rid of the difference, so
it’s unrealistic to think of 2 as possibly suffering disadvantages relative to z; from the perspective of
consumer %.

To appreciate (A5), which will be a critical ingredient for us in obtaining the economic boundedness
property in Definition 2, recall that an equilibrium already entails in (E3) the existence of a nonzero price
vector p for which the sets Y;(p) for j = 1,...,J are all nonempty. Here we are asking for something
only a little stronger, in terms of a price vector p that needn’t, itself, be part of an equilibrium.

The equivalences in the proposition proved next shed further light on the nature of (A5). In this we
make use of the recession cones Y of the convex sets Y;, expressed by

noo:{y;oe]RK‘ijrTy;’OGY} for all y; €Y} and7'>0}, (4.6)

47, Sec. 8], [52] Sec. 2G], as well the recession cone Y associated with the convex set
Y=Y+ ---+Y; (the total production set). (4.7)
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The recession cone of any closed convex set is a closed convex cone, but Y conceivably might not be
closed. Guaranteeing the closedness of Y is one of the virtues of (A5), as we now show in particular.

Proposition 3 (equivalent conditions on production). In the presence of the closedness and convexity
of each Y; as in (A4), assumption (A5) is equivalent to each of the following:

(A5’) The set of p > 0 such that Y;(p) # 0 for all j has nonempty interior,

(A5") The set of p > 0 such that sup{p “Yj | Yy; € YJ} < oo for all j has nonempty interior.
(A5") Y is a closed convex set having Y N (=Y>®) = {0} and Y= N RY = {0}.

Proof. Let S;(p) = sup{p “Yj ‘yj € YJ} for all p € IRY; this is the support function of the nonempty,
closed, convex set Y;. It has the following general properties, cf. [47, Sec. 13, 23.5.3], [62] 8.24, 8.25]. It’s
a lower semicontinuous, positively homogeneous, convex function on IR¥. Tts effective domain dom S, is
a convex cone (not necessarily closed), having Y@ as its polar. The subgradient set 95; (p) for any p is
Y;(p). The set of p for which 95;(p) is nonempty is a subset of dom S; that includes the relative interior
of dom S;; furthermore, 95;(p) is both nonempty and bounded if and only if p belongs to the interior of
dom S;. In consequence of these well known facts of convex analysis, (A5), (A5') and (A5”) can all be
identified with the property that

J
there exists p € [ﬂ
=

1int(dom S;)| Nint(RX). (4.8)
We must show that this property is equivalent in turn to (A5").

The set Y = Z‘j]:l Y; is nonempty and convex by virtue of the nonemptiness and convexity of each
Y;. Let S be the support function of ¥ (or equivalently that of clY’), so that S = Z}]:l S;, dom S =
N7_, dom S}, and furthermore int(dom S) = N7_, int(dom S;) if either side is nonempty.

In these terms, (4.8) means that dom .S has nonempty interior and dom S can’t be separated from
Rf. If Y is closed, we have Y*° as the polar of dom S, and these two conditions on dom S dualize to
the two conditions in (A5"’). Since the nonemptiness of ﬂle int(dom S;) is known to be sufficient for

ijl Y; to be closed (e.g. by [47, Thm. 16.5] as applied to the functions S;, which have S} = dy;), it
follows that (4.8) holds if and only if (A5"") holds. O

Finally, we come to the so-called strong survivability assumption (A6), a traditional condition in-
troduced by Arrow and Debreu [2] which can be contrasted to (plain) survivability, the alternative
assumption in which the strict inequality in (A6) is reduced to weak inequality:

(A67) For each i there is a consumption vector &; € X; that satisfies &; < e; + Z'j]:l Qijgjé for some
choice of production vectors g; €y;.

From the angle of optimization, (A6) can be regarded as kind of Slater condition with respect to
the fundamental limitations on production and consumption. In a pure exchange equilibrium (without
production), survivability means the agents can simply “stay at home,” whereas strong survivability,
in contrast, is less palatable because it insists on every agent ¢ having, from the beginning, a positive
quantity of every good, regardless of its utility to that agent.

