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Homological theory of the “algebras in analysis” exists in at least three different versions.

First of all, there is the homological theory of Banach and more general locally convex

algebras. This is about 40 years old. However, in the last decade of the previous century,

a “homological section” appeared in a new branch of analysis, the so-called quantized

functional analysis or, more prosaically, the theory of operator spaces. One of principal

features of this theory, as is now widely realized, is the existence of different approaches

to the proper quantum version of a bounded bilinear operator. In fact, two such versions

are now thought to be most important; each of them has its own relevant tensor product

with an appropriate universal property. Accordingly, there are two principal versions of

quantized algebras and quantized modules, and this leads to two principal versions of

quantized homology.

Thus we have now, in the first decade of the 21st century, three species of topological

homology: the traditional (or “classical”) one, and two “quantized” ones.

In these lectures, we shall restrict ourselves by studying, in the framework of these

three theories, the fundamental concept of a projective module. This concept is “primus

inter pares” among the three recognized pillars of the science of homology: projectivity,

injectivity, and flatness. It is this notion that is the cornerstone for every sufficiently

developed homological theory, let it be in algebra, topology, or, as in these notes, in

functional analysis.

Our initial definitions of projectivity do not go far away from their prototypes in

abstract algebra. However, the principal results concern essentially functional-analytic

objects. As we shall see, they have, as a rule, no purely algebraic analogues. Moreover,
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some phenomena are strikingly different from what algebraists could expect, based on

their experience.

0 On terminology and notation

Proofs (or what is held to be a proof) are placed between the signs “/” and “.”; when

placed side by side (/.), these signs means “obviously” or “can be verified immediately”.

The sign ⇐⇒ replaces the words “if and only if”. An equality by definition is often

denoted by the sign “:=”.

Throughout our presentation, the words “in-, sur-, or bijective” are applied to maps

(in particular, to operators, morphisms of modules, etc.), and they have their standard

set-theoretical meaning. On the other hand, the terms “mono-, epi- or isomorphism” are

always used in the theoretical-categorical sense.

Now we must turn to more delicate matters. The problem is that the terminology

and the notation of the subject, at least in its “quantum” part is still far from being

established. Therefore we have to spend some time to explain what we shall mean by this

word or sign.

Generally speaking, we shall freely use the treatise of E. Effros and Z.-J. Ruan [6]

as the main source of knowledge about quantized spaces (called, in that book, operator

spaces)1. However, by necessity we shall have to deviate considerably from the terms and

notation of [6], and, of course, all differences must and will be explicitly stated. As to

more traditional matters (Banach algebras and modules, ABC of category theory etc.),

we shall follow the textbook [11] or the survey [15].

To begin with, we are afraid to use the overloaded adjective “operator” for spaces,

algebras and modules of quantized functional analysis (“theory of operator spaces” as in

[6] or [19]). Instead we shall use the term “quantum space” for the matrix-normed spaces,

satisfying the now famous Effros–Ruan axioms [6, p. 20]. A matrix-norm on a linear space

E is a collection ‖ · ‖n with n = 1, 2, . . ., where the indicated symbol denotes a norm on

the space Mn(E) of square n×n matrices with the entries in E. We recall that in the case

of a quantum space a matrix norm gives rise to a norm on any space Mm,n of rectangular

m × n matrices with the entries in E. (To introduce this norm, we transform a given

rectangular matrix into a square matrix by adding zero entries; the resulting norm does

not depend on the way we do it).

1Recently, another conspicuous book on the subject, written by G. Pisier [19], appeared. There the

main concepts are exposed in the language of operators, not of n× n matrices, as in [6]. To be frank, this

“coordinate free” approach and many other preferences in [19] more appeal to my personal taste. However,

the majority of my readers are much more familiar with the book [6], written in a more elementary way,

and with great accuracy and a high pedagogical skill.
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If the first, and hence all, of the respective matrix norms are complete, we speak about

a quantum Banach space.

At the same time, when we in these notes use the adjective “operator”, we just mean

that the respective space, algebra or module is a uniformly closed (= operator-norm closed)

subspace of the space of all bounded operators on some Hilbert space H. This latter space,

which is, in fact, an algebra, will always be denoted by B(H). (As an exception, in Section

3 we shall use the term “operator algebra” for a slightly wider class of algebras, but that

will be specially mentioned in due time).

If ϕ : E → F is an operator between to quantum spaces, then the operator ϕn :

Mn(E) → Mn(F ), (xij) 7→ (ϕ(xij)), participating in the fundamental concept of a com-

pletely bounded operator, will be called the n-th amplification of ϕ. We recall that ϕ is

called completely bounded, if sup{‖ϕn‖;n = 1, 2, . . .} < ∞. This supremum is called the

completely bounded norm of ϕ, and it is usually denoted by ‖ · ‖cb.
For a given quantum space E, the normed space Mn(E) will be often called in these

notes “the normed space in the n-th floor of E”. In particular, the underlying Banach

space, identified with the respective Banach space of 1×1 matrices, will be often called

“the Banach space in the first floor of E”. Rather often, speaking about E, we shall mean

just the latter space; this will not lead to a misunderstanding.

To quantize a Banach space is to make it a quantum Banach space in such a way that

the norm on the respective space in the first floor coincides with the given norm. We

recall that every isometric operator from E into some B(H) gives rise to a quantization

of E in this sense . (The standard procedure is the respective embedding of Mn(E) into

B(nH)), and the subsequent endowing of Mn(E) by the induced norm [6, pp. 20–21].

Here and after nH denotes the Hilbert sum of n copies of H). Conversely, by virtue of

Ruan’s Representation Theorem of [6, p. 33], each quantization of E can be obtained with

the help of such an operator. In this connection, sometimes the term quantization will

also mean the mentioned isometrical operator, implementing the relevant structure of a

quantum Banach space in question; this will not cause confusion. If a space in question

is already given as a subspace of some B(H), we shall always consider the quantization

which is implemented by the respective natural embedding, and call this quantization

standard .

As we shall see, each of the three homological theories, mentioned above, is intimately

connected with “its own” distinguished type of tensor product, playing in this theory an

outstanding role. As to the first one, it is the time-honored projective tensor product of

Banach spaces, denoted, as usually, by “⊗̂”. The two others are two different tensor prod-

ucts of quantum Banach spaces: the completed version of the so-called Haagerup tensor

product [6, p. 153], and the completed version of what was called in [6, p. 124] operator-

projective tensor product (discovered by E. Effros and Z.-J. Ruan, and, simultaneously
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and independently, by D. Blecher and V. Paulsen). We shall denote the former by “
h
⊗”

and the latter by “
o
⊗”. (Naturally, we are forbidden to use the notation “⊗̂” for this latter

tensor product, as this is done in [6]). Accordingly, we shall often refer to these theories

as “⊗̂-,
h
⊗- and

o
⊗”-theory .

We emphasize that, for Banach spaces E and F , E ⊗̂ F is just a Banach space, not

equipped with any quantization. At the same time, the objects E
h
⊗ F and E

o
⊗ F have

meaning only for quantum Banach spaces E and F , and they are again quantum Banach

spaces.

Let E and F be (just) Banach spaces or, according to the sense, quantum Banach

spaces. We believe that our listener/reader knows fairly well what the norm on E ⊗̂ F
is. As to the matrix-norms on E

h
⊗ F and E

o
⊗ F , we recall, for his convenience, their

definitions.

As usual, E⊗F denotes the algebraic tensor product of the relevant linear spaces. Each

of the Banach spaces Mn(E
h
⊗F ) andMn(E

o
⊗F ) is defined as the completion of Mn(E⊗F )

in some specific norm, the so-called Haagerup norm, or
h
⊗-norm and, operator-projective

norm, or
o
⊗-norm. These, in their turn, are defined as follows.

To speak about the
h
⊗-norm, we need at first a preparatory notion. Consider, for

any m,n ∈ N, two rectangular vector-valued matrices v = (vij) ∈ Mn,m(E) and w =

(wij) ∈ Mm,n(F ). Then the so-called Effros product (or matrix inner product) of v

and w, denoted by v � w, is, by definition, the matrix in Mn(E ⊗ F ) with the entries

(v �w)ij :=
∑n

k=1 vik ⊗ wkj.

Now fix a matrix u ∈ Mn(E ⊗ F ). We take all possible representations of u in the

form of the Effros product v�w with v ∈Mn,m(E), w ∈Mm,n(F ) with arbitrary m ∈ N.

(It is easy to see that such representations indeed exist). Then the Haagerup norm of u

is defined as

‖u‖ = inf{‖v‖‖w‖}, (1)

where the infimum is taken over all indicated representations [6, p. 152].

The
o
⊗-norm needs another preparatory notion, the tensor product of vector-valued

matrices. Now let v ∈ Mk,l(E) and w ∈ Mm,n(F ) be two rectangular matrices for any

k, l, q, r ∈ N. We denote by Mk×q,l×r(E⊗F ) the set of rectangular matrices with kq rows,

indexed by double subscripts, say gh for 1 ≤ g ≤ k and 1 ≤ s ≤ q, and with lr columns,

indexed by double subscripts, say st for 1 ≤ g ≤ l and 1 ≤ t ≤ r.2 Then the tensor (or

Kronecker) product of v and w is, by definition, the matrix v ⊗ w ∈ Mk×q,l×r(E ⊗ F )

with the entries (v ⊗ w)(gs)(ht) := vgh ⊗ wst.

2These double subscripts can be ordered, say, in the lexicographical manner, but in fact there is no real

need for this.
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Now fix a matrix u ∈ Mn(E ⊗ F ). We take all possible representations of u in the

form of the (usual) matrix product of three rectangular matrices α(v⊗w)γ with v ∈Mk,l,

w ∈ Mq,r, α ∈ Mn,k×q, and γ ∈ Ml×r,n, with arbitrary k, l, q, r ∈ N. Here, as you see, in

the scalar matrix α the rows are indexed by single, and the columns by double subscripts,

whereas γ has the “symmetric” structure. (It is not difficult to show that representations

of the indicated form exist.) Then we have

‖u‖ = inf{‖α‖‖v‖‖w‖‖γ‖}, (2)

where the infimum is taken over all these representations [6, p. 124].

The important fact that will be frequently used is that the
o
⊗-norm is bigger that the

h
⊗-

norm, and, if we shall speak about the first floor, the ⊗̂-norm is still bigger. In equivalent

terms, there exist a contractive operator j1 and a completely contractive operator j2 such

that the diagram
E ⊗ F

	�
�

�
�

�
in1

@
@

@
@

@

in3

R
E ⊗̂ F j1- E

o
⊗ F

in2

?
j2- E

h
⊗ F

, (3)

where ink, for k = 1, 2, 3, are the respective natural embeddings, is commutative.

