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Introduction 

This paper develops a method to estimate disaggregated production function 

models from minimal data sets.  Disaggregated models enable the distributional 

effects of policies to be measured across farm size or location.  In addition if, as is 

common, there is heterogeneity in the sample, spatial differences in policy impacts 

and input use are also important. Also, with a heterogeneous sample, a disaggregated 

set of models may predict policy response by farmers more accurately, where 

aggregation bias exceeds the small sample error in disaggregated models. Throughout 

the paper, we assume that the sample size is fixed, and strive to maximize the policy 

information from it. The central question facing an empirical researcher is what level 

of disaggregation makes the best use of the data set for the purpose in hand. The 

purpose that we focus on is the prediction of policy impacts on farmers in terms of 

their net income, and use of natural resources in farm production. 

A primal approach to production functions has several attractive properties for 

production models subject to fixed factor constraints. An important characteristic of 

primary farm survey data is the frequent occurrence of incomplete factor prices due 

subsidized inputs, family labor, and government regulation. This absence of market 

prices for family labor, water, and often land makes the traditional dual approach 

inoperable. In addition, when surveyed, farmers may recall data on primal variables 

more accurately than the corresponding dual data. Finally, primal production models 

are able to directly interact with more detailed models of physical processes. 

 Despite the very small sample size, the use of maximum entropy estimators 

(GME) enables us to estimate all the model parameters, and three measures of model 

fit, R2, percent absolute deviation, and normalized entropy.  Since we are interested in 

models that can address policy questions, the emphasis in this paper is on the ability 
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of the model to reproduce the existing production system and predict the 

disaggregated outcomes of policy changes.    

In many developed and developing agricultural economies there is considerable 

emphasis on the effect of agricultural policies and production on the environment, and 

conversely, the effect of environmental policies on the agricultural sector. This 

emphasis may rekindle interest in the use of production function models for many 

policy problems. There are several reasons why production functions are suited to the 

analysis of agricultural- environmental policy. First, environmental values are 

measured in terms of the physical outcomes of agricultural activity.  Second, some 

environmental policies are formulated as constraints on input use. Third, economic 

models of agricultural and environmental policy impacts often have to formally 

interact with process models of the physical systems. Such models require the 

economic output in terms of primal values. 

Several authors have emphasized the need to spatially disaggregate models for 

environmental policy analysis (Antle & Capalbo, 2001; Just & Antle, 1990). 

However, such disaggregation is often made difficult either by the limited availability 

of disaggregate data or, if such data is present, the lack of enough degrees of freedom 

to identify disaggregate parameters within a classical estimation framework. 

Generalized Maximum Entropy (GME) estimation techniques (Golan et al., 1996(a)) 

have come into increasing use by researchers who seek to achieve higher levels of 

disaggregation in the face of these data problems (Lence & Miller, 1998; Lansink et 

al., 2001; Golan et al., 1994, 1996(b)). Given the inherent heterogeneity of soils and 

other agricultural resources, aggregating across heterogeneous regions leads to 

aggregation bias. Conversely, ill-conditioned or ill-posed GME estimates may be less 

precise due to the small sample on which they are based. An additional advantage that 
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speaks in favor of maximum entropy based alternatives is the ability to formally 

incorporate additional data or informative priors into the estimation process, in a 

Bayesian fashion.   

Substitution activity at the intensive and extensive margins is a key focus of 

agricultural-environmental policy analysis. A basic policy approach is to provide 

incentives or penalties that lead to input substitution under a given agricultural 

technology. Such substitutions at the intensive margin can reduce the environmental 

cost of producing traditional agricultural products or that of jointly producing 

agricultural and environmental benefits. These policies cannot be evaluated without 

explicit representation of the agricultural production process. It follows, therefore, that 

the potential for substitution should be explicitly modeled within a multi-input multi-

output production framework. 

