Characterizing possible typical asymptotic behaviours of cellular automata

Benjamin Hellouin de Menibus joint work with Mathieu Sablik

Laboratoire d'Analyse, Topologie et Probabilités Aix-Marseille University

Automata Theory and Symbolic Dynamics Workshop, Vancouver

- \mathcal{A}, \mathcal{B} finite **alphabets**;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the configurations;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A cellular automaton is an action $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f : \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \Box\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

(日)

- \mathcal{A}, \mathcal{B} finite **alphabets**;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the configurations;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A cellular automaton is an action $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f : \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \sqcup\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:
...

- \mathcal{A}, \mathcal{B} finite **alphabets**;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the configurations;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A cellular automaton is an action $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f : \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \square\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

(日)

- \mathcal{A}, \mathcal{B} finite **alphabets**;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the **configurations**;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A cellular automaton is an action $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f : \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{lacksquaremath{\mathbb{B}}, \Box\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

Simulations and typical asymptotic behaviour

Measure space

 $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ the σ -invariant probability measures on $\mathcal{A}^{\mathbb{Z}}$. $\mu([u])$ the probability that a word $u \in \mathcal{A}^*$ appears, for $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$.

Examples

Bernoulli (i.i.d) measures Let $(\lambda_a)_{a \in \mathcal{A}}$ such that $\sum \lambda_a = 1$.

$$\forall u \in \mathcal{A}^*, \mu([u]) = \prod_{i=0}^{|u|-1} \lambda_{u_i}.$$

Measures supported by a periodic orbit For a finite word w,

$$\widehat{\delta_{w}} = \frac{1}{|w|} \sum_{i=0}^{|w|-1} \delta_{\sigma^{i}(\infty w^{\infty})}.$$

Markov measures with finite memory.

Action of an automaton on an initial measure

• *F* extends to an action $F_* : \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$:

$$F_*\mu(U)=\mu(F^{-1}U)$$

for any borelian U.

- For an initial measure μ, F^t_{*}μ describes the repartition at time t;
- Typical asymptotic behaviour is well described by the limit(s) of (F^t_{*}µ)_{t∈ℕ} in the weak-* topology:

$$\widehat{\in} \mathcal{A}^*, F_*^t \mu([u]) \rightarrow \nu([u]).$$

イロト イ理ト イヨト イヨ

$$F^t_*\mu \xrightarrow[t\to\infty]{} \nu \quad \Leftrightarrow \quad \forall u \in \mathcal{A}^*, F^t_*\mu([u]) \to \nu([u]).$$

Examples of asymptotic behaviour

ATSD Workshop 6 / 20

イロト イロト イヨト イ

Examples of asymptotic behaviour

Proposition

Let μ be the uniform Bernoulli measure on $\{0, 1, 2\}$ and F the 3-state cyclic automaton.

$$F_*^t \mu
ightarrow rac{1}{3} \widehat{\delta_0} + rac{1}{3} \widehat{\delta_1} + rac{1}{3} \widehat{\delta_2}.$$

Hellouin, Sablik (LATP)

Main question

Question

Which measures ν are reachable as the limit of the sequence $(F_*^t \mu)_{t \in \mathbb{N}}$ for some cellular automaton F and initial measure μ ?

-

• • • • • • • • • • • • •

Main question

Question

Which measures ν are reachable as the limit of the sequence $(F_*^t \mu)_{t \in \mathbb{N}}$ for some cellular automaton F and initial measure μ ?

Answer

All (take F = Id and $\mu = \nu$).

Main question

Better question

Which measures ν are reachable as the limit of the sequence $(F_*^t \mu)_{t \in \mathbb{N}}$ for some cellular automaton F and **simple** initial measure μ (e.g. the uniform Bernoulli measure)?

In a sense, this would correspond to the "physically relevant" measure for *F*.

Section 2

Necessary conditions: computability obstructions

Hellouin, Sablik (LATP)

Characterization of limit measures

ATSD Workshop 8 / 20

イロト イロト イヨト イ

Topological obstructions

Topological obstruction

The accumulation points of $(F_*^t \mu)_{t \in \mathbb{N}}$ form a nonempty and **compact** set.

Measures and computability

 $f : \mathbb{N} \to \mathbb{N}$ is **computable** if there exists a Turing machine that, on any input $n \in \mathbb{N}$, stops and outputs f(n) (up to encoding).

・ロト ・ 日本・ ・ ヨト・

Measures and computability

 $f : \mathbb{N} \to \mathbb{N}$ is **computable** if there exists a Turing machine that, on any input $n \in \mathbb{N}$, stops and outputs f(n) (up to encoding).

A probability measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is:

computable if $| u \rightarrow \mu([u])$ is computable ,

i.e. if there exists $f:\mathcal{A}^* imes\mathbb{N} o\mathbb{Q}$ computable such that

$$|\mu([u]) - f(u,n)| < 2^{-n}$$

 $(\Leftrightarrow can be simulated by a probabilistic Turing machine)$

Examples of computable measures

- Any periodic orbit measure;
- Any Bernoulli or Markov measure with computable parameters.

