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I.  Walras Equilibrium Model

          Deterministic
          Pure Exchange model
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Pure Exchange: Walras

ca !arg max ua (c) so that p,c " p,ea , c !Ca

agent’s problem:

 

e
a
: endowment of agent a, e

a
!  int C

a

u
a
: utility of agent a,  concave, usc

C
a
" !, C

a
# !

n  (survival set)  convex

market clearing:

   Agents:  a !A     | A| finite "large"

 
s(p) = (e

a
! c

aa"A
# )  excess supply

equilibrium price: p !" such that s(p) # 0

!  unit simplex
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The Walrasian

 
W (p,q) = q, s(p) , W :! " !# !

p  equilibirum price 

    ! p "argmax p (infqW (p,q)) & s(p) # 0

Properties of W :

    continuous in p  (ea "intCa ,  'a-inf-compact')    usc

    linear in q, $ compact         convex

    W (p, p) # 0, %p "$

    i.e., W  is a Ky Fan function
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Ky Fan functions & inequality

The Walrasian is a Ky Fan function
             yields existence of equilibrium price.

 

K :B ! B" ! is a Ky Fan function if

   (a) #y : x" K(x, y) usc

   (b) #x : y" K(x, y) convex

Theorem. K  Ky Fan fcn, dom K = B ! B, B compact

          "  argmax-inf K # $

if K(x, x) % 0 on dom K , x &  argmax-inf K

          "  inf
y
K(x , y) % 0.
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II.  Numerical Strategies

          - Augmented Lagrangian
          - Path Solver
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Augmented Walrasian

 Augmented Walrasian:

p !  argmax-inf W

 
!  saddle point (p,q ) of !W

r

 

!W
r
(p,q)= infz W (p, z) z ! q " r{ },

         i  an appropriate norm (|i |
#

 e.g.)
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from  Variational Analysis

 Properties:

 Saddle-points:
 

!W
r
 is usc in p,  convex, lsc in (q,r)

     non-increasing in r

 

                                   sup
p!"

inf
q!"
W (p,q)( ) =

sup
p!"

inf
q!",r!!+

"W
r
(p,q)( ) = inf

q!",r!!+

sup
p!"

"W
r
(p,q)

#
$%

&
'(

argument similar to augmented Lagrangian
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Iterations

minimizing a linear form on a ball 
reduces to finding the smallest element of s(pk)

 

W (p,q) = q, s(p)  on ! " !

!Wr (p,q) = infz W (p, z) z # q $ r{ }

q
k+1

= argmin
q%!

minz z, s(p
k ) z # q $ rk&

'
(
)

p
k+1

= argmax
p%!

minz z, s(p) z # qk+1 $ rk+1
&
'

(
)

as rk "*, pk + p   (Walras equilibrium point)
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Test: Demand functions

Cobb-Douglas utility function (usc):

budget constraint:

demand:

u
a
(c) = !

a
c
l

"a
l

l=1

n

#   with  "
a

l

l=1

n

$ = 1, "
a

l % 0

pll! cl " pll! ea
l

 
ca
l
(p) = (!a

l
/ pl ) plea

k

k"( ), l = 1,…,n

experiments: 10 agents, 150 goods (blink!)
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Variational Inequality I

(e
aa! " c

a
) = s(p) # 0.

e
aa

! "int C
aa

!

 
max

c
ua (c) so that p,c ! p,ea , c "Ca . a "A

KKT-Optimality Conditions & Market Clearing:

ca !Ca  optimal "#$a % 0 (linear constraint)

  (a) p,ea & ca % 0  (feasibility)

  (b) $a p,ea & ca( ) = 0  (compl. slackness)

  (c) 'ua ca( ) & $a p = 0    (ea !  int Ca )

  (d) ea & ca( )
a( = 0     (market clearing)
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Variational Inequality II

(e
aa! " c

a
) = s(p) # 0.

G(p,(ca ),(!a )) = (ea " ca ); !a p " #ua (ca )( ); p,ea " caa$%& '
(

 
D = ! " C

aa
#( ) " !

+a
#( )

!G(p,(ca ),("a ))#ND (p,(ca ),("a ))

D (unfortunately) is unbounded

e
aa

! "int C
aa

!

max
c
ua (c) so that p,c ! p,ea , c "Ca ,#a

N
D
(z ) = v v, z ! z " 0,#z $D{ }

D

z

N
D
(z )
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bounding D: “solvable” V.I.

D̂ = ! " Ĉ
aa

#( ) " [0,$
a
]

a
#( )

!G(p,(ca ),("a ))#ND̂
(p,(ca ),("a ))

           from D to D̂ bounded with 

explicit bounds derived via duality (finite # goods)

  (global bound for C
a
,  ! a  depends on 'var'(u

a
))

Polyhedral case: efficient algorithmic procedures
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Path Solver .. (by Ferris & all)
!G(z )"ND (z ), z = (p,(ca ),(#a ))

 
D = ! " C

aa#( ) " !
+a#( ) = z Az $ b{ }

Complementarity problem:
!G(z) = A

T
y, y " 0, Az ! b # y

 

with K = !
N ! !

+

M
:

(z, y) "K , H (z, y) "#K $
, (z, y) % H (z, y)

H (z, y) =
G(z) + A

T
y

Az

&

'
(

)

*
+ #

0

b

,
-.