The disaggregated multi-input, multi-output CES model in this paper has the 

ability to model at all three margins that represent farmer response to changed prices, 

costs or resource availability. The same approach has been applied to other flexible 

functional forms, such as, quadratic, square root, generalized Leontieff and trans-log 

specifications.  

This combination of methodology distinguishes our approach with other GME 

production analyses using in the literature (Zhang & Fan, 2001; Lence & Miller, 

1998). The GME estimates given in this paper do, however, converge to consistent 

estimates when the sample size is increased and have been shown to have the same 

asymptotic properties as conventional likelihood estimators (Mittlehammer et al., 

2000).  

GME estimators require the definition of support values for each parameter that 

are implicit bounded priors on the parameters. Several authors have shown that 
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support values specification can have a strong influence on the resulting estimates. In 

addition, if the support values are specified in an “ad hoc” manner it is possible that 

there is no feasible solution to the resulting GME estimation problem. We use values 

from a calibrated optimization model to ensure that the supports are centered on 

values that are a feasible solution to the data constraints, and consistent with prior 

parameter values. Given the support values, we estimate the production function 

parameters, input shadow values, and returns to scale in a simultaneous GME 

specification. 

This specification of support values differentiates our approach with other GME 

production analyses using in the literature (Zhang & Fan, 2001; Lence & Miller, 

1998), in fact, the empirical GME literature says very little about how a set of feasible 

and consistent support values are defined for several interdependent parameters. We 

differ from Heckelei and Wolff (2003)  by using calibrated optimization models to 

define the prior sets of support values, but, like Heckelei and Wolff, we estimate 

production function parameters, and factor input shadow values, in a simultaneous 

GME specification. 

 In addition, we generate the finite sample distribution properties of the resulting 

GME estimates by bootstrapping the procedure (Efron & Tibsharani, 1993). To our 

knowledge, this is the first time that the bootstrap method has been used to obtain 

parameter distributions for GME estimators. Previous work has tested GME results 

for sensitivity to their support spaces, or has used Monte Carlo results to approximate 

asymptotic parameter distributions. However, since our aim is to use small data 

samples, bootstrapping seems a natural method to generate the finite sample 

properties, and can be simply implemented.  
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The ability to simulate policy alternatives reliably with constrained profit 

maximization requires a model that satisfies the marginal and total product conditions 

and has stability in the second order profit maximizing conditions. It is our belief that 

those who use policy models are more interested in reproducing observed behavior 

and simulating beyond the base scenario, than in testing for the curvature properties of 

the underlying production function. Within our simulation framework, we can also 

impose policy restrictions in the form of constraints on the estimated farm production 

model. 

Section II of the paper briefly reviews modeling methods used to estimate the 

effect on land use of agricultural and environmental policies. Section III develops the 

production model estimation and bootstrap procedure within the GME framework. 

Section IV contains an empirical application to a data set from a primary survey of 27 

farms in the Rio Bravo region of Northern Mexico. The randomly selected farm 

sample contains a very wide range of farm size. The central point is whether the 

production parameters of different farm sizes vary sufficiently to make disaggregated 

models, better estimates of policy response than estimates based on the whole sample. 

Essentially we are testing whether disaggregated policy models are better predictors 

of  farmer behavior despite the minimal data sets used by the GME estimators. 

Conclusions are drawn in Section V 

 

 

 

 

II. Methods for Modeling Disaggregated Agricultural Production. 
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The approach that we use in this paper addresses the shortcomings of 

representative farmer models enumerated by Antle & Capalbo (2001), when they cite 

the limited range of response in the typical representative farm model. The 

disaggregated production models capture the individual heterogeneity of the local 

production environment, whether it is in terms of land quality or farm-size specific 

effects, and allows the estimated production functions to replicate the differences in 

input usage and outputs.  

