k-block versus 1-block parallel addition in non-standard numeration systems

Christiane Frougny*, <u>Pavel Heller</u>**, Edita Pelantová**, Milena Svobodová**

* LIAFA, CNRS UMR 7089 & Université Paris 7 & Université Paris 8, Paris, France

** Dept. of Mathematics, FNSPE, Czech Technical University, Prague, Czech Republic

Automata Theory and Symbolic Dynamics Workshop Vancouver, 7 June 2013

Preliminaries

Positional numeration system

Base β and digit set A, where

- $\beta \in \mathbb{C}$, $|\beta| > 1$, algebraic number
- \bullet $\mathcal{A}\subset\mathbb{Z},$ finite set of contiguous integers containing 0

Preliminaries

Positional numeration system

Base β and digit set A, where

- $\beta \in \mathbb{C}$, $|\beta| > 1$, algebraic number
- $\mathcal{A} \subset \mathbb{Z}$, finite set of contiguous integers containing 0

Finite representation of a number

$$z = \sum_{k=-m}^{n} a_k \beta^k$$
, $z = a_n \cdots a_0 \bullet a_{-1} \cdots a_{-m}$

Preliminaries

Positional numeration system

Base β and digit set A, where

- $\beta \in \mathbb{C}$, $|\beta| > 1$, algebraic number
- $\mathcal{A} \subset \mathbb{Z}$, finite set of contiguous integers containing 0

Finite representation of a number

$$z = \sum_{k=-m}^{n} a_k \beta^k$$
, $z = a_n \cdots a_0 \bullet a_{-1} \cdots a_{-m}$

$$\operatorname{Fin}_{\mathcal{A}}(eta) = \Big\{ \sum_{j \in I} x_j eta^j : I \subset \mathbb{Z}, I \text{ finite}, x_j \in \mathcal{A} \Big\}$$

Parallel addition

• addition of two elements of $\operatorname{Fin}_{\mathcal{A}}(\beta)$

- addition of two elements of $\operatorname{Fin}_{\mathcal{A}}(\beta)$
- constant time, independent of the length of representations

- addition of two elements of $\operatorname{Fin}_{\mathcal{A}}(\beta)$
- constant time, independent of the length of representations
- realised by a p-local function (sliding block code with window of length p)

- addition of two elements of $\operatorname{Fin}_{\mathcal{A}}(\beta)$
- constant time, independent of the length of representations
- realised by a p-local function (sliding block code with window of length p)

$x \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\ldots X_{j+t} \ldots X_{j+1} X_j X_{j-1} \ldots X_{j-s} \ldots$	$x_j \in \mathcal{A}$
$y \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\cdots y_{j+t} \cdots y_{j+1} y_j y_{j-1} \cdots y_{j-s} \cdots$	$y_j \in \mathcal{A}$

- addition of two elements of $\operatorname{Fin}_{\mathcal{A}}(\beta)$
- constant time, independent of the length of representations
- realised by a p-local function (sliding block code with window of length p)

$x \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\ldots X_{j+t} \ldots X_{j+1} X_j X_{j-1} \ldots X_{j-s} \ldots$	$x_j \in \mathcal{A}$
$y \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\cdots y_{j+t} \cdots y_{j+1} y_j y_{j-1} \cdots y_{j-s} \cdots$	$y_j \in \mathcal{A}$
$w_j = x_j + y_j$	$\dots \underbrace{w_{j+t} \dots w_{j+1} w_j w_{j-1} \dots w_{j-s}}_{} \dots$	$w_j \in \mathcal{A} + \mathcal{A}$

- addition of two elements of $\operatorname{Fin}_{\mathcal{A}}(\beta)$
- constant time, independent of the length of representations
- realised by a p-local function (sliding block code with window of length p)