/
01
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Equivalent non-smooth mapping

0 = H (prjK (z, y)) + (z, y) ! prjK (z, y)

  with simplified
(CP) 0 ! x " F(x) # 0  Complementarity Problem

(NS) 0 = F(x
+
) + x $ x

+
 Nonlinear system

 

x  sol'n (CP) !  !x sol'n (NS): 

      !x
i
= x

i
 if F

i
(x ) = 0, !x

i
= "F

i
(x

i
) if F

i
(x ) > 0

!x sol'n (NS) ! !x
+
 sol'n (CP):

      !x
+
# 0, F( !x

+
) = !x

+
" !x # 0 & !x

+
$ !x

+
" !x

 
K = !

+

N
:
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PATH Solver:

 PATH: Newton method based on
    non-smooth normal mapping:

 Newton point: solution of piecewise
linearization:

H (x
+
) + x ! x

+

x = (z, y),  x
+
= prj

K
(x, y)

H (x
+

k
) + !H (x

+

k
), x

+
" x

+

k
+ x " x

+
= 0
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The “Newton” step



July 14, 2006 Eco.Math.School 2006 20

with PATH Solver (experimental)
 Economy: (5 goods)
 Skilled & unskilled workers
 Businesses: Basic goods & leisure
 Banker: bonds (riskless), 2 stocks

 2-stages,   solved under # of scenarios
 utilities: CSE-functions (gen. Cobb-Douglas)
 Utility in stage 2 assigned to financial instruments
 only used for transfer in stage 1

 so far: mostly calibration
              numerically: `blink’ (5000 iterations).
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III. Continuity, Stability Issues

     equilibrium points
     solutions of V.I., …
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Variational Convergence

 solutions of optimization problems




 stability of saddle points


 stability of maxinf points


argmin f ! " argmin f :   epi-convergence

argmax f ! " argmax f :  hypo-convergence

saddle pts K !
"  saddle pts K :  epi/hypo-convergence

maxinfK !
" maxinfK : lopsided convergence (tightly)
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Walras Equilibrium points

 Walrasian:                              Ky Fan fcn

 conditions:
 Convergence:

   
!a "A :  c

a
( p) "arg max

C
a

u
a
(c

a
) p,c

a
# p,e

a{ }
  
s( p) = (e

a
! d

aa" (c
a
)) excess supply

  find p !" (unit simplex) so that s( p) # 0

  
W ( p,q) = q, s( p)

  p !argmax"inf W # s( p) $ 0

  
e

a
!int  dom u

a
,  "globally compact"

  
u

a

!
"

hypo
u

a
, e

a

!
" e

a
#

  W
!  converge lopsided tightly to W
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Variational Inequalities
              non-empty, convex
                 continuous
  find

       where
  with

          K is a Ky Fan function, K(u,u) ≥ 0.

 Find

  C ! !
n

   
G : C ! !

n

  
u !C  such that " G(u ) !N

C
(u )

  
v !N

C
(u ) " v,u # u $ 0, %u !C

C

N
C
(u)

u

  
K(u,v) = G(u),v ! u  on dom K = C " C

   u !argmax"inf K(i,i) so that K(u ,i) # 0
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Lopsided convergence: definition

C
!
" D

!

(x
!
, y

!
)

(x
!
, y

!
)

•

•

(x, y)
•

• (x, y)

!x
"
#C

"
$ x #C

!y
"
#D

"

$ y #D

! y
"
#D

"

$ y

! x
"
#C

"
$ x

limsup
!
K

! (x! , y! ) " K(x, y) when x #C

K
! (x! , y! )$ %& when x 'C

lim inf
!
K

!
(x

!
, y

!
) " K(x, y) when y #D

K
!
(x

!
, y

!
)$% when x &D

C
!
" D

!

C ! D

C ! D
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Lopsided tightly

   

K
C!

"D!

!
#

lop$ tightly
K

C"D
  if  K

C!
"D!

!
#
lop

K
C"D

&

(b) %x &C,'x!
# x,% y!

&D!  and y!
# y :

              lim inf K ! (x! , y! ) ( K(x, y)  if y &D

               K ! (x! , y! ) #)   if y *D

but also %+>0, 'B
+
 compact (depends on x!

# x) :

inf
B
+
,D!

K ! (x! ,i) - inf
D!

K ! (x! ,i) + + , %! ( !
+

   

THM.  K
C
!
"D

!

!
# K

C"D
 lopsided tightly, x  cluster point of

{x
!
$argmax%inf K

C
!
"D

!

! }
!$!

& x $argmax%inf K
C"D
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Proof ….

 then apply

   

K
C! "D!

! #
lop$ tightly

K
C"D

Let g!
= inf

y%D! K ! (i, y), g = inf
y%D

K(i, y).

& g! #
hypo

g   when  
C

g

!
= x %C! g! (x) > $'{ }

C
g
= x %C g(x) > $'{ }

(

)
*

+*
, -

  
g

C!

!
"
hypo

g
C

, x!
#arg max

C!
g!

, x
!

k " x #C $ x #argmax
C

g
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Extending Ky Fan’s inequality

  Ky Fan fcns closed under tight-lopsided
       saddle fcns closed under hypo/epi-convergence
              usc fcns closed under hypo-convergence

   

& when arg max!inf K
"
# $

if  x %  cluster-pts {argmax!inf K
"}

& x %argmax!inf K  & K(x ,i) ' 0

  

K
!
" K  lopsided  

K
!  Ky Fan # K  Ky Fan