Love (1999) made the point that the level of disaggregation matters in terms of the 

degree of firm-level heterogeneity and other localized idiosyncrasies that get averaged 

out of the sample. This affects the likelihood of observing positive results for tests of 

neo-classical behavior, such as cost minimization or profit maximization. In our 

approach, we impose curvature conditions on the estimated production function, since 

we are aiming for models that reproduce behavior rather than test for it. The relative 

stability we observe within cropping systems, despite the presence of substantial yield 

and price fluctuations is informal empirical evidence that farmers act as if their profit 

functions are convex in crop allocation. The gradual adjustment of agricultural 

systems to changes in relative crop profitability suggests that farmers adjust by 

progressive changes over time, along all the margins of substitution, rather than going 

from one corner solution to the next.  

Zhang & Fan (2001) conclude that the behavioral assumptions of profit 

maximization are too strong for the example to which they applied a GME production 

function estimation. While their level of aggregation was severe, they made the case 

for using GME on the basis of its ability to incorporate non-sample information and to 

deal with imperfectly observed activity-specific inputs. Within our framework, we are 

able to implement more flexible functional forms for production than that used by 
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Zhang & Fan, as well as avoid imposing constant returns to scale, as a result of our 

higher level of disaggregation.  

Just et al (1983), stated in their classic production paper that their:  

“Methodology is based on the following assumptions that seem to characterize 

most agricultural production:   

(a)Allocated inputs. Most agricultural inputs are allocated by farmers to 

specific production activities..  

(b)Physical constraints. Physical constraints limit the total quantity of some 

inputs that a farmer can use in a given period of time … 

(c) Output determination. Output combinations are determined uniquely by the 

allocation of inputs to various production activities aside from random, 

uncontrollable forces.” 

Just et al’s specification admits jointness in multioutput production only 

through the common restrictions on allocatable inputs. The specification in this paper 

has constraints on the land available, but also allows for jointness between crops in a 

region as reflected by the deviations of crop value marginal products from the 

opportunity cost of restricted land inputs. 

The current range of approaches to agricultural production modeling and the 

associated analysis of environmental impacts, seems to fall into three groups, namely, 

disaggregated calibrated or constrained programming models (McCarl, 2000 ; Alig et 

al., 1998; CVPM1, 1997;  CAPRI2, 2000) disaggregated logistic land use models (Wu 

& Babcock, 1999) and A, and aggregate econometric land use models (Mendelsohn et 

al., 1994 ). Antle and Valdivia (2006)  

                                                 
1 Central Valley Production Model , used in the 1997  Programmatic Environmental Impact Statement 
of the Central Valley Project Improvement Act  (see references).  
 
2 Common Agricultural Policy Regional Impact (http://www.agp.uni-bonn.de/agpo/rsrch/capri/) 
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III    Using Generalized Maximum Entropy to Estimate Production                
 Functions 
 
 The nature of the data set defines the estimation method to be used. For 

disaggregated policy models, the available data usually takes the form of a cross-

sectional survey sample taken over each disaggregated region. A reassuring 

characteristic of generalized maximum entropy (GME) estimators is that while they 

can estimate  consistent parameter values from ill-conditioned or ill-posed problems, 

their large sample estimates enjoy the usual classical properties (Mittlehammer et al, 

2000). The GME estimation approach advanced in this paper is completely in accord 

with classical econometric estimators for large sample problems and uses a standard 

bootstrap approach to estimate GME parameter distributions. The novelty of the paper 

lies in the idea that the modeler does not have to accept the stricture of conventional 

degrees of freedom, but may specify a complex model at the level of disaggregation 

that is thought to minimize the effect of estimation errors and aggregation bias on the 

model outcome. The modeler can specify flexible multi-input production functions for 

any number of observations and calibrate closely to the base conditions. Essentially 

we show that a minimal level of data that would, in the past, have restricted the 

modeler to a simple linear programming model, can now be calibrated and 

reconstructed as a set of multi-input CES production functions.   

