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@ constant time, independent of the length of representations
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Theorem (C. Frougny, E. Pelantovd, M. Svobodovd, 2011)

Let 8 be an algebraic number such that || > 1 and all its conjugates in
modulus differ from 1. Then there exists an alphabet A C Z such that
addition on Fin4(3) can be performed in parallel.

Note: constructive proof; the alphabet might be unnecessarily large

Theorem (CF, EP, MS, 2013)

Let 8, |8] > 1, be an algebraic integer with minimal polynomial f. Let A
be an alphabet of contiguous integers containing 0 and 1. If addition in
Fin4(p) is computable in parallel, then #.4 > |f(1)|. If moreover 5 is a
positive real number, then #.A4 > |f(1)| + 2.
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Parallel addition — minimal alphabet

We require #.A > |f(1)|; if 5 is positive real, then #.A4 > |f(1)| + 2.

o =10, f3(X)=X-10, #A>|f3(1)]+2=11
o =4, f(X)=X-4 #A>|fQ1)|+2=5

e B =r, golden mean, £ (X)=X%>-X-1,
#A> |E ()] +2=3

e [ tribonacci base, f3(X)=X3—-X%2-X -1,
BA> (1) +2=4

o f=i—-1f(X)=X2+2X+2, #A>|f3(1)]=5

Large increase in cardinality of alphabet may be necessary for parallelism.
Potential solution: k-block.
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@ suggested by P. Kornerup, 1999

@ consider digits clustered in blocks of length k,

X:Xn...)gk+k_1...)(jk)gk_l...Xka_lo..XO.X_lo..X_m
~——— ——

Xj Xo

x € Fina(B) oo X X Xi X1 Xis... | X; € (A)F

y € Fina(B) Yt YiaYiYia Y. | Y e (A

W, =X+, Wi WaWW, 1 W ... | W e(A+ AF
Zi=¢Wise ... W) | .. Zie... ZinZiZ 1. 2 s... | Ze (A
Compare with 1-block:

x € Fina(p) Xt XXX —1 e Xjms .. | G EA

y € Fina(B) o Yt e Yi1YYie1 e Vs e yeA

W = xj + y; Wit W AW W1 Ws... | W EAFA

zj = ¢(Wjge ... wj—s) e Zjgt e Zi1ZZj1 .. Zjs ... ze A
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Known to help with g =7 —1

@ 1-block parallel addition requires #A4 > 5
@ 4-block parallel addition possible on {—1,0,1} (Herreros, 1991)
@ 2-block parallel addition possible on {—1,0,1} (Svobodova, 2013)

However, this is the only known example, and:

Proposition

Let 8 € C, |8| > 1 be an algebraic integer with conjugate « of modulus
|v| =1 and let A C Z be a finite alphabet. Then no k-block p-local
function can perform parallel addition on alphabet A.
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Block parallel addition

Theorem (CF, PH, EP, MS, 2013)

Given a base 3 and an alphabet 5. Let us suppose that there exist
positive integers ¢ and r such that for any x = x,...xpe and

Y = Yn...yoe from fing(B) the sum x + y has a representation in the
form

Z=X+tY=2Znip...2092_1...2_.

Then there exists k-block 3-local function performing parallel addition in
the alphabet A = B+ B, where k = 2(¢ +r).

The condition might be generally difficult to check, is satisfied in some
standard cases.

Take 8 > 1, tribonacci base, i.e. root of x3 = x2 + x + 1. With the
alphabet B = {0,1}, addition in Fing(83) is possible with £ =2 and

r =5 (Bernat, 2007). Hence 14-block parallel addition is possible with
the alphabet A = {0, 1, 2}.
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Block parallel addition — d-bonacci base

Let d € N, d > 2. Choose 8 > 1 as the real root of
X9 = Xd-1 4 x9-2 1 ... 4 X +1.

@ 1-block parallel addition requires #A > |f(1)|+2=d + 1

o ds(1) = e(1)? and [B] = 1, so k-block parallel addition is possible
on the alphabet A = {0, 1,2}. It cannot be further reduced
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Conclusion

@ Concept of k-block parallel addition may allow substantial reduction
of the size of alphabet

@ In some cases, estimates on cardinality of alphabet allowing parallel
addition k is available

e Minimal size of k is known only in isolated cases (e.g. Penney
system)

o Little results on locality of the function, p, are known

@ Mutual dependence of the three parameters is yet to be investigated



Thank you for attention