$x \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\ldots X_{j+t} \ldots X_{j+1} X_j X_{j-1} \ldots X_{j-s} \ldots$	$x_j \in \mathcal{A}$
$y \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\cdots y_{j+t} \cdots y_{j+1} y_j y_{j-1} \cdots y_{j-s} \cdots$	$y_j \in \mathcal{A}$
$w_j = x_j + y_j$	$\dots w_{j+t} \dots w_{j+1} w_j w_{j-1} \dots w_{j-s} \dots$	$w_j \in \mathcal{A} + \mathcal{A}$
$z_j = \phi(w_{j+t} \dots w_{j-s})$	$\ldots z_{j+t} \ldots z_{j+1} z_j z_{j-1} \ldots z_{j-s} \ldots$	$z_j \in \mathcal{A}$

Parallel addition – example

Impossible with $\beta = 10$, $\mathcal{A} = \{0, \dots, 9\}$:

- $99(9)^n97 + 2 = 99(9)^n99$
- $99(9)^n 97 + 5 = 100(0)^n 02$

Parallel addition – example

Impossible with $\beta = 10$, $\mathcal{A} = \{0, \dots, 9\}$:

- $99(9)^n 97 + 2 = 99(9)^n 99$
- $99(9)^n 97 + 5 = 100(0)^n 02$

Avizienis, 1961: possible with $\beta=$ 10, $\mathcal{A}=\{-6,\ldots,6\}$:

Parallel addition - example

Impossible with $\beta = 10$, $\mathcal{A} = \{0, \dots, 9\}$:

- $99(9)^n 97 + 2 = 99(9)^n 99$
- $99(9)^n 97 + 5 = 100(0)^n 02$

Avizienis, 1961: possible with $\beta = 10$, $\mathcal{A} = \{-6, \dots, 6\}$:

Parallel addition - example

Impossible with $\beta = 10$, $\mathcal{A} = \{0, \dots, 9\}$:

- $99(9)^n97 + 2 = 99(9)^n99$
- $99(9)^n 97 + 5 = 100(0)^n 02$

Avizienis, 1961: possible with $\beta=$ 10, $\mathcal{A}=\{-6,\dots,6\}$:

X	\mapsto		2	5		5		6	0	3
У	\mapsto	5	1	2	2	5	4	0	6	5
Z	\mapsto	5	3	7	4	10	9	6	6	8
0	\mapsto		1	10						
0	\mapsto				1	10				
0	\mapsto					$\overline{1}$	10			
0	\mapsto						1	10		
0	\mapsto							1	10	
0	\mapsto								1	10

Parallel addition – example

Impossible with $\beta = 10$, $\mathcal{A} = \{0, \dots, 9\}$:

- $99(9)^n 97 + 2 = 99(9)^n 99$
- $99(9)^n 97 + 5 = 100(0)^n 02$

Avizienis, 1961: possible with $\beta = 10$, $\mathcal{A} = \{-6, \dots, 6\}$:

X	\mapsto		2	5	2	5	5	6	0	3
У	\mapsto	5	1	2	2	5	4	0	6	5
Z	\mapsto	5	3	7	4	10	9	6	6	8
0	\mapsto		1	10						
0	\mapsto				1	10				
0	\mapsto					$\overline{1}$	10			
0	\mapsto						1	10		
0	\mapsto							1	10	
0	\mapsto								1	10
z	\mapsto	5	4	3	3	1	2	3	3	<u></u>

Parallel addition - example

Impossible with $\beta = 10$, $\mathcal{A} = \{0, \dots, 9\}$:

- $99(9)^n 97 + 2 = 99(9)^n 99$
- $99(9)^n 97 + 5 = 100(0)^n 02$

Avizienis, 1961: possible with $\beta=$ 10, $\mathcal{A}=\{-6,\ldots,6\}$:

•
$$p = 2$$

Parallel addition – known results

Theorem (C. Frougny, E. Pelantová, M. Svobodová, 2011)

Let β be an algebraic number such that $|\beta|>1$ and all its conjugates in modulus differ from 1. Then there exists an alphabet $\mathcal{A}\subset\mathbb{Z}$ such that addition on $\operatorname{Fin}_{\mathcal{A}}(\beta)$ can be performed in parallel.