The word “bioperator” is used as the abbreviation of “bilinear operator”. As it was

already mentioned, in the quantized functional analysis there are two principal versions

of the concept of a bounded bioperator. The respective definitions, in their turn, depend

on what to call the amplification of a given bioperator R : E × F → G between quantum

spaces.

In the first approach (that was discovered earlier), the n-th multiplicative amplification

or, briefly, n-th
h
⊗-amplification of R for n = 1, 2, . . . is, by definition, the bioperator

R(h)
n : Mn(E) ×Mn(F )→Mn(G), taking a pair u = (uij), v = (vij) to the n× n matrix

w(h) with the entries w
(h)
ij :=

∑n
k=1R(uik, vkj).

On the other hand, the n, k-th complete amplification or, briefly, n, k-th
o
⊗-amplifica-

tion of R for n, k = 1, 2, . . . is, by definition, the bioperator R(o)
n,k : Mn(E) ×Mn(F ) →

Mn×k(G). This bioperator takes a pair u = (ugh), v = (vst) to the nk × nk matrix w(o)

with the entries w
(o)
(gs)(ht) := R(ugh, vst).

If it happens that sup{‖R(h)
n ‖;n = 1, 2, . . .} <∞, we say that the initial bioperator R

is multiplicatively bounded and call this supremum the multiplicatively bounded norm R.

Replacing in this phrase the subscript n by n, k, and the superscript (h) by (o), we obtain

the definitions of a completely bounded bioperator and of the completely bounded norm

of such a bioperator. (Note that in the second definition we could, without changing the

result, to restrict ourselves with the case k = n, but the presented form will happen to be

more convenient.)
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We recall that every multiplicatively bounded bioperator is automatically completely

bounded, and its multiplicatively bounded norm is greater than or equal to its completely

bounded norm. (One can deduce it from the easy observation thatR(o)
n,n(u,v) = R(h)

n×n(u⊗
1,1⊗ v), where 1 is the identity matrix in Mn(Cn).)

Rather often in our exposition, we shall present the material in a parallel way (that is

simultaneously) for all three theories. In the respective places we shall use the symbol ⊗̃
(“unspecified tensor product”) for each of the three mentioned types of tensor product.

Accordingly, the reader can replace this symbol by any of the symbols ⊗̂,
h
⊗ or

o
⊗, but, of

course, he must be true to this chosen symbol throughout the whole text of our notes.

To make such a device work smoothly, let us make some further agreements.

Throughout these notes, we shall frequently use the term “⊗̂-space” for a classical

Banach space, and the term “
h
⊗-space” as well as “

o
⊗-space” for a quantum Banach space.

The term “⊗̂-bounded operator” will mean (just) a bounded operator, whereas the terms

“
h
⊗-bounded” as well as “

o
⊗-bounded operator” will equally mean a completely bounded

operator. Often instead of “⊗̃-bounded operator” we shall say just “⊗̃-operator”.

The category of Banach spaces and bounded operators will be denoted by Ban, and

the category of quantum Banach spaces and completely bounded operators by QBan.

The notation ⊗̃-Ban will mean Ban for ⊗̃ = ⊗̂, and QBan for ⊗̃ =
h
⊗ or ⊗̃ =

o
⊗. It is

obvious that isomorphisms in ⊗̃-Ban are ⊗̃-operators, possessing inverse ⊗̃-operators; we

shall call them ⊗̃-isomorphisms.

Further, a “⊗̂-bounded bioperator” is just a bounded bioperator, “
h
⊗-bounded biopera-

tor” is a multiplicatively bounded bioperator, and “
o
⊗-bounded bioperator ’ is a completely

bounded bioperator. Often instead of “⊗̃-bounded bioperator” we shall say just “⊗̃-

bioperator”.

When we speak about norms of operators and bioperators, we adhere to the following

agreement. A ⊗̂-norm means just a classical norm of an operator, or, according to the

sense, of a bioperator. At the same time,
h
⊗-norm is either the completely bounded norm

of a completely bounded operator or it is the multiplicatively bounded norm of a multi-

plicatively bounded bilinear operator. Finally,
o
⊗-norm is either (again) the completely

bounded norm of a completely bounded operator or it is the completely bounded norm

of a completely bounded bilinear operator. These norms will be denoted respectively by

‖ · ‖b⊗
, ‖ · ‖h

⊗
, and ‖ · ‖ o

⊗
. (There will be no confusion with what was called above

h
⊗- and

o
⊗-norm in the space Mn(E ⊗ F ).)

An ⊗̃-operator or ⊗̃-bioperator ϕ is called ⊗̃-contractive if ‖ϕ‖e⊗
≤ 1. An ⊗̃-operator

is called ⊗̃-isometric if it is (just) isometric in the case ⊗̃ = ⊗̂ and completely isometric

(that is, isometric in every floor) in the case where ⊗̃ =
h
⊗ or ⊗̃ =

o
⊗.

As a first occasion of such parallel presentation, we shall formulate the triple funda-
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mental theorem, reflecting the very raison d’être of our tensor products.

Theorem 0 Let R : E×F → G be a bioperator between ⊗̃-spaces. Then R is ⊗̃-bounded

⇐⇒ there exists a unique linear ⊗̃-bounded operator R such that the diagram

E × F
@

@
@

@
@

R

R
E ⊗̃ F

ϑ

?
R - G

with ϑ : (x, y) 7→ x⊗ y, is commutative. Moreover, ‖R‖ e⊗
= ‖R‖e⊗

holds.

/ See [11, p. 32] in the “classical” case and [6, pp. 126 and 154] in the “quantum” cases.

.

The property of the tensor product ⊗̃, figuring in this theorem, is called the universal

property of this tensor product with respect to ⊗̃-bounded bioperators. The operator R is

called associated with the bioperator R and, vice versa, the latter is called associated with

R.

In what follows, we shall frequently use the functional-analytic versions of the tensor

product functors. Namely, a fixed ⊗̃-space E gives rise to the covariant functor denoted

by

E⊗̃? : ⊗̃-Ban→ ⊗̃-Ban.

It sends a “running” ⊗̃-space F to E ⊗̃ F and an ⊗̃-operator ϕ : F → G to 1E ⊗̃ ϕ :

E ⊗̃G→ E ⊗̃G; the latter operator is well defined (with the help of Theorem 0) by taking

an elementary tensor x ⊗ y to x ⊗ ϕ(y). In the similar way, one can define the functor

? ⊗̃E : ⊗̃-Ban→ ⊗̃-Ban; F 7→ F ⊗̃E, ϕ : F → G 7→ ϕ ⊗̃ 1E : F ⊗̃E → G ⊗̃E.

We recall that, for any E ∈ ⊗̃-Ban, the ⊗̃-spaces E ⊗̃ C and C ⊗̃E can be identified

with E by means of the ⊗̃-isometrical isomorphism, taking x ⊗ λ (or λ ⊗ x) to λx for

x ∈ E and λ ∈ C. This simple fact will be frequently used.

Remark In the ⊗̂- and
o
⊗-theories, the introduced functors of “left” and “right” tensor

multiplication have no practical difference; to speak exactly, they are naturally equivalent

because of the commutativity of the operations ⊗̂ and
o
⊗. On the contrary, they are

essentially different in the
h
⊗-theory, with its non-commutative tensor product. However,

at the very beginning of the construction of the homological theory these differences still

do not have an important impact.

Now we shall introduce, in our agreed simultaneous way, our three principal types

of “algebras in analysis”. Namely, by an ⊗̃-algebra A we mean a ⊗̃-space endowed by
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a ⊗̃-bioperator of multiplication m : A × A → A (which is, generally speaking, is not

supposed to be ⊗̃-contractive). Thus, a ⊗̂-algebra is just a “classical” Banach algebra.

Any
h
⊗-algebra is automatically

o
⊗-algebra, but not vice versa. For both

h
⊗- and

h
⊗-algebras

we shall use the generic name “quantum algebras”.

The ⊗̃-operator associated with m is called the product operator for A and denoted by

π : A ⊗̃A→ A. Clearly, it is uniquely determined by taking a⊗ b to ab for a, b ∈ A.

Remark The striking theorem of Blecher [2] states that
h
⊗-algebras can be characterized,

up to ⊗̃-isomorphism, as operator norm-closed subalgebras of some B(H), with their

standard quantization. (Therefore ⊗̃-algebras are often referred — with the great danger

of confusion, in our opinion — as “operator algebras”.) But this characterization does

not remain true in the larger class of
o
⊗-algebras.

From “algebras in analysis” we proceed to “modules in analysis”. Let A be a fixed

⊗̃-algebra. A left ⊗̃-module over A or, in short, left A-⊗̃-module is a ⊗̃-space X endowed

by a ⊗̃-bioperator of left outer multiplication ṁ : A×X → X. Since we consider almost

exclusively left modules in these notes, the adjective “left” will be often omitted.

As in the case of algebras, speaking about quantum modules, we mean
h
⊗- and

o
⊗-

modules together.

The ⊗̃-operator, associated with ṁ, is called the outer product operator for X and

denoted by πX : A ⊗̃X → X. Clearly, it takes a ⊗ x to a · x for a ∈ A and x ∈ X. (We

often write just π, if X is fixed.)

As our final agreement, we take ⊕̇ and ⊗̇ as the symbols for the Hilbert direct sum

and the Hilbert tensor product of Hilbert spaces. Sometimes, in order to avoid possible

ambiguity, we shall use the latter symbol also for elementary tensors in the respective

spaces (e.g., x⊗̇y ∈ H⊗̇K), and also for respective types of tensor products of operators

(e.g., a⊗̇b, acting on H⊗̇K).

Other terms and notation will be fixed later.

1 General definitions and properties

All the basic homological definitions concerning the projectivity are parallel in all consid-

ered cases. They are special versions of the well-known definitions of relative homological

algebra, however adjusted to the needs of functional analysis. Therefore, in order to avoid

a tiresome repetition, we shall expound the general-categorical scheme, embracing all our

functional-analytic constructions (and a lot of others).

Let K be a fixed additive category.

Definition 1.1 A pre-relative structure in K is a faithful additive functor � : K → L.

(We recall that a functor is called faithful, if it takes different morphisms in the domain
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category to different morphisms in the range category.) A category equipped with a

pre-relative structure is called a pre-relative category.

The manner in which we introduced this concept emphasized that in our pair of cate-

gories, K is a principal and L is an auxiliary subject of our consideration. For the same

reason, we shall use the expression “a pre-relative category (K,� : K → L)” (or just

“(K,�)”); the meaning is obvious.

Our main triple of examples (simultaneously presented) is as follows. Let A be a fixed

⊗̃-algebra.