Nevertheless, strong survivability is a valuable condition for achieving the existence of an equilibrium.
Many researchers have tried to get around it, but at the expense of relying on assumptions of an
abstract character which would be hard to check from the data, or by accepting a looser concept of
what constitutes equilibrium. Our interests lie in the opposite direction, looking toward an “enhanced”
concept of equilibrium defined below. We therefore accept strong survivability as a platform for the
developments in this paper and try to make the most from it.

5. Basic Economic Results The fundamental consequences of our assumptions on the economic
model will now be laid out.
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Proposition 4 (guarantee of economic feasibility). The strong survivability assumption (A6), together
with (A4), ensures economic feasibility in the sense of Definition 2. (In fact, it ensures strict feasibility;
(A6~ ) would already be enough for feasibility.)

Proof. If #; and g); satisfy (A67), we have

I 1 1 J J 1

PR ED DS D [ijl eijz)g} = ijl {Zm eijgj}. (5.1)

Then, by defining §; = Zle 0:;9; and observing through (2.1) that § € Y; by (A4), we see we have
(«+osZjseeeseen, 8y, --.) belonging to the set A in (2.5), hence feasibility. If #; and g} actually satisfy
(A6), the inequality in (5.1) is strict and we arrive at strict feasibility. O

The facts in Proposition 4 are well appreciated in economics, but we have supplied the brief argument
anyway for completeness. Note that (A6) isn’t necessary for strict economic feasibility, just sufficient.

Theorem 2 (guarantee of economic boundedness). Under (A1), (A4) and (A5), the economy is certain
to be bounded in the sense of Definition 2.

Proof. The set A in (2.5) is a closed, convex subset of (R¥)! x (IR¥)”. In showing it must be bounded,
we can suppose it to be nonempty (as will anyway hold through Proposition 4). Its recession cone then
has the formula

=9 @7, 2y YD) |2 € XJOL Y €Y ’Ziz1xi _ijlyj . (5.2)

A necessary and sufficient condition for A to be bounded is that A>° contains nothing more than the zero
vector [47, Theorem 8.4]. Consider therefore any w = (25°,..., 27,45, ...,y5°) in A®. Since X; C Rf,
we have X C Rf, hence z{° > 0 for ¢ = 1,...,I. From the inequality condition in (5.2), it follows that
Z}I:1 y5° > 0. Let p be a price vector as in (A5). Because y; +y5° € Y; for every y; € Y;, we must have
p-y;° <0 for any j such that y3° # 0, for otherwise the nonemptiness and boundedness of Y;(p) in (A5)

would be contradicted. On the other hand, we have Z}leﬁ -y;° = 0 because ijl y;° > 0 and p > 0.

Necessarily, then, y7° = 0 for every j. The inequality in (5.2) then implies Zilzl 27° < 0, where however
xz7° > 0, so we conclude that x$° = 0 for every 7 as well. O

This result can be compared to the boundedness criterion of Debreu in [I7]. There, the sets X; are
required to be “bounded from below,” which can harmlessly be reduced to the stipulation in (A1) that
X; C Rf , in the manner explained earlier. On the other hand, in [I7] assumptions aren’t placed on the
sets Y, themselves, but only on the total production set Y, the requirement being that

Y is closed and convex with Y N (=Y) = {0} and Y N RYX = {0}. (5.3)

This condition on Y can compared to our (A5) through its equivalence with (A5”) in Proposition 3.
There would be no real loss of generality in adding to (A4) the assumption that 0 € Y} for every producer
j (since it’s possible always to achieve this by a translation), in which case Y@ is the greatest closed,
convex cone included in Y;. Our condition (A5"") clearly emerges then as less demanding than Debreu’s.
If the production sets Y are convex cones, one has Y = Y; and the two conditions come down to the
same thing.

