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Multidimensional symbolic dynamics

Multidimensional Symbolic Dynamics is the extension to Z2 and Zn of
(classical) symbolic dynamics.
We are still interested in shifts of finite type, sofic shifts, and factor
maps (among others).
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Dimension 1

Subshifts are sets of (biinfinite) words over an alphabet Σ that
are (topologically) closed and shift-invariant.
A subshift S can be given by a set F of forbidden patterns (words)

S = {words with no cubes} = XF

where F = {uuu,u ∈ Σ+}. S contains e.g. the Thue-Morse word
Of great interest are shifts of finite type (SFT), that can be given
with a finite F , and sofic shifts that are recolorings of SFTs.
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In dimension 1

Many answers can be given for subshifts of finite type (SFT) by way of
automata theory

(biinfinite) words in a SFT (more generally a sofic shift) are linked
to biinfinite paths in some finite graph (automaton).

F = {aa}

b, c
a

b, c

Seeing (sofic) subshifts as paths on a automata brings automata
theory, graph theory and linear algebra to the rescue.
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In higher dimensions

Subshifts are sets of (biinfinite) pictures over an alphabet Σ that
are (topologically) closed and shift-invariant.
A subshift S can be given by a set F of forbidden patterns

S = {images where all lignes are identical} = XF

where F =

{
x
y
, x 6= y , x , y ∈ Σ

}
.

Of great interest are shifts of finite type (SFT), that can be given
with a finite F .

What about automata theory ?
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Automata theory in dimension 2

There is no (useful) automata theory in dimension 2.

The closest we get is Wang tiles :

a b
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b

b a

b

a
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b

c a

a

a

c c

a

b

Contiguous tiles must agree on their common edge.
Every SFT is equivalent (upto conjugacy) to some set of Wang tiles.
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(letter-to-letter) Transducers :

b a c

b|a

a|b b|b

a|a

b|a
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Automata theory in dimension 2

SFTs in dimension 2 are equivalent to biinfinite iterations of
transducers on biinfinite words
We can recover a bit of automata theory. . .
. . . of graph theory (Nasu 95) or linear algebra (Markley-Paul 81,
Schraudner 08)
But things remain fundamentally different.

Why ?
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Undecidability

The theory of multidimensional symbolic dynamics is filled with
undecidable problems

Berger [Ber64] : There is no algorithm to decide if a SFT is empty
Robinson [Rob71] : For a fixed SFT, there is no algorithm to
decide if a pattern is globally admissible (can be extended)
Gurevich-Koryakov [GK72] : There is no algorithm to decide if a
SFT has periodic points.

D. Lind calls it “The swamp of undecidability : It’s a place you don’t
want to go.”.
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This talk

A recent trend suggest that computability should be seen not as an
hindrance, but as the good way to understand multidimensional
symbolic dynamics.
In this talk :

Why computability comes into play
What computability has to say
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Plan

1 Why

2 What
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Computations in 2D

It is very easy to encode computations in 2D SFTs
Clear from the transducer approach
Or by encoding Turing machines directly.
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The proof

q0

a a b a a b b a b b a

q1
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q2

c c a a a b b a b b a
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Topological considerations

Computability is nothing more than effective continuity.

Every computable function on a Cantor space is continuous
Every continuous function on a Cantor space is computable
(relative to some oracle) (with a little help)
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Plan

1 Why

2 What
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Topological conjugacy and invariants

Recall from symbolic dynamics that two SFTs S1 and S2 are conjugate
if there are isomorphic, i.e. there exists a reversible block map between
S1 and S2.

Conjugacy is of course undecidable in dimension 2 : S is
conjugate to ∅ if and only if S is empty.
(More on this in Pascal’s talk)

It turns out that many conjugacy invariants can be expressed with the
vocabulary from computability theory.
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Topological entropy

Entropy measures the growth of the number of valid patterns.
Let pn(S) be the number of n × n patterns that appear in some point of
the subshift S

H(S) = lim
n

log pn(S)

n2

No easy way to compute H(S) because there is no algorithm to decide
if a n × n pattern appear in some configuration or not.
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Topological entropy

pn(S) is not computable, but we can approximate it.