Definition 1.2 The category of left ⊗̃-modules over A, denoted by A-⊗̃-mod, is the cat-

egory with the indicated modules as objects and the maps that are morphisms of modules

in the algebraic sense and at the same time ⊗̃-bounded operators as morphisms. This

category is made pre-relative by means of the functor � : A-⊗̃-mod → ⊗̃-Ban, taking

modules to their underlying ⊗̃-spaces and morphisms to the same maps, but considered

(only) as ⊗̃-operators .

So, we see that our functor (or, better, three functors) � belong to the large family

with the generic name “forgetful functors”. Our particular functors “forget about the

outer multiplication”.

In what follows, we shall use the adjective “forgetful” meaning, according to the con-

text, either the just mentioned triple of “concrete” functors or the “abstract” functor from

Definition 1. This, as well as use of the same notation “�”, will not cause a confusion.

Sometimes we shall need the unital versions of our categories, denoted, in our “unspec-

ified way”, by UA-⊗̃-mod. Now the relevant basic ⊗̃-algebra A is supposed to be unital,

and the respective left ⊗̃-modules over A are also supposed to be unital. Evidently, in the

case of a unital A the category UA-⊗̃-mod is a full subcategory in A-⊗̃-mod. We also

consider it as a pre-relative category with respect to similarly defined forgetful functor �.

Remark As it was already said, we consider in these lectures/notes only left modules.

However, the general scheme presented below works equally well in the cases of other

types of modules, notably bimodules (= two-sided modules). Regretfully, we have no

space/time to speak about these interesting questions and their applications.

Let us return to our abstract pre-relative category (K,� : K → L). In what follows, it

will be convenient to speak about morphisms, meaning only those in K, and, taking into

account our principal examples, refer to morphisms in L as “operators”. A pre-relative

structure enables us to distinguish in K a class of “best” (in fact, “becoming best after

the oblivion”) morphisms:

Definition 1.3 A morphism σ : X → Y in K is called admissible if �(σ) is a retraction

(i.e. it has a right inverse operator) in L.
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Remark It is easy to see that an admissible morphism in (K,�) is necessarily an epi-

morphism. In fact, it would be more precise to call such morphisms “admissible as epi-

morphisms”; soon we shall see that this notion leads to the concept of a projective object

of a pre-relative category. However, the different notion of a morphism, admissible as a

monomorphism, which would lead to the concept of an injective object, is left outside the

scope of our lectures.

Let us turn, for a moment, to our principal examples. For all of them it is obvious that

any admissible morphism is surjective, and that its kernel, as a subspace of the relevant

Banach space, has a Banach complement. As to the “classical” category A-⊗̂-mod, it is

also obvious that the converse is true; however, it is not so for our “quantum” categories

(give a simple counter-example!).

We now come to the principal definition in our whole course of lectures. Again, we

have an abstract pre-relative category (K, � : K → L).

Definition 1.4 An object P ∈ K is called projective (or, more precise, projective relative

to �), if, for any admissible morphism σ : X → Y in K and an arbitrary morphism

ϕ : P → Y in K, there exists a morphism ψ : P → X (called a lifting of ϕ) such that the

diagram
X

�
�

�
�

�
ψ

�

P
ϕ - Y

σ

?

is commutative.

Unfortunately, we have no space/time to expound the virtues of projectivity. In fact,

all homology theory is based on this concept. In particular, methods, based on projectivity,

are very powerful in the computation of cohomology and homology groups of our algebras,

with all the consequences for the structure theory of “algebras in analysis” and various

areas where these algebras serve. (See, e.g., [10] or [15]). Now let us just believe that the

concept is indeed worthy of the most intent study.

Proposition 1.1 A retract (in K) of a projective object is projective.

/ Obviously, we need to show that a diagram in K of the form

P
ψ1 - X

�
�

�
�

�
ψ

�

Q

τ

?

ρ

6

ϕ - Y

σ

?
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(considered initially without ψ and ψ1), in which P is projective, τ ◦ ρ = 1Q and σ is

admissible, may be made commutative by adding a morphism ψ. Since P is projective,

the composition ϕ ◦ τ (taken as ϕ in the previous definition) has a lifting, say ψ1. It

remains to set ψ := ψ1 ◦ ρ. .

Proposition 1.2 If P is projective, then every admissible morphism σ : X → P is a

retraction in K.

/ All we have to do is to set Y := P and ϕ := 1P in the diagram (3). .

Referring to projective objects in our principal categories A-⊗̃-mod and UA-⊗̃-mod,

we shall, naturally, call them projective left A-⊗̃-modules and, respectively, projective

unital left A-⊗̃-modules. Sometimes in the first case it will be more convenient to use the

term “⊗̃-projective left A-module”, and in the second case the term “⊗̃-projective unital

left A-module”.

Since we can consider unital modules (over a unital algebra) in both categories, there

is an apparent danger of confusion. However, as a matter of fact, the “unital” version of

projectivity is consistent with the “general” version (see our Corollary 3 below).

Where are we to look for projective objects?

Consider, apart from the “abstract forgetful functor” �, a functor F : L → K, acting,

as you see, in the opposite direction. Consider also a natural transformation of functors

α : 1L → �F . (We recall that this means that for any E ∈ L an operator αE : E →
�(FE) is given in such a way that, for any operator ρ : E → G in L, the diagram

E
ρ - G

�(FE)

αE

?
�(Fρ)- �(FG)

αG

?

is commutative.)

Definition 1.5 A functor F : L → K is called a freedom functor (to be precise: a

freedom functor with respect to the pre-relative structure �) if there exists α as above

(called associated to F) with the following property: for any pair (X ∈ K, E ∈ L) and an

operator ϕ0 : E → �X there exists a unique morphism ϕ : FE → X making the diagram

E

@
@

@
@

@

ϕ0

R
�(FE)

αE

?
�ϕ- �X

(4)
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commutative. In this situation, an object in K of the form FE with E ∈ L is called a free

object (or F -free object, if there is a danger of a confusion) with the base E

Definition 1.6 A pre-relative category is called relative if it has a freedom functor.

In what follows we shall use the expression “the relative category (K,�,F , α)”; its

meaning is obvious. Let us fix such an aggregate.

Theorem 1.1 Any free object in a relative category is projective.

/ Let, in the accepted notation, FE with E ∈ L be our free object, and let σ and ϕ be

the “lifting data” in Definition 4; in particular, we suppose that �σ has a right inverse

operator ρ.

Consider, in L. the diagram

E
ψ0 - �X

�(FE)

αE

?
�ϕ- �Y

�σ

?

ρ

6

with ψ0 = ρ ◦ (�ϕ) ◦ αE ; obviously, it is commutative. By virtue of Definition 5 (the

“existence part”), there is a morphism ψ, making the diagram

E

@
@

@
@

@

ψ0

R
�(FE)

αE

?
�ψ- �X

commutative. Then we have

�(σψ) ◦ αE = (�σ) ◦ (�ψ) ◦ αE = (�σ) ◦ ψ0 = (�ϕ) ◦ αE.

Therefore, putting ϕ0 := (�ϕ)◦αE , we see that the diagram (4), which is commutative by

its construction, remains commutative, if we replace �ϕ by �(σψ). Using again Definition

5 (but now its “uniqueness part”), we obtain that ϕ = σ ◦ ψ. The rest is clear. .

What does this “abstract nonsense” give for our concrete pre-relative categories of

modules? It turns out that all of them are relative, and their free objects can be con-

structed with the help of the respective version of the tensor product.

Let A be an ⊗̃-algebra, X a A-⊗̃-module, and E a ⊗̃-space.
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Proposition 1.3 The ⊗̃-space X ⊗̃E is an A-⊗̃-module with respect to the outer multi-

plication, well defined by a · (x⊗ y) := a · x⊗ y.

/ Consider the outer product ⊗̃-operator πX : A ⊗̃X → X (see Section 0). Applying to

it the functor ? ⊗̃E (see Section 0), we obtain the ⊗̃-bounded operator

πX ⊗̃ 1 : (A ⊗̃X) ⊗̃E → X ⊗̃E.

Now recall that all tensor products, denoted now by “⊗̃”, are associative; this means there

exists an ⊗̃-isometry between ⊗̃-spaces A ⊗̃ (X ⊗̃ E) and (A ⊗̃X) ⊗̃ E, well defined by

identifying the elementary tensors a⊗ (x⊗ y) and (a⊗ x)⊗ y [11, p. 38] and [6, pp. 159

and 128]. Composing this isometry with πX ⊗̃ 1, we see that there exists an ⊗̃-operator

from A ⊗̃ (X ⊗̃ E) to X ⊗̃ E, well defined by taking the elementary tensor a ⊗ (x ⊗ y)
to the same (a · x) ⊗ y. Denote by ṁ : A × (X ⊗̃ E) → X ⊗̃ E the respective associated

⊗̃-bioperator. Using the associativity property of the outer multiplication in X and the

density of the span of the elementary tensors in X ⊗̃ E, we easily see that ṁ has the

associativity property, required for a left outer multiplication in X ⊗̃E. .

As a particular case, when we consider our basic algebra A as a left ⊗̃-module over

itself (with the inner multiplication taken as an outer one), this construction provides

an A-⊗̃-module A ⊗̃ E. Further, if our E is itself an A-⊗̃-module, say Y , we easily see

that the outer product operator πY : A ⊗̃ Y → Y is actually a morphism in A-⊗̃-mod.

(Indeed, the relation πY (a ·u) = a ·πy is obvious when u is an elementary tensor in A ⊗̃Y ,

and, since the span of elementary tensors is dense in the latter space, it is true for all

u ∈ A ⊗̃ Y .) Accordingly, in what follows πY will be referred to as the outer product

morphism for Y . A distinguished representative of this class of morphisms, is, of course,

our familiar π : A ⊗̃ A → A (corresponding to the case where X = Y = A); this will be

called from now on the product morphism for A.

Now consider a ⊗̃-operator ρ : E → G between two ⊗̃-spaces and the respective ⊗̃-

operator 1 ⊗̃ ρ : X ⊗̃E → X ⊗̃G. Using the density of the span of elementary tensors in

X ⊗̃E, we immediately see that this operator is in fact a morphism of A-modules. This

shows that, as a matter of fact, the covariant functor X ⊗̃?, introduced in Section 0 as

acting on ⊗̃-Ban, now takes this category to A-⊗̃-mod.