Theorem 3 (existence of Walrasian equilibrium). Under assumptions (A1)—(A6) an equilibrium in the
sense of Definition 1 is sure to exist.

Theorem 3 will be proved in Section 7 by an argument based “constructively” on Theorem 1 as well as
on Theorem 2 and other boundedness properties; see Theorem 9. It’s close in spirit to known results in
economics going back to Arrow and Debreu [2], [16], [17], and others, but isn’t covered by those results
because of differences in context and assumptions.

In relying on concave utility functions for expressing preferences, for instance, Theorem 3 is more
special than the other existence theorems, but in merely demanding the upper semicontinuity of such
functions, without even insisting on them being finite everywhere, it’s more general. A relatively recent
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exposition in 1], which could serve as an up-to-date standard for the existence of Walrasian equilibrium
without getting into further, less classical features, is formulated in terms of preference sets which, for us,
would be the sets in (4.4). The result in [4I] depends on supposing that all such sets are open relative to
X;. But that property isn’t guaranteed by our utility assumptions in (A2) and (A3); it would force u; to be
continuous relative to X;, instead of just upper semicontinuous. Also, the economic boundedness needed
in the background of equilibrium is just assumed in [41], with a wave toward Debreu’s criterion, whereas
we furnish through Theorem 2 a milder criterion which is better suited to computational developments.

Our approach further provides a complementary result about the existence of an “approximate” equi-
librium in a certain sense.

Definition 3 (e-equilibrium with budget adjustments). By an e-equilibrium for any e > 0 will be meant
a Walrasian equilibrium as in Definition 1, except that the budget constraint in (E2) is changed for each
agent i to

J
DT Sﬁ'[€i+zj:19ijgj} +m (5.4)
through a choice of adjustment values m; satisfying

I

I
;= | << 2] . )
D=0 > Iml<ellplh (5.5)

The budget adjustments 7; in an e-equilibrium can be viewed in terms an arbitrarily small redistrib-
ution of the total wealth in the economy (under the price vector p) through “credits” (amounts m; > 0)
and “debits” (amounts m; < 0) relative to the market values of the holdings of the various consumers.
Normalization of p to belong to the simplex P would correspond to scaling p so that ||p||s = 1. Then in
(5.5) the total of the credits must equal the total of the debits, and this common total can’t exceed /2.

Theorem 4 (existence of e-equilibrium). Under (A1)-(A5), but with (A6) relaxed by the combination
of the survivability in (A6~ ) with the direct assumption of strict economic feasibility, an e-equilibrium in
the sense of Definition 3 is sure to exist for every € > 0.

The proof of Theorem 4, like that of Theorem 3, will be given in Section 7; see Theorem 10. It should
be noted that an e-equilibrium as defined here differs from the type of approximate equilibrium appearing
in the recent computational proposals of [30], [I4], [57].

6. Enhanced Equilibrium and its Representation The key to our way of representing a Wal-
rasian equilibrium as a solution to a variational inequality is the introduction of Lagrange multipliers for
the budget constraints (2.3).

Definition 4 (enhanced Walrasian equilibrium). An equilibrium in the sense of Definition 1 will be
called an equilibrium enhanced by utility scale factors if it satisfies in place of (E2) the following, generally
stronger condition for each consumer i:

~ (E2%) (enhanced utility optimization) There exists a scalar A\; > 0 such that Z; maximizes u;(x;) —
Aip -x; over x; € X; without reference to the budget constraint (2.3), and T; nonetheless satisfies that
budget constraint, moreover tightly:

DT :ﬁ-{ei—‘,—z;:l Hijgj] (6.1)

Likewise under the substitution in Definition 4, except with 7; added to the right side of (6.1), an
e-equilibrium will be called an e-equilibrium enhanced by utility scale factors.

A coefficient \; as described in (E2*) can appropriately be called a utility scale factor for consumer
1, because it converts the cost of acquiring x; in the market, namely p-z;, into units of utility of agent 4
which can be balanced off against the utility value w;(x;).