Parallel addition – known results

Theorem (C. Frougny, E. Pelantová, M. Svobodová, 2011)

Let β be an algebraic number such that $|\beta|>1$ and all its conjugates in modulus differ from 1. Then there exists an alphabet $\mathcal{A}\subset\mathbb{Z}$ such that addition on $\operatorname{Fin}_{\mathcal{A}}(\beta)$ can be performed in parallel.

Note: constructive proof; the alphabet might be unnecessarily large

Parallel addition - known results

Theorem (C. Frougny, E. Pelantová, M. Svobodová, 2011)

Let β be an algebraic number such that $|\beta|>1$ and all its conjugates in modulus differ from 1. Then there exists an alphabet $\mathcal{A}\subset\mathbb{Z}$ such that addition on $\operatorname{Fin}_{\mathcal{A}}(\beta)$ can be performed in parallel.

Note: constructive proof; the alphabet might be unnecessarily large

Theorem (CF, EP, MS, 2013)

Let β , $|\beta| > 1$, be an algebraic integer with minimal polynomial f. Let $\mathcal A$ be an alphabet of contiguous integers containing 0 and 1. If addition in $\operatorname{Fin}_{\mathcal A}(\beta)$ is computable in parallel, then $\#\mathcal A \ge |f(1)|$. If moreover β is a positive real number, then $\#\mathcal A \ge |f(1)| + 2$.

•
$$\beta = 10$$
, $f_{\beta}(X) = X - 10$, $\#A \ge |f_{\beta}(1)| + 2 = 11$

•
$$\beta = 10$$
, $f_{\beta}(X) = X - 10$, $\#A \ge |f_{\beta}(1)| + 2 = 11$

•
$$\beta = 4$$
, $f_{\beta}(X) = X - 4$, $\#A \ge |f_{\beta}(1)| + 2 = 5$

•
$$\beta = 10$$
, $f_{\beta}(X) = X - 10$, $\#A \ge |f_{\beta}(1)| + 2 = 11$

•
$$\beta = 4$$
, $f_{\beta}(X) = X - 4$, $\#A \ge |f_{\beta}(1)| + 2 = 5$

•
$$\beta= au$$
, golden mean, $f_{ au}(X)=X^2-X-1$, $\#\mathcal{A}\geq |f_{ au}(1)|+2=3$

•
$$\beta = 10$$
, $f_{\beta}(X) = X - 10$, $\#A \ge |f_{\beta}(1)| + 2 = 11$

•
$$\beta = 4$$
, $f_{\beta}(X) = X - 4$, $\#A \ge |f_{\beta}(1)| + 2 = 5$

- $\beta= au$, golden mean, $f_{ au}(X)=X^2-X-1$, $\#\mathcal{A}\geq |f_{ au}(1)|+2=3$
- eta tribonacci base, $f_{eta}(X) = X^3 X^2 X 1$, $\# \mathcal{A} \geq |f_{ au}(1)| + 2 = 4$

•
$$\beta = 10$$
, $f_{\beta}(X) = X - 10$, $\#A \ge |f_{\beta}(1)| + 2 = 11$

•
$$\beta = 4$$
, $f_{\beta}(X) = X - 4$, $\#A \ge |f_{\beta}(1)| + 2 = 5$

- $\beta= au$, golden mean, $f_{ au}(X)=X^2-X-1$, $\#\mathcal{A}\geq |f_{ au}(1)|+2=3$
- eta tribonacci base, $f_{eta}(X) = X^3 X^2 X 1$, $\# \mathcal{A} \geq |f_{ au}(1)| + 2 = 4$
- $\beta = i 1$, $f_{\beta}(X) = X^2 + 2X + 2$, $\#A \ge |f_{\beta}(1)| = 5$

We require $\#A \ge |f(1)|$; if β is positive real, then $\#A \ge |f(1)| + 2$.