  The first order conditions for optimal allocation have to incorporate the 

shadow value of any constraints on inputs. Since the allocatable inputs are restricted 

in quantity, and rotational interdependencies can exist between crops, we use a 

modified PMP model ( Howitt 1995) on each data sample to obtain a numerical value 

for a prior value for the shadow price that may exist in addition to the allocatable 

input cash price.  
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Before the GME reconstruction program is solved, support values have to be 

defined for each parameter and error term. To ensure that the set of support values 

spans the feasible solution set, we define the support values as the product of a set of 

five weights and functions of the average Leontieff yield over the data set, and for a 

particular crop and input combination. The support values for the error terms are 

defined by positive and negative weights that multiply the left-hand side values of the 

equation.  

The non-constant returns to scale CES production function is defined as: 

(2) ( )
i

i i
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i i ij ij
j
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`Equation (3) is subject to the usual constraints on the discrete probability functions, 

and the product of the probabilities and support parameters that are needed to derive 
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the estimated coefficients for returns to scale ( rtsi ), elasticity of substitution ( σi ), the 

shadow value of allocatable inputs ( lamj ), and the CES share parameters ( βij ). The 

CES scale parameter is directly estimated without support values. 

The objective function is the usual sum of the entropy measures for the parameter 

probabilities. Following the normal GME procedure, the entropy of the error term 

probabilities is also maximized. The first data based equations in ( 3 ) are the first 

order conditions that set the cost ratio equal to the marginal physical product. If some 

inputs are restricted, the input cost in the first order equation includes the estimated 

shadow values as well as the nominal input price.  

The second data based equations in ( 3 ) fit the production function to the 

observations on total production. While it is not normal in econometric models to 

include both the marginal and total products as estimating equations, we think that the 

information in the total product constraint is particularly important for two reasons. 

First, information on crop yields and areas is likely to be the most precisely know by 

farmers. While farmers are often doubtful and reluctant about stating their costs of 

production to surveyors, they always know their yields and are usually proud to tell 

you. Second, while the marginal conditions are essential for behavioral analysis, 

policy models also have to accurately fit the total product to be convincing to policy 

makers and correctly estimate the total impact on the environment and the regional 

economy of policy changes. Fitting the model to the integral as well as the marginal 

conditions should improve the policy precision of the model. 

Due to the separability assumption on the production functions, the estimation 

problem can be solved rapidly by looping through individual production functions, 

since the linkage between the production of different crops is defined by the shadow 

values and allocatable input constraints. 
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We note that the supply functions, derived input demands, their associated 

elasticities, and the elasticities of substitution are obtainable from a data set of any 

size from one observation upwards. Clearly the reliance on the support space values 

and the micro theory structural assumptions is much greater for minimal data sets. 

However the approach does enable a formal approach to disaggregation of production 

estimates, since the specification of the problem is identical for all sizes of data sets. 

A problem for the widespread adoption of GME and entropy methods is the 

frequent question from users of conventional estimates. “I accept that maximizing 

entropy calculates an efficient distribution of the parameter, but how do I know that 

the expected value of the parameter is a reliable point estimate”. In short, the potential 

user is understandably asking for the variance of the coefficient. To date the response 

from ME advocates is to reassure the potential user that the asymptotic properties are 

consistent. This asymptotic response is not very reassuring for an estimator whose use 

and comparative advantage is with small samples. It follows that there is a need to 

generate GME parameter error bounds using the small data sets in which GME excels.   

Using a Bootstrap (Efron & Tibsharani, 1993) method with the GME estimation 

routine, we are able to generate variances for all the production function parameters 

and corresponding pseudo t values. This will enable the analyst to have a formal 

measure of precision for each parameter. In addition, having calculated the variance 

of  a set of critical policy parameters such as the disaggregated elasticities of 

substitution and returns to scale, we can then apply statistical tests for significant 

differences between the parameters and thus implicitly, the value of the farm size 

disaggregation. 
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IV.  The Empirical Reconstruction of Regional Crop Production in Rio Bravo. 