In order to use the functor X⊗̃? : ⊗̃-Ban → A-⊗̃-mod for our aims, we need at the

moment a very special case of a module X. Namely, take our basic ⊗̃-algebra A and put

A+ := A⊕ C; it has a distinguished element (0, 1), denoted by e and called the adjoined

identity . From pure algebra we know that A+ is a unital algebra, the so-called unitization

of A, with the multiplication (a + λe)(b + µe) := ab + λb + µa + λµ for a, b ∈ A and

λ, µ ∈ C (extending the given one in A). The identity in A+ is, of course, the adjoined

identity. Apart from this, any left module Y over A becomes a left module over A+, with

13



the extended outer multiplication (a+ λe) · x := a · x+ λx for a ∈ A, y ∈ Y , and λ ∈ C.

However, we shall include these constructions in the framework of functional analysis a

minute later. Right now we shall only make A+ a left ⊗̃-module over A.

In fact, there are a lot of ways to do this (as well as other promised things) in such

a manner that the natural embedding of A into A+ is an ⊗̃-isometry. For simplicity, we

choose the following concrete device. Consider the isometric operator i : A → B(H),

coinciding with the given quantization in both “quantized” cases and arbitrarily taken

in the “classical” case (i.e. when ⊗̃ = is ⊗̂). After this, we proceed to the operator

i⊕̇1 : A+ = A⊕C→ B(H⊕̇C) and consider it as a quantization of A+ in the “quantum”

cases; as to the “classical” case, we just equip A+ with the induced norm. (Here in fact

we have, of course, ‖a+ λe‖ = max{‖a‖, |λ|}).
Consider the operators j : A+ → A, a+ λe 7→ a and k : A+ → C, a+ λe 7→ λ. It easily

follows from the choice of the ⊗̃-norm in A+ that both are ⊗̃-bounded.

Proposition 1.4 The ⊗̃-space A+, equipped with the outer multiplication

ṁ : A×A+ → A+, (a, b+ λe) 7→ ab+ λa

(that is, with the respective restriction of the inner multiplication in A+) is an A-⊗̃-

module.

/ The operators j and k, indicated above, give rise to operators 1 ⊗̃ j : A ⊗̃A+ → A ⊗̃A
and 1 ⊗̃ k : A ⊗̃A+ → A ⊗̃C, participating in the (non-commutative!) diagram

A ⊗̃A

�
�

�
�

�
1 ⊗̃ j

� @
@

@
@

@

π

R
A ⊗̃A+ A

in - A+

@
@

@
@

@
1 ⊗̃ k

R �
�

�
�

�

i

�

A ⊗̃ C

where π is the product operator (see above), i the standard ⊗̃-isometry between A ⊗̃ C

and A (taking λ ⊗ y to λy), and in is the natural embedding. Put π+ := (in) ◦ π ◦ (1 ⊗̃
j)+(in)◦ i◦ (1 ⊗̃ k). Since all indicated operators are ⊗̃-bounded, the same is true for π+.

Therefore the bioperator ṁ, being obviously associated to π+ is, by virtue of Theorem 0,

⊗̃-bounded. .

Now we concentrate on the functor A+⊗̃? : ⊗̃-Ban → A-⊗̃-mod, that is on the

particular case of X⊗̃? (see above) when X := A+. Further, for any E ∈ ⊗̃-Ban,
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consider the map αE : E → �(A+ ⊗̃E), y 7→ e⊗y. Obviously, it is an ⊗̃-operator between

E and the ⊗̃-space �(A+ ⊗̃ E), where, as we recall, � is the forgetful (about the outer

multiplication) functor from ⊗̃-Ban to A-⊗̃-mod. It is easy to see that the family of

operators α = {αE ;E ∈ ⊗̃-Ban} is a natural transformation between the two functors,

acting on the category ⊗̃-Ban, namely between the identity functor 1 and the functor

�(A+⊗̃?).

When it is clear from the context that we consider, for a moment, a given ⊗̃-module X

just as a ⊗̃-space, we shall write either �X or simply X: this will not cause any confusion.

In particular, the symbols A+ ⊗̃X and A+ ⊗̃�X mean certainly the same object.

Proposition 1.5 The functor A+⊗̃? is a freedom functor with respect to the pre-relative

structure � : A-⊗̃-mod→ ⊗̃-Ban, and its associated natural transformation of functors

is α. (Thus the pre-relative category (A-⊗̃-mod, �) is in fact relative.) Moreover, if

E ∈ ⊗̃-Ban, X ∈ A-⊗̃-mod, and a ⊗̃-bounded operator ϕ0 : E → X, then the morphism

ϕ, appearing in Definition 5 and now acting from A+ ⊗̃E to X, is well defined by taking

(a+ λe)⊗ y = a · (e⊗ y) + λ(e⊗ y) to a · ϕ0(y) + λϕ0(y).

/ According to the definition of the freedom, we must take E, X and ϕ0, indicated in the

formulation, and show that there exists a unique morphism ϕ such that (�ϕ) ◦ αE = ϕ0;

in the present context the latter equality just means that ϕ(e⊗ y) = ϕ0(y) for all y ∈ E.

First of all, our desired ϕ, being a morphism, must take (a+λe)⊗y = a·(e⊗y)+λ(e⊗y)
to a · ϕ0(y) + λϕ0(y), as it is indicated in the formulation. Therefore, ϕ is uniquely

determined on elementary tensors and hence everywhere in ϕ : A+ ⊗̃ E. Uniqueness has

been proved; turn to the existence.

We now recall the operators j : A+ → A and k : A+ → C. They give rise to the ⊗̃-

bounded operators j ⊗̃1E : A+ ⊗̃E → A ⊗̃E and k ⊗̃1E : A+ ⊗̃E → C ⊗̃E, participating

in the (non-commutative) diagram

A ⊗̃E 1 ⊗̃ ϕ0- A ⊗̃X

�
�

�
�

�
j ⊗̃ 1

� @
@

@
@

@

πX

R
A+ ⊗̃E X

@
@

@
@

@
k ⊗̃ 1

R �
�

�
�

�

ϕ0

�

C ⊗̃E i - E

where i is the standard ⊗̃-isometry between C⊗̃X and X (taking λ⊗y to λy). Now define

ϕ as π ◦ (1A ⊗̃ ϕ0) ◦ (j ⊗̃ 1E) + ϕ0 ◦ i ◦ (k ⊗̃ 1E). Since all our operators are ⊗̃-bounded,
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the same is true for ϕ. Further, the lower row of depicted operators immediately gives

ϕ(e ⊗ y) = ϕ0(y); y ∈ E, as required. Finally, for an elementary tensor u := (a+ λe)⊗ y
we obviously have ϕ(u) = a · ϕ0(y) + λϕ0(y). On the other hand, for any b ∈ A the

upper row of depicted operators provides that ϕ(b · u), that is ϕ((ba + λb)⊗, is equal to

(ba + λb) · ϕ0(y). Therefore we have ϕ(b · u) = b · ϕ(u) for any elementary tensor u in

A+ ⊗̃ E. Since the density of the span of these elements in the latter space, such an

equality holds for all elements u in A+ ⊗̃ E. Thus ϕ is a morphism of left modules over

A. .

Corollary 1.1 The modules of the form A+⊗̃E with E ∈ ⊗̃-Ban are projective objects

in A-⊗̃-mod.

In accordance with what was said above, the mentioned left A-⊗̃-modules will be called

free.

The pre-relative category (UA-⊗̃-mod,�) is also relative, and in this case the con-

struction of the relevant freedom functor is a little bit simpler. It is the functor

A⊗̃? : ⊗̃-Ban −→ UA-⊗̃-mod,

and the respective natural transformation of functors is the family α := {αE : E →
�(A+ ⊗̃ E), y 7→ e ⊗ y}, where this time e denotes the “inner” (given) identity in A.

(Now, of course, α connects the identity functor 1 and the functor �(A⊗̃?).) We leave

the details to the reader.

Compare, in the case of a general A, the modules A+ ⊗̃ E and A ⊗̃ E. Let in denote

the natural embedding of A into A+. Since the operator �(in ⊗̃ 1E) : A ⊗̃E → A+ ⊗̃ E
has a right inverse, namely j ⊗̃ 1E , it gives rise to a ⊗̃-isomorphism of A ⊗̃ 1E onto its

image. (In fact, it gives rise to an ⊗̃-isometry, but we do not need this now.) Therefore

we have a right to identify A ⊗̃ E with this image, and consider the former as a closed

submodule in A+⊗̃E.

We return to the general scheme of homology in an abstract relative category (K,� :

K → L) with a freedom functor F and the associate natural transformation of functors α.

Now we shall show that the presence of a freedom functor actually gives more than just

a class of projective objects. Namely, every object happens to be the range of an admis-

sible morphism from a free object, and in terms of that morphism a workable equivalent

definition of projectivity can be presented.

Take an arbitrary X ∈ K, and consider the identity operator 1�X in L. The latter,

being taken as ϕ0 in the Definition 5, gives rise to a morphism from F(�X) to X in K
(denoted in that definition by ϕ). It deserves a special name and a special notation.

Definition 1.7 The indicated morphism is called the canonical morphism for X and is

denoted by π+
X .
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Proposition 1.6 The morphism π+
X is admissible.

/ Taking in Definition 5 ϕ0 := 1�X and ϕ := π+
X , we see that (�π+

X) ◦α�X = 1�X . The

rest is clear. .

Theorem 1.2 The following properties of an object P ∈ K are equivalent:

(i) P is projective;

(ii) P is a retract of a free object in K;

(iii) the canonical morphism π+
P : F(�P )→ P is a retraction.

/ (i) =⇒ (iii). This follows from Theorem 1, and Propositions 2 and 6 combined.

(iii) =⇒ (ii) is clear.

(ii) =⇒ (i). This follows from Theorem 1 and Proposition 1 combined. .

As to our main example, that is the (triple) relative category (A-⊗̃-mod,�), we

can easily see the form of the canonical morphism in this case. Taking, for a given

X ∈ A-⊗̃-mod, �X as E, and α�X as ϕ0, we see that the morphism π+
X : A ⊗̃X → X is

well defined by taking (a+λe)⊗x for a ∈ A, x ∈ X, and λ ∈ C to a ·x+λx. (Equivalently,

if we remember from the pure algebra that X is a left module over A+, we can take b⊗ x
for b ∈ A+ and x ∈ X to b ·x.) In the particular case X := A+ (see Proposition 4), we get

the morphism π+ : A+ ⊗̃A+ → A+, well defined by taking b⊗ c for b, c ∈ A+ to bc. (Here

we recall that A+ is an algebra.) Observing that the multiplication in A+ is associated

with π+ and that the outer multiplication in any X ∈ A-⊗̃-mod is associated with π+
X ,

we immediately get

Corollary 1.2 (i) If the algebra A is an ⊗̃-algebra, then the same is true for A+.

(ii) If X ∈ A-⊗̃-mod, then X, as a left module over A+, is a ⊗̃-module.