•
$$\beta = 10$$
, $f_{\beta}(X) = X - 10$, $\#A \ge |f_{\beta}(1)| + 2 = 11$

•
$$\beta = 4$$
, $f_{\beta}(X) = X - 4$, $\#A \ge |f_{\beta}(1)| + 2 = 5$

- $\beta= au$, golden mean, $f_{ au}(X)=X^2-X-1$, $\#\mathcal{A}\geq |f_{ au}(1)|+2=3$
- β tribonacci base, $f_{\beta}(X) = X^3 X^2 X 1$, $\# \mathcal{A} \geq |f_{\tau}(1)| + 2 = 4$
- $\beta = i 1$, $f_{\beta}(X) = X^2 + 2X + 2$, $\#A \ge |f_{\beta}(1)| = 5$

Large increase in cardinality of alphabet may be necessary for parallelism. Potential solution: *k*-block.

• suggested by P. Kornerup, 1999

- suggested by P. Kornerup, 1999
- \bullet consider digits clustered in blocks of length k,

$$x = x_n \cdots \underbrace{x_{jk+k-1} \cdots x_{jk}}_{X_j} x_{jk-1} \cdots x_k \underbrace{x_{k-1} \cdots x_0}_{X_0} \bullet x_{-1} \cdots x_{-m}$$

- suggested by P. Kornerup, 1999
- consider digits clustered in blocks of length k,

$$x = x_n \cdots \underbrace{x_{jk+k-1} \cdots x_{jk}}_{X_j} x_{jk-1} \cdots x_k \underbrace{x_{k-1} \cdots x_0}_{X_0} \bullet x_{-1} \cdots x_{-m}$$

$$x \in \operatorname{Fin}_{\mathcal{A}}(\beta)$$
 $\ldots X_{j+t} \ldots X_{j+1} X_j X_{j-1} \ldots X_{j-s} \ldots \mid X_j \in (\mathcal{A})^k$

- suggested by P. Kornerup, 1999
- consider digits clustered in blocks of length k,

$$x = x_n \cdots \underbrace{x_{jk+k-1} \cdots x_{jk}}_{X_j} x_{jk-1} \cdots x_k \underbrace{x_{k-1} \cdots x_0}_{X_0} \bullet x_{-1} \cdots x_{-m}$$

- suggested by P. Kornerup, 1999
- \bullet consider digits clustered in blocks of length k,

$$x = x_n \cdots \underbrace{x_{jk+k-1} \cdots x_{jk}}_{X_j} x_{jk-1} \cdots x_k \underbrace{x_{k-1} \cdots x_0}_{X_0} \bullet x_{-1} \cdots x_{-m}$$

$x \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\ldots X_{j+t} \ldots X_{j+1} X_j X_{j-1} \ldots X_{j-s} \ldots$	$X_j \in (\mathcal{A})^k$
$y \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\ldots Y_{j+t} \ldots Y_{j+1} Y_j Y_{j-1} \ldots Y_{j-s} \ldots$	$Y_j \in (\mathcal{A})^k$
$W_j = X_j + Y_j$	$\ldots W_{j+t} \ldots W_{j+1} W_j W_{j-1} \ldots W_{j-s} \ldots$	$W_j \in (\mathcal{A} + \mathcal{A})^k$

- suggested by P. Kornerup, 1999
- ullet consider digits clustered in blocks of length k,

$$x = x_n \cdots \underbrace{x_{jk+k-1} \cdots x_{jk}}_{X_j} x_{jk-1} \cdots x_k \underbrace{x_{k-1} \cdots x_0}_{X_0} \bullet x_{-1} \cdots x_{-m}$$

$x \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\ldots X_{j+t} \ldots X_{j+1} X_j X_{j-1} \ldots X_{j-s} \ldots$	$X_j \in (\mathcal{A})^k$
$y \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\ldots Y_{j+t} \ldots Y_{j+1} Y_j Y_{j-1} \ldots Y_{j-s} \ldots$	$Y_j \in (\mathcal{A})^k$
$W_i = X_i + Y_i$	$\dots W_{j+t} \dots W_{j+1} W_j W_{j-1} \dots W_{j-s} \dots$	$W_j \in (\mathcal{A} + \mathcal{A})^k$
7 (())		
$Z_j = \phi(W_{j+t} \dots W_{j-s})$	$\ldots Z_{j+t} \ldots Z_{j+1} Z_j Z_{j-1} \ldots Z_{j-s} \ldots$	$Z_j \in (\mathcal{A})^{\kappa}$