ヘロト ヘ週 ト ヘヨト ヘヨト

Measures and computability

 $f : \mathbb{N} \to \mathbb{N}$ is **computable** if there exists a Turing machine that, on any input $n \in \mathbb{N}$, stops and outputs f(n) (up to encoding).

A probability measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is:

semi-computable if there exists a computable function $f : \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ such that

$$|\mu([u]) - f(u, n)| \xrightarrow[n \to \infty]{} 0.$$

 $(\Leftrightarrow$ **limit** of a computable sequence of measures)

Examples of computable measures

- Any periodic orbit measure;
- Any Bernoulli or Markov measure with computable parameters.

Computability obstruction

Action of an automaton on a computable measure

- If μ is computable, then $F_*^t \mu$ is **computable**;
- If μ is computable, and $F_*^t \mu \xrightarrow[t \to \infty]{t \to \infty} \nu$, then ν is **semi-computable**.

イロト イロト イヨト イ

Section 3

Sufficient conditions: construction of limit measures

< ロ > < 回 > < 回 > < 回 > <</p>

State of the art

Theorem [Boyet, Poupet, Theyssier 06]

There is an automaton F such that the language of words u satisfying

 $F^t_*\mu([u])
e 0$

in **not computable** for any nondegenerate Bernoulli measure μ .

Theorem [Boyer, Delacourt, Sablik 10]

Let μ be the uniform Bernoulli measure.

For a large class of subshifts $U \subset \mathcal{A}^{\mathbb{Z}}$ (under computability conditions), there is an automaton *F* such that

$$U = \overline{\bigcup_{\nu \in \mathcal{V}(F^t_*\mu)} supp(
u)}.$$

Main result

Action of an automaton on a computable measure

If μ is computable, and $F_*^t \mu \xrightarrow[t \to \infty]{} \nu$, then ν is **semi-computable**.

Motto:

"The only obstruction is the computability obstruction"

- E. Jeandel, June 3rd 2013

イロト イロト イヨト イヨ

Main result

Action of an automaton on a computable measure

If μ is computable, and $F_*^t \mu \xrightarrow[t \to \infty]{} \nu$, then ν is **semi-computable**.

Motto:

"The only obstruction is the computability obstruction"

- E. Jeandel, June 3rd 2013

イロト イポト イヨト イヨ

Theorem

Let ν be a **semi-computable** measure. There exists:

- ▶ an alpabet $\mathcal{B} \supset \mathcal{A}$
- a cellular automaton $F : \mathcal{B} \to \mathcal{B}$

such that, for any **ergodic** and **full-support** measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{B}^{\mathbb{Z}})$,

$$\mathit{F}^{t}_{*}\mu \underset{t \rightarrow \infty}{\longrightarrow} \nu$$

Approximation by periodic orbits

Proposition

Measures supported by periodic orbits are dense in $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$.

```
Example: Uniform Bernoulli measure

w_0 = 01

w_1 = 0011

w_2 = 00010111

w_3 = 0000110100101111
```

Approximation by periodic orbits

Proposition

Measures supported by periodic orbits are dense in $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$.

Example: Uniform Bernoulli measure
w ₀ = 01
$w_1 = 0011$
$w_2 = 00010111$
$w_3 = 0000110100101111$

Proposition

If $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is semi-computable, there is a **computable** sequence of words $(w_n)_{n \in \mathbb{N}}$ such that $\widehat{\delta_{w_n}} \to \nu$.

Our construction will compute each w_n and approach the measure $\widehat{\delta_{w_n}}$ by writing concatenated copies of w_n on all the configuration.

ヘロン 人間 とくほ とくほ とう

Hellouin, Sablik (LATP)

ATSD Workshop 16 / 20

Section 4

Extensions and related results

-

・ロト ・ 日本・ ・ ヨト・

Questions

1. Implementation of the construction? No (but for good reasons)

Implementation

- Non-trivial Turing machine satisfying space constraints;
- ► Large number of states; (for |B| = 2, at least 2244 times more than the corresponding Turing machine)
- Speed of convergence $O\left(\frac{1}{\log t}\right)$ in the best case.

Questions

- 1. Implementation of the construction? No (but for good reasons)
- 2. No auxiliary states? Yes, if the target measure is not full-support

Theorem

Let ν be a **non full-support**, **semi-computable** measure. Then there exists an automaton $F : \mathcal{A} \to \mathcal{A}$ such that, for any measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ σ -mixing and full-support,

$$F^t_*\mu \xrightarrow[t \to \infty]{} \nu.$$

Questions

- 1. Implementation of the construction? No (but for good reasons)
- 2. No auxiliary states? Yes, if the target measure is not full-support

Idea: use forbidden words to encode auxiliary states.

Remark

If $F_*^t \mu \to \nu$ where ν is a full support measure, then F is a **surjective** automaton and **the uniform Bernoulli measure is invariant**.