The elementary fact that (E2") implies (E2) is evident from the observation that the maximization in
(E2%) entails having w;(x;) — ui(Z;) < \ip+[T; — x;] for all x; € X;, while on the other hand p-[Z; — ;] <0
when x; satisfies (2.3) and Z; satisfies (6.1).
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Together with ); being positive, the conditions on Z; and \; in (E27) say that (Z;, \;) is a saddle point
of the Lagrangian function

Li(zi, \i) = ui(@;) + Ni[w; — p-a;] for z; € X;, A € [0,00), (6.2)

with respect to maximizing in x; and minimizing in \;, where w; is the wealth of consumer ¢ as derived
from the price vector p by

J J
w; :p'[ei+2j:10ijﬂj] :ﬁ'ei+2j:10ijﬁ'%' (6:3)
The saddle point condition by itself means that
T; € argmax, ¢, { u;i (i) + Ai[w; —pexi] } (6.4)
Ai 20, w; —p-x; >0, )\i[wi—ﬁxi]:(), .

but the positivity of \; converts the second part of this into the equation w; — p-a; = 0.

In our setting, with strong survivability, conditions (E2) and (E2*) are actually equivalent, as we
demonstrate next.

Theorem 5 (enhancement consequence of strong survivability). Under assumption (A6), along with
(A1) and (A3), every equilibrium is an equilibrium enhanced by utility scale factors, and similarly for
every e-equilibrium.

Proof. Suppose the vectors p, Z; and g; give an equilibrium as in Definition 1. By (E2), Z; is an optimal
solution to the problem of maximizing the concave function w; over the convex set X; subject to the
constraint p-x; < w;, where w; is the “wealth” in (6.2). For this optimization problem of convex type,
with u; and X; related as in (A1), if we can verify the existence of some &; € X; with u;(%;) > —oo such
that p-&; < w; (a type of Slater constraint qualification), we will get the existence of \; > 0 such that
Z; achieves the maximum of wu;(z;) — S\ip -x; over all x; € X; and in addition satisfies p-x; < w;, with
equality holding unless A; = 0. In fact we can’t have \; = 0, because that would mean that the maximum
of u;(x;) itself was achieved at Z;, contrary to the insatiability in (A3), so the conclusion we wish can be
obtained in this way.

Let the vectors &; and gj; have the property in (A6), moreover with #; in the interior of X;, as can be
arranged through (A3). Then u;(Z;) > —oo and p-&; < W;, where

J . J .
Wi :p'[ei‘FZj:leijy;] =p-ei+2j:19up-y§- (6.5)
We have ]33}; < p-g; for all j by (E3). Since the coefficients ;; are nonnegative, this implies w; < @;, so
that p-2; < w; as desired. O

Thanks to Theorem 5, we will get more from our proof of Theorem 3 than just a classical Walrasian
equilibrium. An equilibrium enhanced by utility scale factors will be an automatic by-product. This
is a new contribution. Obtaining such an enhanced equilibrium never seems to have been considered
in the economics literature. No doubt that’s because this notion depends heavily on having preferences
expressed by concave utilities (even quasiconcave utilities wouldn’t be enough), and economists had their
eyes turned elsewhere.

We regard the utility functions u; from now on as being defined on all of R® by adopting the convention
that

ui(x;) = —oo when z; ¢ X;. (6.6)
Then —u; is a lower semicontinuous, proper, convex function such that
q; € 0—u;|(z;) <= I; € argmax{ ui(x;) + qi xl} (6.7)
TEX;

Theorem 6 (variational inequality for enhanced equilibrium). The elements p, {Z;}/_,, {\:}l_, and
{y; }3’:1 furnish a Walrasian equilibrium enhanced by utility scale factors if and only if, when strung out

as a vector (..., Ty ojevey Niyevninn. ,Tj, - .), they solve the functional variational inequality problem
VI(f, F) for the lower semicontinuous, proper, convex function
[ S N ¥ I SN 7
f( i i Yj ) (6.8)