- suggested by P. Kornerup, 1999
- ullet consider digits clustered in blocks of length k,

$$x = x_n \cdots \underbrace{x_{jk+k-1} \cdots x_{jk}}_{X_j} x_{jk-1} \cdots x_k \underbrace{x_{k-1} \cdots x_0}_{X_0} \bullet x_{-1} \cdots x_{-m}$$

$x \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\ldots X_{j+t} \ldots X_{j+1} X_j X_{j-1} \ldots X_{j-s} \ldots$	$X_j \in (\mathcal{A})^k$
$y \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\ldots Y_{j+t} \ldots Y_{j+1} Y_j Y_{j-1} \ldots Y_{j-s} \ldots$	$Y_j \in (\mathcal{A})^k$
$W_j = X_j + Y_j$	$\dots W_{j+t} \dots W_{j+1} W_j W_{j-1} \dots W_{j-s} \dots$	$W_j \in (\mathcal{A} + \mathcal{A})^k$
$Z_i = \phi(W_{i+t} \dots W_{i-s})$	$\ldots Z_{j+t} \ldots Z_{j+1} Z_j Z_{j-1} \ldots Z_{j-s} \ldots$	$Z_j \in (\mathcal{A})^k$
3 1 (311 3 2)	311 31 3 3 1	, , , ,

Compare with 1-block:

$x \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\ldots x_{j+t} \ldots x_{j+1} x_j x_{j-1} \ldots x_{j-s} \ldots$	$x_j \in \mathcal{A}$
$y \in \operatorname{Fin}_{\mathcal{A}}(\beta)$	$\dots y_{j+t} \dots y_{j+1} y_j y_{j-1} \dots y_{j-s} \dots$	$y_j \in \mathcal{A}$
$w_j = x_j + y_j$	$\dots W_{j+t} \dots W_{j+1} W_j W_{j-1} \dots W_{j-s} \dots$	$w_j \in \mathcal{A} + \mathcal{A}$
$z_i = \phi(w_i, w_i)$	7 7 7. 7. 7. 7.	7 . ← 1
$z_j = \phi(w_{j+t} \dots w_{j-s})$	$\ldots z_{j+t} \ldots z_{j+1} z_j z_{j-1} \ldots z_{j-s} \ldots$	$z_j \in \mathcal{A}$

Known to help with $\beta=i-1$

Known to help with $\beta=i-1$

ullet 1-block parallel addition requires $\#\mathcal{A} \geq 5$

Known to help with $\beta = i - 1$

- ullet 1-block parallel addition requires $\#\mathcal{A} \geq 5$
- 4-block parallel addition possible on $\{-1,0,1\}$ (Herreros, 1991)

Known to help with $\beta = i - 1$

- ullet 1-block parallel addition requires $\#\mathcal{A} \geq 5$
- 4-block parallel addition possible on $\{-1,0,1\}$ (Herreros, 1991)
- 2-block parallel addition possible on $\{-1,0,1\}$ (Svobodová, 2013)

Known to help with $\beta = i - 1$

- ullet 1-block parallel addition requires $\#\mathcal{A} \geq 5$
- 4-block parallel addition possible on $\{-1,0,1\}$ (Herreros, 1991)
- ullet 2-block parallel addition possible on $\{-1,0,1\}$ (Svobodová, 2013)

However, this is the only known example, and:

Known to help with $\beta = i - 1$

- ullet 1-block parallel addition requires $\#\mathcal{A} \geq 5$
- 4-block parallel addition possible on $\{-1,0,1\}$ (Herreros, 1991)
- 2-block parallel addition possible on $\{-1,0,1\}$ (Svobodová, 2013)

However, this is the only known example, and:

Proposition

Let $\beta\in\mathbb{C}$, $|\beta|>1$ be an algebraic integer with conjugate γ of modulus $|\gamma|=1$ and let $\mathcal{A}\subset\mathbb{Z}$ be a finite alphabet. Then no k-block p-local function can perform parallel addition on alphabet \mathcal{A} .