The previous theorem, being considered for the case of the categories A-⊗̃-mod and

UA-⊗̃-mod acquires the following specific guise:

Theorem 1.2’ Let A be an arbitrary (respectively, a unital) ⊗̃-algebra. The following

properties of an arbitrary (respectively, a unital) A-⊗̃-module P are equivalent:

(i) P is projective in A-⊗̃-mod (respectively, in UA-⊗̃-mod);

(ii) P is a retract of a module of a form A+ ⊗̃ E (respectively, A ⊗̃ E), where E is a

⊗̃-space;

(iii) the canonical morphism π+
P : A+ ⊗̃P → P (respectively, the outer product morphism

πP : A ⊗̃ P → P ) is a retraction. /.
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We conclude this section with the following general observation. Working with, gen-

erally speaking, non-unital modules, we can rather frequently check their projectivity

with the help of the outer product morphisms instead of the somewhat more complicated

canonical morphisms.

For any X ∈ A-⊗̃-mod, we denote the closure of span{a · x; a ∈ A, x ∈ X} by A ·X.

Obviously, A ·X is a submodule in X, called the essential submodule of X. In particular,

the essential submodule of A+ ⊗̃ E for E ∈ ⊗̃-Ban is evidently A ⊗̃ E (identified, as we

recall, with the image of in ⊗̃ 1E). A module X is called non-degenerate (or stable, or

essential) if A · X = X. Also observe that, for any morphism ϕ : X → Y in A-⊗̃-mod,

we obviously have ϕ(A ·X) ⊆ A · Y .

Theorem 1.3 For the projectivity of P ∈ A-⊗̃-mod it is sufficient, and if P is non-

degenerate, it is also necessary that the outer product morphism π : A ⊗̃ P → P is a

retraction.

/ The composition of a right inverse morphism to π with the morphism in ⊗̃ 1P is

obviously a right inverse morphism to π+. By virtue of the previous theorem, this proves

the sufficiency.

Further, let P be projective; then the previous theorem gives a morphism ρ : P →
A+ ⊗̃ P , right inverse to π+. Since P = A · P , it follows from the mentioned properties

of essential submodules that the image of ρ lays in A ⊗̃ P . Evidently, the respective

corestriction of ρ is a right inverse to π. .

Since unital modules over unital algebras are certainly non-degenerate, we have an

immediate

Corollary 1.3 A unital left ⊗̃-module over a unital ⊗̃-algebra A is projective as an object

of UA-⊗̃-mod ⇐⇒ it is projective as an object in A-⊗̃-mod.

It can well happen, as it will be demonstrated by examples, that the same module,

being not projective in the classical theory, becomes projective after some natural quan-

tization. Examples of the opposite meaning also exist. However, if we shall compare the

projectivity in the two quantum theories, there is a certain “one-way” connection:

Proposition 1.7 Let X be a ⊗̃-module over an ⊗̃-algebra A for the case ⊗̃ =
h
⊗ and

hence ⊗̃ =
o
⊗. Suppose that X is

o
⊗-projective. Then it is

h
⊗-projective.

/ Let ρ : X → A+

o
⊗X be a right inverse to the canonical morphism for X in A-

o
⊗-mod.

Then the operator composition j2 ◦ ρ : X → A+

h
⊗X, where j2 is an operator, indicated

in the introductory section (see diagram (3)), is obviously a right inverse to the canonical

morphism for X in A-
h
⊗-mod. The rest is clear. .
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2 Projective and non-projective ideals

From now on, we proceed to one of most typical problem in topological homology: Which

modules, belonging to this or that well known and “popular” class, are projective? In fact,

this means clarifying the connections between projectivity and the properties of algebras

and modules expressed in traditional terms of algebra, analysis and topology.

It seems natural to begin with such an important class of modules as ideals, proper

and non-proper alike.

Let A be an ⊗̃-algebra, and I be its left closed ideal. Obviously, I as a left A-⊗̃-module

with respect to the outer multiplication, defined by a · x := ax; a ∈ A, x ∈ I (that is, as

the inner multiplication in A).

When is such a module projective?

In particular, this question concerns the non-proper ideal of A, that is A itself. If the

latter, as a left A-⊗̃-module, is projective, we shall say that A is a left projective ⊗̃-algebra.

First of all, we distinguish a simple sufficient condition.

Proposition 2.1 If I has, as an algebra, a right identity, then it is projective.

/ Consider the map τ : A+ → I, a 7→ ap, where p is the mentioned right identity. Since

the multiplication in A+ is a ⊗̃-bioperator, τ is an ⊗̃-operator. (“The joint continuity

implies the separate continuity”.) Moreover, it is evidently a morphism of A-modules.

Finally, it is obvious that τ ◦ (in) = 1I , where in is the natural embedding of I into A+.

We see that I is a retract in A-⊗̃-mod of the free module A+ = A+ ⊗̃ C, and therefore,

by virtue of Theorem 1.2’(ii), it is projective. .

One can easily guess that the indicated sufficient condition of the projectivity is far

away from being necessary. Before presenting the simplest relevant example, we shall

recall a natural way of quantization of a very important class of Banach algebras.

Let Ω be a locally compact topological space. As usual, C0(Ω) denotes the Banach

(= ⊗̂-)algebra of all continuous functions on Ω vanishing the infinity with the pointwise

operations and the sup-norm. This algebra (more accurately, its underlying Banach space)

is equipped with the following special quantization. Consider the isometric operator from

C0(Ω) into B(l2(Ω)), taking a function a(t) to the “diagonal” operator of the coordinate-

wise multiplication g(t) 7→ a(t)g(t) for g ∈ l2(Ω). It is easy to see that the norm in the

space Mn(C0(Ω)), corresponding to such a quantization, is given by

‖a‖n = sup{‖a(t)‖; t ∈ Ω};

here a = (aij) ∈Mn(C0(Ω)) and ‖a(t)‖ is the standard norm of the scalar matrix (aij(t)) ∈
Mn. (We recall that Mn is identified with B(C).) The indicated quantization of C0(Ω)

will be called standard .
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We recall that a uniform algebra is, by definition, a closed subalgebra in some C0(Ω).

Such an algebra is considered as a Banach algebra and as a quantized space with the

inherited norm and quantization; the latter quantization will be also called standard 3 .

It is well known (and easy to check) that every uniform algebra is an
h
⊗- and hence an

o
⊗-algebra with respect to the standard quantization.

Example 2.1 Let D be the closed unit disc in C, and A(D) be the disc-algebra. (Recall

that it is a closed subalgebra in C(D), consisting of functions, analytic in the interior of

the disc). Consider the maximal ideal A0(D) = {w : w(0) = 0} in A(D).

From what was said about the norm and the quantization of a uniform algebra, it fol-

lows easily that the map from A(D) to A0(D), taking w(z) to zw(z), is an ⊗̃-isomorphism

between left A(D)-⊗̃-modules A(D) and A0(D). Since the algebra A(D) is unital, it is

a free unital module over itself and hence projective. Therefore the ideal A0(D) is a

projective module as well.

This example shows that a projective ideal in a ⊗̃-algebra is by no means obliged to

have a right identity.

Exercise 2.1 Show that A0(D) is also a projective module over itself, i.e. it is as a left

projective ⊗̃-algebra. And this is despite the product morphism πA for such an A is not a

surjective map. (Thus we see, in particular, that the condition on X to be non-degenerate

in Theorem 1.3 can not be omitted.)

Now we concentrate on ideals of the ⊗̃-algebras C0(Ω). As it is well known, every

closed ideal I of such an algebra has the form I = {a ∈ C0(Ω) : a(t) = 0 for all t ∈ ∆},
where ∆ is a closed subset in Ω, the so-called hull of the ideal I. We recall also that the

open set ΩI := Ω \∆ coincides, up to a homeomorphism, with the Gel’fand spectrum of

I as of a commutative Banach algebra.

It turns out that the property of an ideal I in C0(Ω) to be or not to be projective

is completely determined by the topology of ΩI . We recall that a topological space T

is called paracompact if every open cover σ of T has a locally finite open refinement σ0.

Here “refinement” means that every set, belonging to σ0, is contained in some set of σ,

whereas “locally finite” means the following: every point in T has such a neighborhood

that has non-empty intersections only with finite number of sets, belonging to σ0.

Theorem 2.1 (i) A closed ideal in the ⊗̃-algebra C0(Ω) is a projective C0(Ω)-⊗̃-module

⇐⇒ its Gel’fand spectrum is paracompact. In particular, C0(Ω) is a left projective

⊗̃-algebra ⇐⇒ Ω is a paracompact space.

3Actually, this quantization is the particular case of the so-called minimal quantization, the procedure

that can be applied to an arbitrary Banach space; cf. [6]. But we do not need this fact in our notes.
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(ii) (the generalization of the “=⇒” part of (i)) If a closed ideal I in an arbitrary

commutative ⊗̃-algebra A is a projective A-⊗̃-module, then the Gel’fand spectrum of

I is paracompact. In particular, if a commutative ⊗̃-algebra is left projective, then

its Gel’fand spectrum is paracompact.

We shall not give here the complete proof of this theorem which is rather long and in

some parts technical; it is presented, in the traditional framework (that is for ⊗̂-algebras)

in [10]. Instead, we shall consider in details two illuminating particular cases. The first

one will illustrate the “sufficiency”, and the second one will deal with the “necessity”.

Theorem 2.2 If Ω is a metrizable compact space, then every closed ideal in the ⊗̃-algebra

C0(Ω) is projective.

(Since the well-known theorem of A. Stone asserts that every metrizable topological

space is paracompact, this result immediately follows from Theorem 1. However, we shall

give an independent proof.)

/ Let I be a given ideal. By virtue of Theorem 1.3 (or, if you prefer, Theorem 1.2’(ii) and

Corollary 1.3), it is sufficient to show that the canonical morphism π := πI : A ⊗̃ I → I

has a right inverse in C(Ω)-⊗̃-mod.

Let ∆ ⊆ Ω be the hull of I. Since Ω is metrizable, there exists a base Un with

n = 1, 2, . . . of neighborhoods of ∆, such that the closure of Un+1 lies in Un. Take en ∈ I
such that 0 ≤ en ≤ 1, en(t) = 1 for t /∈ Un, and en(t) = 0 for t ∈ Un+1 with n = 1, 2, . . ..

Obviously, this sequence of functions is an approximate identity for I. Further, we set

y1 := e1 and yn := en − en−1 for n > 1. Finally, we set zn :=
√
yn for all n.