= S (p) + iy [—wil () + S0y O, () + 072, 8y, (1)
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and the continuous mapping

F(p,,l'z,,,)\l77yj,)

6.9
= (E{zl(ei—SL'Z‘)+E§-I=1yj;...,)\ip,...;...7p-(€i—Q?i+E'j]=19ijyj),...;...7—]9,...). ( )

Proof. Through the subgradient expression of normal cones in (3.5), the variational inequality in question
comes down to the following relations holding, component by component:

~S{ (e = @) = 551195 € Npx (), (6.10)
—A\ip € O|—w;)(z;) for i =1,....1, (6.11)
p-(ei — i+ 2]_10559;) € Ng, (N) for i=1,...,1, (6.12)
pE Ny (y;) for j=1,...,J (6.13)
Here (6.10) is the complementarity condition
p>0,  Bii(e;—T)+X/,5;, >0, P [25:1(61‘ — &)+ 29| =0, (6.14)

which amounts to the price nonnegativity in (E1) along with the market clearing requirement in (E4).
In view of the subgradient property in (6.7), the relations in (6.11) say that

T; € argmax{ wi(x;) — Xiﬁ-xi} for i=1,...,1, (6.15)
z,€X;

whereas the ones in (6.12) are equivalent to the complentarity conditions

Ai>0, pai—w; <0, N[paw;—w] =0 forw;=p-|e;+ 25:191'3'?3' . (6.16)

The combination of (6.15) and (6.16) is the saddle point condition (6.4). But from (6.15) it’s apparent
that both \; # 0 and p # 0, because otherwise the insatiability in (A3) would be contradicted. We
therefore have \; > 0 as required in the definition of an enhanced equilibrium, and furthermore the price
nontriviality demanded in (E1). Finally, we recall that the normal cone condition in (6.13) is equivalent
to the profit maximization in (E3). O

The mapping F' in Theorem 6 fails to have the monotonicity property (3.6). A compensating feature
of this variational inequality representation, however, as far as computational potential is concerned, is
that it’s tantamount to a view of enhanced equilibrium in which all the elements except the factors \;
come out of a single, large-scale optimization problem. The role of these factors is to provide weights for
the individual consumers in constructing an appropriate “collective” utility function.

Theorem 7 (enhanced equilibrium as collective optimization). The elements p, {Z;}/_,, {N}L, and
{y, }}-]:1, with A\; > 0, furnish an equilibrium enhanced by utility scale factors if and only if

(a) {z;}/_, and {y;};_, solve the problem

maximize U(zy,...,x1) = Zle A, tui(x;) subject to

6.17
7 € Xy Y €Yy, Y@= XY — Lim € <0, (647

(b) p is a multiplier vector at optimality for the inequality constraint in this problem, and

(c) the budget equations p-x; = p-[e; + ijl 0:;9;] are satisfied.

Proof. The conditions placed on {Z;}{_,, {#;}7—, and p mean that these elements furnish a saddle point
of the function

L(...,zi. 5oy Yjy-3p) = U(...,xi,...)—p-[z;lxi—z;lzlyj—Z;lel}

relative to maximizing with respect to x; € X; and y; € Y; and minimizing with respect to p € lRf . It’s
easy to see from the separability of U that this comes down to (E3), (E4) and the saddle point condition
(6.4) for (E2+), explained after Definition 4, plus the stipulation that p > 0 in (E1). It requires p # 0
because of the insatiability in assumption (A3). O
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Theorem 7 suggests the possibility of computational methods in which, at each iteration, weights are
assigned to the consumers and then a single large-scale optimization problem is solved to determine
corresponding Z;, ;, and p. Somehow then the weights would be updated. The issue would be how to
do the updating so as to obtain convergence with the budget equations (6.1) satisfied in the limit.