Data Restrictions   

Ideally, production models are reconstructed from a consistent time series of 

regional data, which includes all the crop inputs and outputs and their associated 

prices. Unfortunately, such rich, consistent data sets are rarely available. In some 

cases, comprehensive cross-section survey data is available, but it is rarely collected 

for more than one year. The empirical example in this paper is a small cross-section 

farm survey collected by FAO enumerators for a sub-sample of 27 farms in the Rio 

Bravo region of Mexico in 2005 . This data set is typical of many primary data sets 

collected in developing and developed countries. 

Production Function Specification 

Within a farm size, we assume that the production of different crops is connected by 

the restrictions on the total land, water available. Labor is treated as a normal variable 

input, as the proportions of family and wage labor varied widely across the sample. 

The CES production function is written as:    

, , , , , ,(4) ( )
i

i i i

rts

i i i land i land i water i water i labor i labory x x x iγ γ γ γα β β β= + +    

 

  where  yi is the farm output of a given crop and xi,j is the quantity of land, water or 

labor allocated to crop production for that farm size class.  

The policy simulation problem defined over n farms and i crops in each farm size 

class for a single year is : 
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where the total annual quantities of irrigated land and water ( X1 and X2) are limited 

for each farm. By changing the RHS quantity of water available on the constraint, we 

can generate a derived demand function for each farm class.  

 

Estimation Results 

Estimation of the full set of parameters for the production function with three inputs 

requires that each regional crop be parameterized in terms of six parameters, three for 

the share coefficients, a scale parameter, the returns to scale parameter, and the 

elasticity of substitution. In addition, two shadow values (on land and water )  are 

estimated for each farm size group. The 27 observations can be disaggregated into 

three size classes based on their production of the dominant crops, sorghum and 

maize. The sample statistics are shown in Table 1. The small farm group has 12 farms 

surveyed, the medium sized group has 6 farms, and the large farm group has 9 farms 

in it. With six parameters per crop production function, all farm groups have small or 

minimal degrees of freedom, in fact, allowing for the estimation of shadow values, the 

medium farm group has a small negative degrees of freedom. This extreme case 

provides a  severe test of the disaggregated GME approach. 
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Table 1. Cultivated land (in ha) and average water used (in m3/ha) 
for selected crops by farm size 

Farm size

Crop Cultivated 
land (ha)

water used 
(m3/ha)*

Cultivated 
land (ha)

water used 
(m3/ha)*

Cultivated 
land (ha)

water used 
(m3/ha)*

 Total 
Cultivated 
land (ha)

Average 
Water 
Used 

Alfalfa 1.5 23,000 10.0 16,000 129.0 18,558 140.5 19,186

Wheat 19.4 5,000 77.0 5,000 96.4 5,000

Maize 3.0 8,000 50.1 5,325 1,358.3 5,236 1,411.4 6,187

Cotton 34.0 8,000 290.0 8,138 324.0 8,069

Melon 10.0 17,000 180.0 2,600 190.0 9,800

Sweet Potato 20.0 7,000 20.0 7,000

Beans 0.5 5,000 0.5 5,000

Sorghum 15.0 7,600 83.0 4,172 2,198.0 2,023 2,296.0 4,598

Average 30.0 12,120 196.5 7,699 4,252.3 6,936 4,478.8 8,105

  (*) Average of water used per hectare

   Large   Summary      Small      Medium   

 

The data for this study was collected by an FAO (2005) survey of 45 farms in the Rio 

Bravo region during 2005. The number of farms surveyed, by state are: Chihuahua 12, 

Coahuila 8, Nuevo Leon 4 and Tamaulipas 21. Farm-level data on inputs usage, 

outputs and costs and farm characteristics were used. Total revenues took into account 

government support programs. An equivalent crop price was calculated on a per 

hectare basis. Three very large farms were removed from the sample as atypical, in 

addition, farms that grew no maize or sorghum were omitted from the estimation, 

reducing the estimated data base to 27 observations.  