Theorem (CF, PH, EP, MS, 2013)

Given a base β and an alphabet \mathcal{B} . Let us suppose that there exist positive integers ℓ and r such that for any $x=x_n\dots x_0 \bullet$ and $y=y_n\dots y_0 \bullet$ from $\operatorname{fin}_{\mathcal{B}}(\beta)$ the sum x+y has a representation in the form

$$z = x + y = z_{n+\ell} \dots z_0 \bullet z_{-1} \dots z_{-r}.$$

Then there exists k-block 3-local function performing parallel addition in the alphabet $\mathcal{A} = \mathcal{B} + \mathcal{B}$, where $k = 2(\ell + r)$.

Theorem (CF, PH, EP, MS, 2013)

Given a base β and an alphabet \mathcal{B} . Let us suppose that there exist positive integers ℓ and r such that for any $x=x_n\dots x_0 \bullet$ and $y=y_n\dots y_0 \bullet$ from $\operatorname{fin}_{\mathcal{B}}(\beta)$ the sum x+y has a representation in the form

$$z = x + y = z_{n+\ell} \dots z_0 \bullet z_{-1} \dots z_{-r}$$
.

Then there exists k-block 3-local function performing parallel addition in the alphabet $\mathcal{A} = \mathcal{B} + \mathcal{B}$, where $k = 2(\ell + r)$.

The condition might be generally difficult to check, is satisfied in some standard cases.

Theorem (CF, PH, EP, MS, 2013)

Given a base β and an alphabet \mathcal{B} . Let us suppose that there exist positive integers ℓ and r such that for any $x=x_n\dots x_0 \bullet$ and $y=y_n\dots y_0 \bullet$ from $\operatorname{fin}_{\mathcal{B}}(\beta)$ the sum x+y has a representation in the form

$$z = x + y = z_{n+\ell} \dots z_0 \bullet z_{-1} \dots z_{-r}.$$

Then there exists k-block 3-local function performing parallel addition in the alphabet $\mathcal{A} = \mathcal{B} + \mathcal{B}$, where $k = 2(\ell + r)$.

The condition might be generally difficult to check, is satisfied in some standard cases.

Example

Take $\beta > 1$, tribonacci base, i.e. root of $x^3 = x^2 + x + 1$.

Theorem (CF, PH, EP, MS, 2013)

Given a base β and an alphabet \mathcal{B} . Let us suppose that there exist positive integers ℓ and r such that for any $x = x_n \dots x_0 \bullet$ and $y = y_n \dots y_0 \bullet$ from $\operatorname{fin}_{\mathcal{B}}(\beta)$ the sum x + y has a representation in the form

$$z = x + y = z_{n+\ell} \dots z_0 \bullet z_{-1} \dots z_{-r}.$$

Then there exists k-block 3-local function performing parallel addition in the alphabet $\mathcal{A} = \mathcal{B} + \mathcal{B}$, where $k = 2(\ell + r)$.

The condition might be generally difficult to check, is satisfied in some standard cases.

Example

Take $\beta>1$, tribonacci base, i.e. root of $x^3=x^2+x+1$. With the alphabet $\mathcal{B}=\{0,1\}$, addition in $\operatorname{Fin}_{\mathcal{B}}(\beta)$ is possible with $\ell=2$ and r=5 (Bernat, 2007).

Theorem (CF, PH, EP, MS, 2013)

Given a base β and an alphabet \mathcal{B} . Let us suppose that there exist positive integers ℓ and r such that for any $x = x_n \dots x_0 \bullet$ and $y = y_n \dots y_0 \bullet$ from $\operatorname{fin}_{\mathcal{B}}(\beta)$ the sum x + y has a representation in the form

$$z = x + y = z_{n+\ell} \dots z_0 \bullet z_{-1} \dots z_{-r}$$
.