Let qn(S) be the number of n × n patterns that do not contain any
forbidden pattern in F .
qn(S) is computable and qn(S) ≥ pn(S).
It turns out that

H(S) = lim
n

log qn(S)

n2 = inf
log qn(S)

n2
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Topological entropy and Computability Theory

From the point of view of computability, this means H(S) cannot be
arbitrary, it must be computable from above.

Definition
A real number α is right-c.e. (right-computably enumerable) is
α = inf an where an is a rational computable given n

Theorem (Hochman-Meyerovitch [HM10])
Entropies of (2D) SFTs are exactly right-c.e. nonnegative reals.

Leitmotif : The computability obstruction is the only obstruction.
(More on this in Ronnie’s talk)
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Sketch of a Sketch of the Proof

How do you prove these kind of statements ?

Start from α = inf an.
Build a SFT S of zero entropy where some symbol s appears with
frequency proportional to α, say α/ log 2.
Inflate the symbol s into 2 symbols s1, s2 to obtain entropy α
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Periodic points

Another classical invariant is periodic points.

Let pen(S) be the number of periodic points of size n (points that
are periodic of period n in all directions)
pen(S) is now computable given S
In dimension 1, pen(S) is a linear recurrent sequence.
What does computability says in higher dimensions ?
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Periodic points

Given n, we can decide if there exists a point of period n with the
following algorithm :

Choose some n × n pattern
Verify that you can tile the plan using this pattern

The second task can be done in polynomial time (roughly n2)
The first task is exponential if done sequentially
but polynomial if done nondeterministically
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Periodic points

This algorithm is the typical example of a “NP” algorithm. The counting
version is called ]P.

Theorem (J.-Vanier 2010)
The sets of periodic points of multidimensional SFTs are exactly the
unary sets in NP.
The number of periodic points of multidimensional SFTs are exactly
the unary functions in ]P.

As always, the computability obstruction is the only obstruction.

Sketch of a sketch of a proof : The space-time diagram of a Turing
machine that works in time nd can be embedded into a hypercube of
side n in dimension 2d .
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Constructions in general

Both theorems use some specific constructions.

What constructions can we carry on ?
Do we have general theorems ?

No characterizations of sofic shifts. The only way to know if a
construction might work is to implement it.

However, there are a few general constructions. . .
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The computability obstruction

Given a SFT, we can decide whether a point x is valid (whether it
contains no forbidden patterns) with the following algorithm :

Start from (0,0) and look if some forbidden pattern appear.
If some does, then halt.
Otherwise, go to (1,0).
Rinse, repeat until the whole of Z2 is processed.

This algorithm halts if x contains a forbidden pattern, and does not halt
otherwise.
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The computability obstruction

Definition
A set is effective if it is the sets of points on which a Turing machine
does not halt.

Definition
S is effective if there is an algorithm that halts outside S

Some non trivial example :

{x ∈ {0,1}N|the set of i with xi = 1 is a subsemigroup of N}
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SFTs are effective

SFTs are effective
Sofic shifts are effective
The Thue Morse shift is effective
β-shifts are effective iff β is computable from above

Is effectivity the only obstruction ?
For technical reasons, all effective sets cannot be transformed into
SFTs, but maybe all effective shifts ?
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Some effective sets are not sofic. . .

Each line must be symmetric around the red cell, and all red cells must
be aligned vertically.
This cannot be done with a SFT or a sofic shift : too much “information”
should transit through the red line.
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. . . All effective sets are sofic

Theorem (Aubrun-Sablik [AS13], Durand-Romashchenko-Shen [DRS10])

Every n-dimensional effective subshift S can be implemented by a
n + 1-dimensional sofic subshift SZ.
A point in SZ consists of Z copies of the same x ∈ S.

(More on this in Nathalie’s talk)
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Some notes

Every n-dimensional sofic shift is a n-dimensional effective shift
Every n-dimensional effective shift is a n + 1-dimensional sofic
shift

Gives a framework for computability results :
Computability Obstructions on SFTs are usually also obstructions
for effective shifts
Prove the obstruction is the only obstruction for effective shifts
Use the previous theorem to go back to SFTs.

Does not always work (periodic points)
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Conclusion

Interplay between computability and symbolic dynamics
Answers are very precise, but involve computability.

Every behaviour is possible, as long as it is computationally possible

Interesting new direction : Is everything still working with SFTs that are
expansive in some directions (e.g. cellular automata) ?
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