 Five out of twelve irrigation districts in the Rio Bravo region are 

represented in the sample. In addition, irrigation units in Delicias, Chihuahua and in 

the Bajo Rio Bravo were included in the surveys.  Eight crops were selected for this 

analysis namely: alfalfa, wheat, maize, cotton, melon, sweet potato, beans and 

sorghum.   
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Table 2. Returns to Scale 

  FIELD FORRAGE MAIZE SORGHUM WHEAT 
ALL FARMS 0.369, 0.431, 0.658, 0.67 0.402 

SMALL FARMS 0.385, 0.444, 0.411, 0.615   
MEDIUM FARMS     0.511, 0.437   
LARGE FARMS     0.387, 0.39   

 

Table 3. Elasticity of Substitution 

  FIELD FORRAGE MAIZE SORGHUM WHEAT 
ALL FARMS 0.721, 0.729, 0.397, 0.761 0.713 

SMALL FARMS 0.720, 0.726, 0.709, 0.702   
MEDIUM FARMS     0.699, 0.697   
LARGE FARMS     0.714, 0.718   

 

Tables 2 and 3 show considerable variation in the returns to scale and elasticities of 

substitution both between farm size groups and crops. For example, sorghum and 

wheat have higher substitution elasticities than the other dominant crop, maize. As 

expected, the returns to scale decrease as farm size increases for both maize and 

sorghum. The differences in these two parameter values across farm size groups will 

be reflected in the response to input price or quantity changes. The intensive margin 

of adjustment is determined by the elasticity of substitution, while changes at the 

extensive margin are determined by the curvature of the production function 

summarized by the decreasing returns to scale parameter. Intuitively one would 

expect less ability to respond by crop mix or land area changes on small farms. 

 

Measures of Goodness of Fit. 

 Tables 4 and 5 show the goodness of fit of the model in two ways, the R2 

values for crop production, and the percent absolute deviation (PAD) of the in-sample 

predictions. The R2 values range from 0.77 to 0.15 and seem consistent with results 

from estimates based on larger samples of cross-section survey data.  Likewise, the 
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PAD measure shows reasonable prediction errors. Another measure of the overall 

information content of the GME estimates is the normalized entropy measure ( Golan 

et al (1996).  The normalized entropy values for the different samples are used to 

calculate the information index ( Soofi, 1992), which measures the reduction in 

uncertainty attributable to the GME estimates.   The information indices ( 1 - 

normalized entropy ) for all sample sizes show significant reductions in uncertainty. 

The index values are: All farm sample, 0.830, Large farm sample, 0.769, Medium 

farm sample, 0.709, and Small farm sample 0.768.  

Table 4. R2 of Farm Production 

  FIELD FORRAGE MAIZE SORGHUM WHEAT 
ALL FARMS 0.375, 0.369, 0.269, 0.319 0.528 

SMALL FARMS 0.374, 0.393, 0.299, 0.142   
MEDIUM FARMS     0.696, 0.263   
LARGE FARMS     0.190, 0.290   

 

Table 5. Percent Absolute Deviation of Farm Production 

  FIELD FORRAGE MAIZE SORGHUM WHEAT 
ALL FARMS 3.68 6.55 40.0 40.87 1.50 

SMALL FARMS 5.549 15.102 24,495 37.518   
MEDIUM FARMS     16.797 37.749   
LARGE FARMS     9.319 12.712   

 

 The estimation of shadow values for the fixed, but allocatable inputs land, and 

water, are a very important component in the estimation of farmer response to 

changes in the cost of allocatable inputs in developing economies. The results in 

Table 6 show that the shadow values of land exceed the nominal costs in all farm size 

groups, and for water, the shadow value is equal to or greater than the total input cost. 