Then there exists k-block 3-local function performing parallel addition in the alphabet $\mathcal{A} = \mathcal{B} + \mathcal{B}$, where $k = 2(\ell + r)$.

The condition might be generally difficult to check, is satisfied in some standard cases.

Example

Take $\beta>1$, tribonacci base, i.e. root of $x^3=x^2+x+1$. With the alphabet $\mathcal{B}=\{0,1\}$, addition in $\mathrm{Fin}_{\mathcal{B}}(\beta)$ is possible with $\ell=2$ and r=5 (Bernat, 2007). Hence 14-block parallel addition is possible with the alphabet $\mathcal{A}=\{0,1,2\}$.

• Rényi expansion, $d_{\beta}(x)$: Performed by transformation $T_{\beta}(x) = \beta x - \lfloor \beta x \rfloor$

- Rényi expansion, $d_{\beta}(x)$: Performed by transformation $T_{\beta}(x) = \beta x \lfloor \beta x \rfloor$
- Property (PF): x + y has finite β -expansion when x, y > 0 do

- Rényi expansion, $d_{\beta}(x)$: Performed by transformation $T_{\beta}(x) = \beta x \lfloor \beta x \rfloor$
- Property (PF): x + y has finite β -expansion when x, y > 0 do

Proposition (CF, PH, EP, MS, 2013)

Let $\beta>1$ be a number with Property (PF). Then there exists k such that k-block parallel addition is possible on the alphabet $\{0,1,\ldots,2\lfloor\beta\rfloor\}$.

- Rényi expansion, $d_{\beta}(x)$: Performed by transformation $T_{\beta}(x) = \beta x \lfloor \beta x \rfloor$
- Property (PF): x + y has finite β -expansion when x, y > 0 do

Proposition (CF, PH, EP, MS, 2013)

Let $\beta>1$ be a number with Property (PF). Then there exists k such that k-block parallel addition is possible on the alphabet $\{0,1,\ldots,2\lfloor\beta\rfloor\}$.

Proposition (Frougny, Solomyak, 1992)

- A number $\beta > 1$ has Property (PF) if $d_{\beta}(1) = \bullet t_1 t_2 \cdots t_m$ and $t_1 \geq t_2 \geq \cdots \geq t_m \geq 1$.
- β has Property (PF) if $d_{\beta}(1) = \bullet t_1 t_2 \cdots t_m t^{\omega}$ and $t_1 \geq t_2 \geq \cdots \geq t_m \geq t \geq 1$.

- Rényi expansion, $d_{\beta}(x)$: Performed by transformation $T_{\beta}(x) = \beta x \lfloor \beta x \rfloor$
- Property (PF): x + y has finite β -expansion when x, y > 0 do

Proposition (CF, PH, EP, MS, 2013)

Let $\beta>1$ be a number with Property (PF). Then there exists k such that k-block parallel addition is possible on the alphabet $\{0,1,\ldots,2\lfloor\beta\rfloor\}$.

Proposition (Frougny, Solomyak, 1992)

- A number $\beta > 1$ has Property (PF) if $d_{\beta}(1) = \bullet t_1 t_2 \cdots t_m$ and $t_1 \geq t_2 \geq \cdots \geq t_m \geq 1$.
- β has Property (PF) if $d_{\beta}(1) = \bullet t_1 t_2 \cdots t_m t^{\omega}$ and $t_1 \geq t_2 \geq \cdots \geq t_m \geq t \geq 1$.

Theorem (CF, PH, EP, MS, 2013)

Let $d_{\beta}(1) = t_1 t_2 \cdots t_m$ with $1 \leq t_m \leq t_i$ for $i = 2, 3, \ldots, m$ and let $k \in \mathbb{N}$. If parallel addition can be performed by a k-block local function on $\mathcal{A} = \{0, 1, \ldots, M\}$, then $M \geq t_1 + t_m$.