Questions

- 1. Implementation of the construction? No (but for good reasons)
- 2. No auxiliary states? Yes, if the target measure is not full-support
- 3. Sets of accumulation points? Yes, with a computability condition on compact sets

Theorem

Let \mathcal{V} be a nonempty, compact, **connected**, Σ_2 -**computable** set of measures. Then there exists an automaton $F : \mathcal{A} \to \mathcal{A}$ such that, for any measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ σ -mixing and full-support,

The set of accumulation points of $(F_*^t \mu)_{t \in \mathbb{N}}$ is \mathcal{V} .

(日)

Questions

- 1. Implementation of the construction? No (but for good reasons)
- 2. No auxiliary states? Yes, if the target measure is not full-support
- 3. Sets of accumulation points? Yes, with a computability condition on compact sets
- 4. Cesaro mean convergence? Yes

Questions

- 1. Implementation of the construction? No (but for good reasons)
- 2. No auxiliary states? Yes, if the target measure is not full-support
- 3. Sets of accumulation points? Yes, with a computability condition on compact sets
- 4. Cesaro mean convergence? Yes
- 5. Characterization of the support? In progress

・ロト ・ 日本・ ・ ヨト・

Questions

- 1. Implementation of the construction? No (but for good reasons)
- 2. No auxiliary states? Yes, if the target measure is not full-support
- 3. Sets of accumulation points? Yes, with a computability condition on compact sets
- 4. Cesaro mean convergence? Yes
- 5. Characterization of the support? In progress
- 6. Properties of the limit measure? Mostly undecidable

・ロト ・ 日本・ ・ ヨト・

Questions

- 1. Implementation of the construction? No (but for good reasons)
- 2. No auxiliary states? Yes, if the target measure is not full-support
- 3. Sets of accumulation points? Yes, with a computability condition on compact sets
- 4. Cesaro mean convergence? Yes
- 5. Characterization of the support? In progress
- 6. Properties of the limit measure? Mostly undecidable
- 7. Using the initial measure as an argument or an oracle? Some simple cases

イロト イロト イヨト イヨ

Computation in the space of measures

Let us consider the operator

```
\mu \mapsto \text{accumulation points of } (F_*^t \mu)_{t \in \mathbb{R}}
```

The previous construction gave us operators that were essentially **constant** (on a large domain).

Question

Which operators $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ (ou $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{P}(\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}))$) can be realized in this way?

Computation in the space of measures

Let us consider the operator

```
\mu \mapsto \text{accumulation points of } (F_*^t \mu)_{t \in \mathbb{R}}
```

The previous construction gave us operators that were essentially **constant** (on a large domain).

Question

Which operators $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ (ou $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{P}(\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}))$) can be realized in this way?

Theorem

Let $\nu : \mathbb{R} \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be a **semi-computable** operator. There is:

- an alphabet $\mathcal{B} \supset \mathcal{A}$,
- an automaton $F: \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$

such that, for any full-support and exponentially σ -mixing measure μ ,

$$F_{*}^{t}\mu \xrightarrow[t \to \infty]{} \nu\left(\mu\left(\square\right)\right)$$

Some examples

Let $M \subset \mathcal{M}_{\sigma}(\mathcal{B}^{\mathbb{Z}})$ be the set of full-support, exponentially σ -mixing measures.

Example 1: Density classification

There exists an automaton $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ realizing the operator:

$$\begin{split} M &\to \mathcal{M}_{\sigma}(\{0,1\}^{\mathbb{Z}}) \\ \mu &\mapsto \begin{cases} \widehat{\delta_0} & \text{if } \mu(\square) < \frac{1}{2} \\ \widehat{\delta_1} & \text{otherwise.} \end{cases} \end{split}$$

Some examples

Let $M \subset \mathcal{M}_{\sigma}(\mathcal{B}^{\mathbb{Z}})$ be the set of full-support, exponentially σ -mixing measures.

Example 1: Density classification

There exists an automaton $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ realizing the operator:

$$egin{aligned} & M o \mathcal{M}_\sigma(\{0,1\}^{\mathbb{Z}}) \ & \mu \mapsto egin{cases} & \widehat{\delta_0} & ext{if } \mu(\square) < rac{1}{2} \ & \widehat{\delta_1} & ext{otherwise.} \end{aligned}$$

Example 2: A simple oracle

There exists an automaton $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ realizing the operator:

 $egin{aligned} & M o \mathcal{M}_\sigma(\{0,1\}^{\mathbb{Z}}) \ & \mu \mapsto \textit{Ber}(\mu(\square)) \end{aligned}$

ヘロト ヘロト ヘヨト ヘヨト

Implementation of a simple case

Fibonacci word

Consider the morphism :

Then the sequence $\varphi^n(0)$ converges to an infinite word called **Fibonacci word**:

4

 $\varphi^{\infty}(0) = 0100101001001010010101\dots$

and it is uniquely ergodic.