Now, for an arbitrary x ∈ I, we consider the formal series
∑∞

n=1 xzn⊗zn of elementary

tensors in A⊗ I. We remember, that the latter linear space is dense in the Banach space

A ⊗̃ I. (Here, of course, by A
h
⊗ I and A

o
⊗ I we mean the “usual” Banach space in the

first floor of the respective quantized Banach space.) We want to prove that this series

converges in the A ⊗̃ I, and simultaneously to estimate the norm of its sum. For this aim

we need

Lemma Consider, for any a ∈ C(Ω) and natural m,n with m < n, the sum

u :=

n∑

k=m+1

azn ⊗ zn.

Then the norm of this element in the Banach space A ⊗̃ I satisfies ‖u‖ ≤ 2C, where

C := max{|a(t)| : t ∈ Um−1}, if m > 1, and C := ‖a‖, if m = 1.
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/ The idea of the proof is to represent u in the form, more convenient to our needs.

Namely, consider in A ⊗̃ I the element

v =
1

n−m
n−m∑

k=1






n−m∑

q=1

ζqkazm+q


⊗

(
n−m∑

r=1

ζ−rkzm+r

)
 ,

where ζ is e2πi/(n−m) (the primitive root of the degree n−m from 1). Since the norm in

A ⊗̃ I is a crossnorm (that is, the norm of any elementary tensor is the product of norms

of its components), we have

‖v‖ ≤ 1

n−m
n−m∑

k=1

∥∥∥∥∥∥

n−m∑

q=1

ζqkazm+q

∥∥∥∥∥∥

∥∥∥∥∥

n−m∑

r=1

ζ−rkzm+r)

∥∥∥∥∥ ,

where the norms in the right side of the inequality are, as we remember, sup-norms in

C(Ω). Further, for every t ∈ Ω we have

∣∣∣∣∣∣

n−m∑

q=1

ζqka(t)zm+q(t)

∣∣∣∣∣∣
≤ |a(t)|

n−m∑

q=1

zm+q(t).

Functions zn(t) are chosen in such a way that
∑∞

n=1 z
2
n(t) ≤ 1, and no more than two

summands in this sum are not zero; therefore
∑n−m

q=1 zn+q(t) ≤
√

2. Apart from this, if t /∈
Un, then obviously zn+k = 0 holds for all k = 1, 2, . . .. Therefore

∣∣∣
∑n−m

q=1 ζqka(t)zm+q(t)
∣∣∣ ≤

C
√

2 and
∣∣∑n−m

r=1 ζqkzm+r(t)
∣∣ ≤
√

2 hold for all t ∈ Ω and k = 1, . . . , n −m. Combining

this with the estimate for ‖v‖ indicated above, we immediately get ‖v‖ ≤ 2C.

But what a bird is this v? Using algebraic properties of the operation “⊗” and

collecting similar terms, we see that

v =
1

n−m
n−m∑

q,r=1

λq,razm+q ⊗ zm+r,

where λq,r =
∑n

k+1 ζ
k(q−r). But then evidently λq,r = n − m if q = r and λqr = 0

otherwise. Thus v is not other thing than our initial u. The rest is clear. .

The end of the proof Return to the formal series
∑
∞

n=1 xzn ⊗ zn with x ∈ I. Let

ε > 0 be given. Since x = 0 on ∆, there exists m ∈ N such that |x(t)| < ε whenever

t ∈ Um. Therefore by virtue of Lemma we have, for any n > m,
∥∥∥∥∥

n∑

k=m+1

xzn ⊗ zn
∥∥∥∥∥ < 2ε.

Therefore our series fulfills the Cauchy criterion and hence converges in the Banach space

C(Ω) ⊗̃ I. Denote the sum of this series by ρe⊗
(x).
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Now consider the map ρe⊗
: I → C(Ω) ⊗̃ I, x 7→ ρe⊗

(x). Evidently, it is a linear

operator and, moreover, a morphism of left C(Ω)-modules (to begin with, in the sense of

pure algebra). Moreover,

π ◦ ρe⊗
(x) = π

(
lim

n→∞

n∑

1

xzk ⊗ zk
)

= lim
n→∞

π

(
n∑

1

xzk ⊗ zk
)

= lim
n→∞

n∑

1

xz2
k = lim

n→∞
xen = x.

Thus π ◦ ρe⊗
= 1I , and it remains, of all conditions of Theorem 1.3, only to show that ρ e⊗

is an ⊗̃-operator.

Our Lemma, this time considered for m = 1, gives ‖ρ e⊗
(x)‖ ≤ 2‖x‖. Thus ρe⊗

is

bounded. Of course, this observation completes the proof in the “classical” case ⊗̃ = ⊗̂.

As to the two “quantized” cases, it is still not the end of the story: we must show that,

furthermore, the operator ρ o
⊗

is completely bounded. It will imply that I is
o
⊗-projective,

and this, by Proposition 1.7, will guarantee that it is
h
⊗-projective as well. In what follows,

we shall denote the map ρ o
⊗

just by ρ.

We fix n ∈ N (choosing the size of relevant matrices) and consider the operator

ρn : Mn(I)→Mn(C(Ω)
o
⊗ I),

the respective amplification of ρ. Then for the matrix x = (xij) ∈ Mn(I) we have

ρn(x) = (ρ(xij)) = liml→∞ ρ
(l)
n x), where ρ

(l)
n (x) ∈ Mn(C(Ω)

o
⊗ I) is the matrix with the

entries u
(l)
ij :=

∑l
k=1 xijzk⊗ zk. In other words, if ṁ : C(Ω)× (C(Ω) ⊗̃ I) is the bioperator

of the outer multiplication, and zl is the short notation for
∑l

k=1 zk ⊗ zk, then

ρ(l)
n (x) = ṁn,1(x, zl).

Here, ṁn,1 : Mn(C(Ω))× (C(Ω)
o
⊗ I) → Mn(C(Ω)

o
⊗ I) is the n, 1-th complete amplifica-

tion of ṁ, discussed in the introductory section. (We identify, of course, C(Ω)
o
⊗ I with

M1×1(C(Ω)
o
⊗ I) and Mn(C(Ω)

o
⊗ I) with Mn×1(C(Ω)

o
⊗ I).)

Finally, recall that the bioperator ṁ is, by virtue of Proposition 1.3, completely

bounded. (In fact, in our concrete situation it is even completely contractive, but we do not

need it here.) Since the completely bounded norm of ṁ is, by definition, the upper bound

of the (usual) norms of all complete amplifications of this bioperator, and these include, of

course, ṁn,1, we immediately have ‖ṁn,1‖ ≤ ‖ṁ‖ o
⊗
, and hence ‖ρ(l)

n (x)‖ ≤ ‖ṁ‖ o
⊗
‖‖x‖‖zl‖.

Using our Lemma again, now in the simplest case a ≡ 1 and m = 1, we see that ‖zl‖ ≤ 2,

and hence ‖ρ(l)
n (x)‖ ≤ 2‖ṁ‖ o

⊗
‖‖x‖. Since this happens for any l, we have the limit equal-

ity ‖ρn(x)‖ ≤ 2‖ṁ‖ o
⊗
‖‖x‖ and hence ‖ρn‖ ≤ 2‖ṁ‖ o

⊗
for all n. Thus the operator ρ is

completely bounded (and, moreover, satisfies‖ρ‖ o
⊗
≤ 2‖ṁ o

⊗
‖). .
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We proceed to an example of an ideal with “topologically bad” spectrum.

Denote by Φ the segment of the transfinite line, ending with the first uncountable

cardinal ℵ1. Recall that Φ is a compact topological space with respect to the order

topology (see, e.g., [7, p. 82]). It is well known (and easy to prove) that the topological

space Φ has the following rather exotic property: If a(ℵ1) = 0, then a(t) = 0 for all

sufficiently large countable ordinals t. In other words, a vanishes in some neighbourhood

of ℵ1 in Φ.

We concentrate on the ⊗̃-algebra C(Φ) and on its maximal ideal I := {a ∈ C(Φ) :

a(ℵ1) = 0}.

Theorem 2.3 The C(Φ)-⊗̃-module I is not projective.

(Since the Gel’fand spectrum Φ \ {ℵ1} of is one of best known examples of non-

paracompact topological spaces, this result also directly follows from Theorem 1. However,

again we think that it is rather instructive to present an independent proof.)

/ Suppose that, on the contrary, I is projective. Then Theorem 1.3 provides a morphism

ρ : I → C(Φ) ⊗̃ I in C(Φ)-⊗̃-mod, right inverse to π := πI : C(Φ) ⊗̃ I → I. Our aim is

to show that the existence of this hypothetical ρ will lead us to a contradiction.

Introduce the bioperator R : C(Φ) × I → C(Φ × Φ), taking a pair a ∈ C(Φ), x ∈ I
to the function u(s, t) := a(s)x(t) with s, t ∈ Φ. Of course, this bioperator is contractive,

but we want to show that, moreover, it is multiplicatively contractive (with respect to

the standard quantization of participating Banach spaces that was discussed above). For

this aim we consider, for every n = 1, 2, . . ., the n-th multiplicative amplification of R
(see Section 0). In the present context it is the bioperator Rn : Mn(C(Φ)) ⊗Mn(I) →
Mn(C(Φ ⊗ Φ)), taking a pair a = (aij) ∈ Mn(C(Φ)), x = (xij) ∈ Mn(I) to the matrix

u ∈Mn(C(Φ⊗ Φ)) with the entries uij :=
∑n

k=1R(aik, xkj).

For all s, t ∈ Φ, 1 ≤ i, j ≤ n we have uij(s, t) =
∑n

k=1 aik(s)xkj(t). Consequently, the

scalar matrix u(s, t) = (uij(s, t)) with fixed s, t is the product of the scalar matrices a(s) =

(aij(s)) and x(t) = (xij(t)). Therefore, taking into account the concrete quantization of

our spaces, we have

‖Rn(a,x)‖ = ‖u‖ = sup{‖u(s, t)‖; s, t ∈ Φ}
≤ sup{‖a(s)‖‖x(t)‖; s, t ∈ Φ} ≤ (sup{‖a(s)‖ : s ∈ Φ})(sup{‖x(t)‖; t ∈ Φ}) = ‖a‖‖x‖.

It follows that ‖Rn‖ ≤ 1 for all n. This means that the bioperator R is multiplicatively

contractive, and hence (see Section 0) completely contractive. Therefore, by virtue of

Theorem 0, there exists, for any choice of ⊗̃, the ⊗̃-bounded operator R : C(Φ) ⊗̃ I →
C(Φ×Φ), uniquely determined by taking an elementary tensor a⊗x to u(s, t) := a(s)x(t).

Lemma 1 Let v ∈ C(Φ) ⊗̃ I and s ∈ Φ. Then the function a(t) := [R(v)](s, t) belongs to

I.
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/ The assertion is obvious for elementary tensors and hence it is true for their span. But

the latter is dense in C(Φ) ⊗̃ I, R is continuous, and I is closed. The rest is clear. .