The result in Theorem 7 has partly been foreshadowed in economics, but without the technical for-
mulation which would support application to our context. In the textbook of Varian [56, pp. 333-335],
for example the idea of using the weights 1/); to get a “social welfare function” is suggested for a pure
exchange economy. The context, however, is one of assuming the differentiability of utility functions,
neglecting boundary complications, and even the differentiability of some functions arising secondarily
from optimization, namely so-called indirect utility functions, none of which ought to be expected, much
less taken for granted.

7. Truncation and Existence Proof The task we finally take up now is that of replacing the
variational inequality VI(f, F') in Theorem 7 by a modified variational inequality VI( f,F ) which can be
confirmed to have the same solutions (subject to price normalization), but enjoys the important feature
that dom f is bounded.

Proposition 5 (truncation of consumption and production). There exist b € IR® and 8 € R such that

I I J )
0<x; <b forall i,

i < i+ i with v; € X;, y, €Y, — J 7.1
2w S Qe ) vy with 2 € Xiv gy €, U il < (7.1
Moreover such b and 3 can be obtained as follows. Take p as in (A5) and choose € > 0 and «; € IR such
that

llp—pli <e == sup p-y; <q; forall j, (7.2)
y;j€Y;

as can be done on the basis of Proposition 3. Then take any 3 > ¢~} [ﬁ '21'1:1 e; + Z;'I:1 aj] and any b
such that ||2||s < || 33, €]|oe + 8 implies & < b.

Proof. It’s possible to choose € and «; as described, because, according to Proposition 3, p is interior to
the effective domain of the (convex) support function S;(p) = sup{ DY) | y; € Yj}, for instance one can
choose a; to be the largest of the values of S;(p) for the vectors p that are the vertices of the polyhedron

{p| llp =2l < 6}. Then

y; €Y, = «o; > Hsﬁlll P+ q)y; = pyj+ellyjll (7.3)
qll15¢€

Suppose now that the vectors x; and y; satisfy the condition on the left in (7.1). Because x; > 0 by
(A1), we must have Z;.]:l y; > — Zle e;, so that Z;-]:”ﬁ y; > =P '21'1:1 e;. Combining this with the
inequality in (7.3), we obtain € Z;’Zl yjlloe < ﬁZf:l e+ Z}'le «;, which yields, for 3 as specified, the
norm estimate in (7.1).

Returning to the inequality on the left of (7.1), with every x; > 0, we see that each x;, by itself must
. . . I J I J
in particular satisfy 0 < @, < 37, €; + 35 ¥, hence ||z, [[oo < [[ 30521 €illoo + 20521 [[Yjl[oc, Where
the final term is less than 8. This implies, for b as specified, that x;, < b. O

The proof of the next statement, like that of Proposition 4, makes essential use of the strong surviv-
ability assumption (A6) as furnishing a Slater condition on the budget constraints. We also appeal to the
fact that the price vectors p in an equilibrium can harmlessly be scaled to lie in the price simplex P. We
work with a saddle point condition which can ultimately be related to the one connected with the utility
scale factors in an enhanced equilibrium, but operates without restriction in advance to an equilibrium
price vector p.

Proposition 6 (truncation of utility scale factors). Choose vectors &; € X; and g); € Y} such that

J
ul(iz) > —oc0 and I; < é; for é; =e; + Z L gijgja (74)
j=
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as is possible through (AQ) combined with (A3). Take e; > 0 small enough that ;. + ¢; < é;, for
k=1,...,K. Choose any b € IRY such that

b>a; fori=1,...,1, (7.5)
and set R .
Ai = [u(b) — u(i)] /e (7.6)
Then for any p € P and w; > p-é;, the saddle points (Z;, \;) of
Li(.’L‘i, )\z) = UZ(LL'Z) + A [’LUz —-p Z‘Z] (77)

in minimizing with respect to x; € X;, x; < I;, and maximizing with respect to ;i € [0,00) are the same
as those obtained from minimizing with respect to x; € X;, x; < b, and maximizing with respect to
Ai € [0, A\;]. Moreover, all such saddle points actually have

N<N\ fori=1,...,1. (7.8)

In particular, as long as b > b for the vector b in Proposition 5, this bound must be satisfied by the utility
scale factors \; in any enhanced equilibrium with p € P.