Theorem (CF, PH, EP, MS, 2013)

Let $d_{\beta}(1) = t_1 t_2 \cdots t_m$ with $1 \leq t_m \leq t_i$ for $i = 2, 3, \ldots, m$ and let $k \in \mathbb{N}$. If parallel addition can be performed by a k-block local function on $\mathcal{A} = \{0, 1, \ldots, M\}$, then $M \geq t_1 + t_m$.

Corollary

Let $d_{\beta}(1)=t_1t_2\ldots t_m$ with $t_1\geq t_2\geq t_2\geq \ldots \geq t_m\geq t\geq 1$ be the Rényi expansion of 1. Then there exists $M\in\mathbb{N}$ such that parallel addition by a k-block local function is possible on the alphabet $\{0,1,\ldots,M\}$ and $t_1+t_m\leq M\leq 2t_1$.

Theorem (CF, PH, EP, MS, 2013)

Let $d_{\beta}(1) = t_1 t_2 \cdots t_m$ with $1 \leq t_m \leq t_i$ for $i = 2, 3, \ldots, m$ and let $k \in \mathbb{N}$. If parallel addition can be performed by a k-block local function on $\mathcal{A} = \{0, 1, \ldots, M\}$, then $M \geq t_1 + t_m$.

Corollary

Let $d_{\beta}(1)=t_1t_2\ldots t_m$ with $t_1\geq t_2\geq t_2\geq \ldots \geq t_m\geq t\geq 1$ be the Rényi expansion of 1. Then there exists $M\in\mathbb{N}$ such that parallel addition by a k-block local function is possible on the alphabet $\{0,1,\ldots,M\}$ and $t_1+t_m\leq M\leq 2t_1$.

Block parallel addition – *d*-bonacci base

Let $d\in\mathbb{N},\ d\geq 2.$ Choose $\beta>1$ as the real root of $X^d=X^{d-1}+X^{d-2}+\cdots+X+1.$

Block parallel addition – *d*-bonacci base

Let
$$d \in \mathbb{N}$$
, $d \ge 2$. Choose $\beta > 1$ as the real root of $X^d = X^{d-1} + X^{d-2} + \cdots + X + 1$.

• 1-block parallel addition requires $\#A \ge |f(1)| + 2 = d + 1$

Block parallel addition – *d*-bonacci base

Let
$$d \in \mathbb{N}$$
, $d \ge 2$. Choose $\beta > 1$ as the real root of $X^d = X^{d-1} + X^{d-2} + \cdots + X + 1$.

- 1-block parallel addition requires $\#A \ge |f(1)| + 2 = d + 1$
- $d_{\beta}(1) = \bullet(1)^d$ and $\lfloor \beta \rfloor = 1$, so k-block parallel addition is possible on the alphabet $\mathcal{A} = \{0, 1, 2\}$. It cannot be further reduced

• Concept of *k*-block parallel addition may allow substantial reduction of the size of alphabet

- Concept of *k*-block parallel addition may allow substantial reduction of the size of alphabet
- In some cases, estimates on cardinality of alphabet allowing parallel addition k is available

- Concept of *k*-block parallel addition may allow substantial reduction of the size of alphabet
- In some cases, estimates on cardinality of alphabet allowing parallel addition k is available
- Minimal size of k is known only in isolated cases (e.g. Penney system)

- Concept of *k*-block parallel addition may allow substantial reduction of the size of alphabet
- In some cases, estimates on cardinality of alphabet allowing parallel addition k is available
- Minimal size of k is known only in isolated cases (e.g. Penney system)
- Little results on locality of the function, p, are known

- Concept of *k*-block parallel addition may allow substantial reduction of the size of alphabet
- In some cases, estimates on cardinality of alphabet allowing parallel addition k is available
- Minimal size of k is known only in isolated cases (e.g. Penney system)
- Little results on locality of the function, p, are known
- Mutual dependence of the three parameters is yet to be investigated

Thank you for attention