Clearly, for this sample, any estimation based only on the nominal input costs will be 

very biased, and policy responses will be similarly distorted. 
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Table 6. Input Shadow Values 

  Land Cost Water Cost 
      
 Shadow value Nominal Cost Shadow value Nominal Cost 

SMALL FARMS 959.82 762 255.59 222.02 
MEDIUM FARMS 1947.57, 637.1 855.28 185.85 
LARGE FARMS 1208.32, 977.27 223.56 223.06 

 

 

Calculating GME Parameter Distributions Using a Bootstrap  

Bootstrap methods have been used for the past twenty years to approximate the 

distribution of a statistic by systematically resampling the original sample data. The 

GME bootstrap uses a uniform random distribution to select observations from the 

original sample of “n” observations with replacement. Having generated the bootstrap 

observations, the GME program described above calculates the GME estimates of the 

production function coefficients  , where there are “i” crops.  We calculate the 

bootstrapped returns to scale 

,i Brts

,j Brts  and run the bootstrap loop for 500 (B) iterations. 

The estimated asymptotic variance for a given GME parameter estimate, for instance 

the returns to scale for the i th crop  , can be estimated from the B bootstrapped 

estimates    as: 

ˆ
jrts

,
ˆ

j Brts

 , ,
1

1ˆ ˆ ˆ ˆ(6)
B

ˆ
j j b j j b j

b
Var rts rts rts rts rts

B =

′⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑  

 For simplicity of presentation we restrict the tables to one crop and three 

production function parameters. Sorghum is selected since it is the crop grown most 

widely in the random sample. Differences in the production functions are tested using 

the returns to scale parameter (RTS), the elasticity of substitution (Sub) and the CES 

scale parameter. From theory, one would expect that the RTS will decrease as farms 

size increases, the elasticity of substitution that measures the intensive margin of 
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adjustment has no theoretical reason to differ with farm size for the same crop, and 

the scale parameter is expected to differ with farm size. Table 7 shows the mean and 

variance of the three parameters by farm size 

Table 7. Sorghum Production Parameters by Farm Size 

 Small Farm Medium Farm Large Farm 

 Mean Variance Mean Variance Mean Variance 

RTS 0.615 0.02 ** 0.437 0.017 0.39 0.056 *

Substitution 0.615 0.263 0.688 0.019 ** 0.717 0.158 *

Scale 8.552 251.25 48.445 256863.53 125.5 28102.5 

** significant at 1%, * significant at 5%. Question for Siwa—is it valid to calculate 

the t values ? 

 The results in Table 7 show that, as expected, the returns to scale decrease 

with larger farms, the elasticity of substitution shows no trend, and the scale 

parameter increases. To formally evaluate whether there are significant differences in 

these three parameters between the farm sizes, we used the bootstrap results to 

generate pair-wise tests. The results are shown in Table 8 below. 

 

 

 

Table 8. t values for differences in Sorghum Production Parameters 

 Small- Medium Small- Large Medium- Large 

RTS 2.578 ** 2.721 ** 0.44 

Substitution -0.338 -0.494 -0.170 

Scale -0.276 -2.423 ** -0.423 

 

 19



 Table 8 supports the expected production function properties, in that the returns to 

scale in the small farm group are significantly larger than both the medium and large 

farm group. The increase in RTS between the medium and large farm group is not 

significant. As expected, the scale parameter shows an increase between each group, 

but because of the imprecision in the bootstrap results for the medium farm group, the 

only significant difference is between the small and large farm scale parameters.  

The results in tables 7 and 8 show that the combination of bootstrapping and GME 

enables formal tests of the disaggregated estimates, and in this case, justifies the 

disaggregation by farm size. 

  

Simulating Differences in Water Policy Response Functions 

 The estimated production functions for different farm size samples are used in 

equation (5) to simulate the production response for each farm in the size group. The 

interval elasticity of demand for water is calculated by decreasing the total available 

quantity of water to each farm in 10% increments and measuring the change in the 

shadow value. Due to the sample variation in the estimates we do not expect that all 

farms in a given sample will have binding water constraints when simulated using the 

estimated production function coefficients for that sample. Production functions and 

demands were estimated for the aggregate farm sample, and the small, medium and 

large farm samples, as defined in the previous section. Each model was parameterized 

over a 50% reduction in the water available. Interval elasticities over a 10% change 

were calculated for each farm in the group that had non-zero shadow values on water 

in the range. The interval elasticities showed a remarkable consistency over the 

different farm size groups.  The water demand elasticity for small farms is -0.645, for 
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medium farms -0.755, for large farms -0.691, and for the aggregated sample – 0.678.  