Proof. The truth of the final claim will follow from that of the general claim, inasmuch as the factors
\; have already been seen to correspond to saddle points of the Lagrangian in (6.2) for the wealth value
w; in (6.3). Here we recall that the vectors Z; in an enhanced equilibrium have to satisfy z; < b for the b
in Proposition 5. The choice of b > b ensures therefore that the previous saddle point condition implies
the present saddle point condition in the case of A; € [0, 00).

To prove the general claim, we draw on basic duality theory in convex optimization, which characterizes
saddle points of the concave-convex function L; in terms of primal and dual problems of optimization
[49]. Let R

901(/\1) = sup{ Li(l‘i, >\z) |$l e X;, x; < b}, (79)

noting that ¢; is a finite convex function on [0, 00) which is lower semicontinuous (actually continuous).
For a saddle point of the first kind, with A; € [0, 00), the dual problem is to

minimize ¢;(\;) with respect to A; € [0, 00), (7.10)
whereas the primal problem is to

maximize  inf L;(x;, \;) with respect to z; € X;, x; < b. (7.11)
A; €[0,00)

For a saddle point of the second kind, with A; € [0, 5\1], the dual problem is to

minimize ¢;(\;) with respect to A; € [0, \q]. (7.12)
whereas the primal problem is to
maximize  inf L;(x;, \;) with respect to z; € X;, x; < b. (7.13)
A €[0,X4]

The primal problems don’t have to concern us beyond the observation that in both cases an optimal
solution exists because of the closedness of X; and upper semicontinuity of u; in (A1) and (A2), along
with the boundedness coming from having X; C Rf and z; < b, (The choice of b and w; ensures that
the constraints in (7.11) can be satisfied.) All we really need is the following fact of duality theory ([49],
[47, Sec. 30], or [62] 11H]): if in either dual problem there is an « such that the set of feasible \; satisfying
©i(Ai) < « is nonempty and bounded, then the solutions to that dual problem are precisely the values
\i paired with some Z; in the saddle point condition associated with that problem.

The boundedness property in question for ; holds trivially in (7.12_), so our task reduces to demon-
strating that it holds in (7.10) as well, and that the optimal solutions A; problems (7.10) and (7.12) are
the same and lie in [0, A;). On the one hand, we have

i(0) = sup u;(x;) = u;i(b) < oo (7.14)

because of (A3). On the other hand, we have
@i(Ni) = Li(&, \) = wi(&;) + X [w; — p-&;] for all \; >0,
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where the conditions imposed on w; and €; guarantee, through having p € P, that
W, —p-&; > peég—pd;=p-lé;— & > e

Hence ¢;(\;) > u;(&;) + Aie; when A; > 0, so that

Ai < [pi(N) — wi(2;)]/e; for all A; > 0. (7.15)
In view of the definition of ); in (7.5), we obtain from (7.14) and (7.15) that

0# {2 >0]@i(\) < wi(0)} € [0,4).
This furnishes the required boundedness property and confirms that all optimal solutions to the dual
problems (7.10) and (7.12) must lie in [0, A;). O

Theorem 8 (trAuncated variational inequality for enhanced equilibrium). Let b and § be as in Proposition
5. Take b and \; as in Proposition 6 with respect to z; and @; obtained from (A6), but also with b > b.

Choose 3 > (3 such that 3 > |[y:]|o for all i, j. Define

= e |lulle <8}, = {ule) ifo € Xiando s, (7.16)
J j J J =M —00 otherwise,

and let R
f(p;...,xi,...;...,)\i...;...,yj,...)
= 8p(p) + iy [~ (w:) + X1y 60,5, (M) + 251 Iy, (95)-
Take the mapping F as in Theorem 6. The solutions to VI( f , F) are then the same as the solutions to

the variational inequality VI(f, F') in Theorem 6 (which constitute an enhanced equilibrium), except for
the price vector being normalized to belong to the simplex P.