The continuation of the proof Recall that C(Φ) ⊗̃I has the structure of a left C(Φ)-

module. The space C(Φ × Φ) is also a left C(Φ)-module with the outer multiplication

given by [a · u](s, t) := a(s)u(s, t). Taking elementary tensors in C(Φ) ⊗̃ I and using

the density of their span in the latter space, we immediately see that the constructed

operator R is a morphism of C(Φ)-modules. The same is obviously true for the operator

∆ : C(Φ× Φ)→ C(Φ);u(s, t) 7→ b(s) := u(s, s) (acting by the restriction on the diagonal

in Φ× Φ).

Lemma 2 The diagram

C(Φ) ⊗̃ I R- C(Φ× Φ)

I

π

?

ρ

6

in - C(Φ)

∆

?

where in is the natural embedding, is commutative (in other words, ∆ ◦ R = (in) ◦ π and

∆ ◦ R ◦ ρ = in).

/ Obviously, we have ∆(R(v)) = (in)(π(v)) provided v is an elementary tensor in C(Φ) ⊗̃
I. Combining this observation with the density of the span of elementary tensor in the

latter space and using the continuity of all involved maps, we immediately obtain the

first desired equality. The second equality follows from the first one, combined with the

relation π ◦ ρ = 1I . .

The end of the proof For any countable ordinal α we denote by eα ∈ I the function

such that eα(t) = 1, if t ≤ α, and eα(t) = 0, if t > α. Denote by Eα the function

R ◦ ρ ∈ C(Φ⊗Φ). If α, β;α < β are two countable ordinals, we have eα · eβ = eαeβ = eα,

and therefore

Eα = [R ◦ ρ](eα · eβ) = eα · ([R ◦ ρ](eβ)) = eα ·Eβ .

It follows, in particular, that

α < β implies Eα(α, β) = Eβ(α, β). (5)

Further, for all α, s ∈ Φ, the relation Eα(s, s) = [∆ ◦ R ◦ ρ](s), combined with Lemma 2,

gives Eα(s, s) = eα(s). In particular, this implies that

Eα(s, s) = 1 if s ≤ α. (6)
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Now we proceed to the construction of a certain increasing sequence αk; k = 1, 2, . . . of

countable ordinals. As to α1, we choose it arbitrarily. Suppose that α1, . . . , αk are already

chosen. Consider the function ak(t) := Eαk
(αk, t); t ∈ Φ. By virtue of Lemma 1, ak ∈ I,

and therefore, as it was mentioned above, there exists a countable ordinal αk+1 such that

Eαk
(αk, t) = 0 whenever t ≥ αk+1. Since Eαk

(αk, αk) = 1 (see (6)), we have αk+1 > αk.

Thus, by induction, the sequence αk is constructed. It is easy to see that it converges,

and its limit, say ω, is still a countable ordinal. This observation happens to be crucial.

What is Eω(ω, ω)? On one hand, by (6) (with ω as α), Eω(ω, ω) = 1. On the other

hand, combining the continuity of the function Eω(s, t), the equality (5) (with αk as α

and ω as β) and, finally, the very construction of our ordinals αk, we have

Eω(ω, ω) = lim
k→∞

Eω(αk, ω) = lim
k→∞

Eαk
(αk, ω) = 0.

We came to a contradiction. .

Apart from good topological properties of their spectrum, indicated in Theorem 1(ii),

projective ideals in commutative Banach and quantized Banach algebras possess a number

of special analytic and geometric properties. Let us concentrate on the most transparent

case of a maximal ideal I in a unital commutative ⊗̃-algebra A. In what follows, Ω is the

Gel’fand spectrum of A, ∂Ω is the Shilov boundary of Ω, s is a point in Ω, representing

I, and I2 is the topological square of I (that is, the closure of span{xy;x, y ∈ I}).

Theorem 2.4 (i) If s ∈ ∂Ω, then I2 = I. Besides, there is a constant C > 0 such that,

for any t ∈ Ω, there exists x ∈ I (that is, x ∈ A with x(s) = 0) such that a(t) = 1

and ‖x‖ < C.

(ii) (L. I. Pugach) If s /∈ ∂Ω, than dim I/I2 = 1. Besides, (the main assertion) there

exists a neighborhood U of s in the Gel’fand topology of Ω that is an analytic disc.

(Recall that the latter means that there is a homeomorphism ω : D0 → U , where D0 is

the open unit disc in C, such that for every a ∈ A the function z 7→ a(ω(z)) where z ∈ D0

is holomorphic.)

The proof see in Pugach’s paper [23] and in [11].

Exercise 2.2 Prove, using the previous theorem, that maximal ideals in the Banach

algebra Cn[0, 1] of n times smooth functions on [0, 1] are not projective.

Now we turn to algebras of sequences. The next example is the algebra of summable

sequences l1 (also denoted by l1(N)) with the coordinatewise multiplication. Denote

by l1(N × N), or, for brevity, by l21 the Banach space of double summable sequences.

We consider it as a left Banach l1-module with the outer multiplication [a · x](m,n) :=

a(m)x(m,n) for a ∈ l1 and x ∈ l21. (Here and below we denote the terms of our sequences

by a(m) and x(m,n) instead of am and xmn.)
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Example 2.2 We want to show that l1 is left ⊗̂-projective. For this aim, consider the

diagram

l1(N) ⊗̂ l1(N)
i - l1(N× N)

@
@

@
@

@
π

R 	�
�

�
�

�

∇

l1(N)

(7)

where i is the standard isometric isomorphism, taking a ⊗ b to the double sequence

x(m,n) := a(m)b(n)), π is the product operator, and ∇ “restricts to the diagonal”, taking

x to a; a(n) := x(n, n). It is clear that all these maps are morphisms in l1 − ⊗̂ −mod,

and the diagram is commutative.

Set ∆ : l1 → l21, a 7→ x, where x(n, n) := a(n) and x(m,n) := 0 if m 6= n. Obviously,

this is also a morphism in the same category, right inverse to ∇. It follows that ρ := i−1◦∆
is a morphism in l1-⊗̂-mod, right inverse to π. Since the algebra is obviously non-

degenerate, Theorem 1.3 closes the matter.

Remark We have considered only the “⊗̂-case”. However, l1 can be made an
h
⊗ and

hence an
o
⊗-algebra with respect to the so-called maximal quantization that will be dis-

cussed a little bit later. A similar argument could show that our algebra is also projective

in both “quantum” senses. In fact, in all three theories l1 has a much stronger property:

it is, as they say, biprojective. The traditional version of this statement is proved in [10],

and the quantum versions in [1].

So far our ideals in ⊗̃-algebras behaved, in the question of their projectivity, in the

same way for all three theories. In other words, our results did not depend on which kind of

the three tensor products we choose. This is, however, not a universal phenomenon. Now

we shall present the apparently simplest example of an algebra that behaves differently in

the traditional and the quantum settings.

Consider, instead of l1, the Banach algebra l2 = l2(N), again with the coordinate-wise

multiplication. Denote by l2(N×N), and also, for brevity, by l22 the Hilbert space of double

square-summable sequences. Similarly to the “l1-case”, it is a left Banach l2-module with

the outer multiplication [a · x](m,n) := a(m)x(m,n). In what follows, we shall use the

standard identification of the Hilbert space l22 with the Hilbert tensor square l2⊗̇l2 (We

recall that the respective isometric isomorphism is uniquely determined by taking the

double sequence a(k)b(m) with a, b ∈ l2 and k,m = 1, 2, . . . to a⊗̇b). In particular, the ort

(= element of the natural orthonormal basis) emk ∈ l22, defined by emk(s, t) = 1 if s = m

and t = k and emk(s, t) = 0 otherwise, is identified with em⊗̇ek, the tensor product of two

orts in l2. We shall alternately use both notation emk and em⊗̇ek.
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We proceed to a quantization of l2, and also of l22. Among many possible ways to do it

we choose the so-called column quantization. Later we shall discuss such a quantization

for an arbitrary Hilbert space, but now we need only these two particular cases. The

column quantization of l2 is the isometric operator l2 → B(l2), taking a to the operator ǎ

that sends e1 to a and other orts to 0. (Thus we take a given square-summable sequence to

the operator depicted by the infinite matrix that has our sequence as its first column and

zeroes in remaining places; hence, the word “column”.) Similarly, the column quantization

of l22 is the isometric operator from this space to B(l22), taking x to the operator x̌ : e11 7→ x

and emk 7→ 0 for other double indexes.

We can identify a vector a ∈ l2 with the operator C → l2, 1 7→ a. Then we can treat

a matrix, say a, in Mn(l2) as a matrix with operator entries. Such a matrix depicts an

operator from C
n into nl2, and it is easy to see that ‖a‖ is exactly the norm of that

operator. Thus Mn(l2) can be identified with B(l2) and, similarly, Mn(l22) with B(l22).

Proposition 2.2 There exists a completely isometric isomorphism

R : l2(N)
h
⊗ l2(N)→ l2(N× N),

well defined by taking ek ⊗ em to ekm.

/ At first we introduce the bioperatorR : l2×l2 → l22, (a, b) 7→ x with x(k,m) := a(k)b(m)

and wish to show that it is multiplicatively contractive.

Fix n and consider the multiplicative amplification Rn : Mn(l2) ×Mn(l2) → Mn(l22).

Take arbitrary a = (aij),b = (bij) ∈Mn(l2). Then, by definition, the matrix Rn(a,b) has

the entries cij :=
∑n

k=1R(aik, bkj) =
∑n

k=1 aik⊗̇bkj. (We remember and will remember

the identification of l22 with l2⊗̇l2.)
Consider the operatorsǎ, b̌ ∈ B(nl2), depicted by the matrices with the operator entries

ǎij : l2 → l2, respectively b̌ij : l2 → l2, and such that ǎij takes e1 to aij, b̌ij takes e1 to

bij , and both take other orts to 0. Similarly, consider ĉ ∈ B(nl22), depicted by the matrix

with the operator entries ĉij : l22 → l22 such that ĉij takes e11 = e1⊗̇e1 to cij and takes

other orts to 0. We notice that ĉij is exactly
∑n

k=1 ǎik⊗̇b̌kj. Further, by the definition of

the column quantization, we have ‖a‖ = ‖ǎ‖, ‖b‖ = ‖b̌‖ and ‖Rn(a,b)‖ = ‖č‖.
Now we introduce two more operators, denoted by â, b̂ ∈ B(nl2)

2. They are depicted

by the following matrices: the first one has the operator entries âij := ǎij⊗̇1 : l2⊗̇l2 →
l2⊗̇l2, and the second one b̂ij := 1⊗̇b̌ij : l2⊗̇l2 → l2⊗̇l2. Look at the composition â ◦ b̂ of

these operators. The ij-th entry of its matrix is
∑n

k=1 âik b̂kj =
∑n

k=1(ǎik⊗̇1)(1⊗̇b̌kj) =
∑n

k=1 ǎik⊗̇b̌kj = ĉij . Thus â ◦ b̂ is not other thing than ĉ.