These elasticity values are consistent with the majority of empirical analyses.. 

 Despite this similarity in the interval elasticities, the derived demand functions 

for different farm size groups differ greatly. To test the policy value of disaggregating 

demand estimation by farm size, a demand function was obtained by regression on the 

water quantities and shadow values generated for each farm in the sample when 

parameterized by water reductions. Table 9 shows the fits and parameter values. 

Table 9. Inverse Water Demand Functions  

Farm Size Demand Equation R2

Small P = 618.65 - 97.63 Ln(Q) 0.78 

Medium P = 3024.2 – 440.54 Ln(Q) 0.74 

Large P = 1290.4 – 127.69 Ln(Q) 0.33 

Aggregate P = 792.61 – 117.37 Ln(Q) 0.75 

 

To compare the aggregate and disaggregate water demand functions, the 

disaggregated and aggregated estimated functions are plotted over the same range of 

potential water reductions. The functions can be thought as measuring the impact of a 

water tax policy or the cost of a quantitative reallocation. 

 Figures 1- 3 show the functions. In figure 1 for small farms the aggregate 

function is the closest approximation in that the difference is a constant over-valuation 

of water which would introduce a constant distortion into policies. 

 Figure 2 that compares the aggregate and medium farm functions shows very 

large under-valuations over most of the quantity range. The demands coincide at large 

quantities, but differ in value by a factor of four at very low quantities. Thus the 

stronger the policy, the greater the under-valuation. 
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Figure 1. Water Demand- Small farm
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Figure 2.  Medium Farm Water Demands
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Figure 3. compares the functions for large farms. Due to bias toward small farms in 

the aggregate set of farms with binding water constraints, the aggregate function 

under-values the large farm data so badly that it is unusable for policy analysis. 
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Figure 3.  Large Farm Water Demands
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 The results in figures 1-3 clearly show that despite similarity in the interval 

elasticities, the water demand function estimated using the aggregate data set is 

unusable for the large farm group, and has the expected upward and downward bias in 

the small and medium farm groups respectively. For this empirical example, the 

estimation of policy models disaggregated by farm size clearly gains more in the 

reduction of aggregation bias that it looses from small sample imprecision. 

 

V. Conclusions 

This paper shows that by using a GME approach, it is possible to reconstruct 

flexible form production function models from a data set of modest size. A researcher 

can reconstruct a similar theoretically-consistent flexible form production model using  

data  that ranges from minimal degrees of freedom to full econometric data sets with 

standard degrees of freedom. The convergence of GME estimates to conventional 

estimates as the sample size increases means that as the data set is expanded there is a 

continuum between optimization and econometric models. 
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The disaggregated production models yield all the comparative static properties 

and parameters of large sample models. The effect of any constraints on inputs is 

directly incorporated in the estimates through the simultaneous estimation of the 

shadow values of the allocatable resources. An advantage of modeling production 

functions is that they are readily understood by other disciplines, which are thus able 

to add information for the prior support values or constraints. 

In this example the aggregation bias in the aggregate model swamped any gains 

in reducing the small sample error. The disaggregated model yielded greater precision 

in its regional response. The gain from disaggregation of production models is an 

empirical result that needs substantially more testing before one can conclude that it is 

a common phenomenon. In this example, the empirical results show that the 

disaggregated estimates have similar strong explanatory power as the aggregate 

sample, as measured by R2, absolute deviation and the entropy information index. 

Despite the similar measures of elasticity, the disaggregated samples show a wide 

variation in the derived demand for water that directly influences policy response. The 

use of disaggregated estimates is clearly supported by the results. 
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