(7.17)

Proof. This is built primarily on Propositions 5 and 6, but we also need to confirm that the replacement
of the orthant Rf by the simplex P doesn’t give difficulty. The difference caused by this replacement is
that, instead of getting z € NV RE (p), which corresponds to the market clearing conditions (2.4) in terms

of the excess demand vector z, we only have z € Np(p). That means

pr = 0 for any good k with z < ¢, where ( = max{zy,...,zx}. (7.18)
In any enhanced equilibrium, we have (7.18) holding with ¢ = 0. Furthermore, Z; and g; have to satisfy
the bounds in Proposition 5, and therefore Z; < b and ||7;||cc < 5. At the same time, we have A\; < \;

holding by Proposition 6. Because of these strict bounds, the conditions in VI( f , F) reduce to the same
thing as the conditions in VI(f, F).

Conversely, now, suppose that p, {Z;}/_;, {A\}/=; and {g;}7/_, satisfy the conditions comprising
VI(f, F), i.e., we have p € P and (7.18), along with
¥; € argmaxp -y, (7.19)
vi€Y;
and (Z;, \;) being a saddle point of the Lagrangian
Li(zi, Ai) = ui(ws) + Xi [0 — P ooy
in maximizing with respect to T; € XZ and minimizing with respect to A €0, 5\2]7 where w; is the Vah}e
in (6.3). By Proposition 6, (Z;, \;) is also a saddle point of L; for maximizing with respect to z; € X;
and minimizing with respect to A; € [0,00). That entails 7; giving the maximum of u;(x;) subject to
x; € X; and the budget constraint p-z; < w;. In particular, then, through (6.3) and (2.1) we have

I _ I [ J _
0=, [pai—w] =p-3, {% = 210505 — e

_ I - J - I _

= p-[Zizl Ti— D i Ui — Qi el} =Dz
which implies that ¢ < 0 in (7.18). That in turn tells us that z < 0, or in other words, that Zle T —
Z;]:l U; — Zle e; < 0. Then by Proposition 5 and the choice of b and 3 we necessarily have z; < b and
|17i]|oe < B. Therefore, (E2) and (E3) hold: Z; actually furnishes the maximum of u;(z;) subject to the
budget constraint p-x; < w; and x; € X;, not just x; € XZ-, and g; belongs in (7.19) to the maximum
of p-y; over y; € Yj, not just y; € }A/j This implies further through Proposition 4 that (E2*) holds, so

A; >0 and p-Z; —w; = 0 for all i. Going back to (7.20), we see that then 5.z = 0. This confirms (E4),
and we conclude that we do have an enhanced equilibrium. O

(7.20)
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Theorem 9 (existence of enhanced Walrasian equilibrium). Under (A1)—(A6), a Walrasian equilibrium
exists which is moreover an enhanced equilibrium in the sense of Definition 4. It can be determined by
solving the functional variational inequality VI(f, F) in Theorem 8.

Proof. In the variational inequality VI( f , F), we have dom f bounded, so a solution exists by Theorem
1. According to Theorem 8, that solution also works for the variational inequality VI(f, F') in Theorem
6 and therefore actually furnishes an enhanced Walrasian equilibrium. O

Theorem 10 (existence of enhanced Walrasian e-equilibrium). Under (A1)—(A5), but with (A6) replaced
by the combination of the survivability in (A6~ ) with the direct assumption of strict economic feasibility,
an enhanced Walrasian e-equilibrium exists for any € > 0.

Proof. We can restrict our attention to price vectors in the simplex P. The assumptions replacing (A6)
guarantee for any § > 0 the existence of modified endowments e} satisfying

I

I
|le; — eilloo <6, Zizleé :Zizlei’

such that (A6) would hold if each e; were replaced by e;. Theorem 9 is applicable to that modified model.
It remains only to set m; = p-[e} — e;] and observe that the conditions on these values in Definition 3 will
then be fulfilled for ¢, as long as § is small enough. O
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