Since â can be represented as ǎ⊗̇1 ∈ B(nl2⊗̇l2), we have ‖â‖ = ‖ǎ‖ = ‖a‖. Similarly,

the representation of b̂ as 1⊗̇b̌ ∈ B(l2⊗̇nl2) gives ‖b̂‖ = ‖b̌‖ = ‖b‖. Consequently, we

have

‖Rn(a,b)‖ = ‖ĉ‖ ≤ ‖â‖‖b̂‖ = ‖ǎ‖‖b̌‖ = ‖a‖‖b‖.
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Thus R is indeed multiplicatively contractive.

If so, then, by Theorem 0, R gives rise to the completely contractive operator R :

l2
h
⊗ l2 → l22, acting on elementary tensors in the prescribed way. Our aim is to show that

R is a completely isometric isomorphism.

Take, for any n ∈ N, the respective amplification Rn : Mn(l2
h
⊗ l2)→Mn(l22).

Obviously, elements of the form
∑N

k=1 ek ⊗ bk for all possible bk ∈ l2 and N ∈ N

constitute a dense subspace in l2⊗ l2. It easily follows that matrices of the form u = (uij),

where uij =
∑N

k=1 ek ⊗ b
(k)
ij for some b

(k)
ij ∈ l2 and N ∈ N, constitute a dense subspace in

Mn(l2)
h
⊗Mn(l2). Therefore it is sufficient to fix such a u and show that ‖u‖ ≤ ‖Rn(u)‖.

Let us consider two rectangular matrices v ∈Mn,Nn(l2) and w ∈MNn,n(l2). The first

one has the form of the “block-row”

(. . . ,vk, . . .),

where, for any k = 1, . . . , N , vk = (vk,ij) ∈ Mn(l2) is the diagonal matrix with entries

ek in the main diagonal and 0 in other places. The second one has the form of the

“block-column” 


...

wk

...


 ,

where, for any k = 1, . . . , N , wk ∈Mn(l2) has the entries wij := b
(k)
ij One can easily verify

that our initial matrix Therefore the formula (1) in the introductory section, with l2 in

the capacity of E and F , provides the estimate ‖u‖ ≤ ‖v‖‖w‖. What does it give?

Our first concern is ‖v‖. Because of the column quantization of l2, this number,

accordingly with what was mentioned above, is the norm of the operator v̂ : C
Nn → nl2,

taking orts in C
Nn to copies of N orts e1, . . . , eN ∈ l2, belonging to various Hilbert

summands of nl2 = l2⊕̇ . . . ⊕̇l2. Since all these mentioned vectors in nl2 are pairwise

orthogonal, the operator v̂ is isometric. Therefore ‖v̂‖ and hence ‖v‖ are equal to 1.

Turn to ‖w‖. This is the norm of the operator from C
n to Nnl2 that takes an arbitrary

n-tuple ξ = (ξ1, . . . , ξn) ∈ C
n to the Nn-tuple (. . . ,

∑n
j=1 ξjb

k
ij, . . .) with k = 1, . . . , N ,

i = 1, . . . , n of vectors in l2.

Therefore, by the definition of the norm in a Hilbert sum,

‖w‖2 = max

n∑

i=1

N∑

k=1

∥∥∥∥∥∥

n∑

j=1

ξjb
k
ij

∥∥∥∥∥∥

2

,

where the maximum is taken over all ξ = (ξ1, . . . , ξn) ∈ C
n with

∑n
j=1 |ξj |2 = 1.
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And what about ‖Rn(u)‖? This is the norm of the operator that takes the same ξ to

the n-tuple (this time of vectors in l22 = l2⊗̇l2)

(. . . , xi, . . .) with 1 ≤ i ≤ n where xi =

n∑

j=1

ξj

(
N∑

k=1

[ek⊗̇bkij ]
)

=

N∑

k=1


ek⊗̇

n∑

j=1

ξjb
k
ij


 .

Using again the structure of the norm in a Hilbert sum, and also the pairwise orthogonality

of vectors ek⊗̇(·) for k = 1, . . . , N , we obtain

‖Rn(w)‖2 = max
n∑

i=1

N∑

k=1

∥∥∥∥∥∥
ek⊗̇

n∑

j=1

ξjb
k
ij

∥∥∥∥∥∥

2

= max
n∑

i=1

N∑

k=1

‖ek‖2
∥∥∥∥∥∥

n∑

j=1

ξjb
k
ij

∥∥∥∥∥∥

2

= max
n∑

i=1

N∑

k=1

∥∥∥∥∥∥

n∑

j=1

ξjb
k
ij

∥∥∥∥∥∥

2

,

where the maximum is taken over the same ξ as before. It follows that ‖Rn(u)‖ = ‖w‖.
Combining the letter equality with what we already know about the norms of u and v,

we obtain that ‖u‖ ≤ ‖Rn(u)‖. Therefore R, being completely contractive, is completely

isometric. Together with the obvious observation that the image of R is dense in l22, this

gives the desired result. .

Proposition 2.3 The Banach algebra l2 with the coordinate-wise multiplication is an
h
⊗-

and hence an
o
⊗-algebra with respect to the column quantization. Moreover, the respective

product morphism participates in the commutative diagram

l2(N)
h
⊗ l2(N)

R - l2(N× N)

@
@

@
@

@
πh
⊗ R 	�

�
�

�
�

∇

l2(N)

(8)

where ∇ is a completely contractive operator, taking x to a; a(n) := x(n, n). (Compare

the operator of the same name in the diagram (7).)

/ At first we shall show that ∇ is completely contractive. (As a matter of fact, this

is a particular case of future Proposition 4.2, but here the proof is most transparent.)

Indeed, for any n ∈ N, we consider the amplification ∇n : Mn(l22) → Mn(l2) and take an

arbitrary x = (xij) ∈Mn(l22). Being identified with an operator in B(Cn, nl22), our x takes

ξ = (ξ1, . . . , ξn) to the n-tuple (. . . ,
∑n

j=1 ξjxij , . . .). Therefore

‖x(ξ)‖2 =

n∑

i=1

∣∣∣∣∣∣

n∑

j=1

ξjxij

∣∣∣∣∣∣

2

=

n∑

i=1

∞∑

k,m=1

∣∣∣∣∣∣

n∑

j=1

ξjxij,km

∣∣∣∣∣∣

2

,
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where xij,km is the km-th coordinate of the double sequence xij . Similarly, in the guise of

an operator in B(Cn, nl2), ∇n(x) takes the same ξ to (. . . ,
∑n

j=1 ξj∇(xij), . . .). Therefore,

remembering what the coordinates of ∇(xij) are, we have

‖[∇n(x)](ξ)‖2 =

n∑

i=1

∞∑

k=1

∣∣∣∣∣∣

n∑

j=1

ξjxij,kk

∣∣∣∣∣∣

2

.

We see that ‖[∇n(x)](ξ)‖ ≤ ‖x(ξ)‖ for any ξ and hence ‖∇n(x)‖ ≤ ‖x‖. Thus ∇ has the

desired property.

Together with the previous proposition, this implies that the composition ∇ ◦ R is a

completely contractive operator, taking elementary tensors to the product of their factors.

But by Theorem 0, the existence of such an operator is equivalent to the multiplicative

boundedness of the multiplication in l2. Thus l2 is an
h
⊗-algebra, and the rest is clear. .

Theorem 2.5 (i) The Banach algebra l2 is not ⊗̂-projective, however,

(ii) the
h
⊗-algebra l2 is

h
⊗-projective.

/ (i) Consider the bioperator S : l2 × l2 → l1, taking a pair (. . . , ak, . . .), (. . . , bk, . . .)

to (. . . , akbk, . . .); by virtue of the Cauchy–Bunyakovsky inequality, it is well defined and

bounded. Consequently, it gives rise to its associated bounded operator S : l2 ⊗̂ l2 → l1.

Observing the action of R on elementary tensors, we see that the composition in ◦ S :

l2 ⊗̂ l2 → l2, where in : l1 → l2 is the natural embedding, is exactly the product morphism

πb⊗
for the ⊗̂-algebra l2. It follows that the image of πb⊗

is l1, and not all l2. Hence πb⊗
,

not being surjective, can not have a right inverse map. The rest is clear.

(ii) Acting like in Example 2 above, we set ∆ : l2 → l22 : a 7→ x, where x(n, n) := a(n)

and x(m,n) := 0 if m 6= n. After identifying Mn(l2) with B(Cn, nl2) and Mn(l22) with

B(Cn, nl22), an argument, very close to what was used for ∇ in the previous proposition,

shows that ∆ is a completely isometric operator. At the same time, it is obviously a

morphism of l2-modules, and it is a right inverse to ∇. Therefore, adding this morphism

to the commutative diagram (8), we see that ρ := i−1 ◦∆ is a morphism in l2-
h
⊗-mod and

a right inverse to πh
⊗
. The rest is clear. .

Remark Being considered as an
o
⊗-algebra, l2 is also left projective. This follows, for

example, from the well known fact that the Banach quantum spaces l2
o
⊗ l2 and l2

h
⊗ l2

coincide up to a completely isometric isomorphism (cf. [6, p. 163]). Moreover, l2 as an
h
⊗-, as well as an

o
⊗-algebra, has the much stronger property to be biprojective that was

mentioned in the previous remark (cf. [1]).
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Concluding, we proceed from function algebras to group algebras.

Let G be a locally compact group, and let L1(G) be the Banach space of those functions

(more precisely, of equivalence classes of functions) that are integrable with respect to

the left invariant Haar measure on G. It is a classical example of a Banach algebra.

The appropriate multiplication is called convolution and is defined by the Haar integral

a∗b(s) :=
∫
G a(t)b(t

−1s)dt. At the same time, after the appearance of quantized functional

analysis, L1(G) is usually considered as a quantum Banach space with respect to the so-

called maximal quantization.

We recall that a quantization of a Banach space E is called maximal , if the norm in

Mn(E) (“in the n-th floor”) is the supremum of norms, given by all possible quantizations

of E. The respective quantum Banach space is also called maximal, and it is often denoted

by maxE. (It is obvious that these notions are well defined for any E.) One can easily show

that every bounded operator from maxE into an arbitrary quantum space is automatically

completely bounded. Also it is known, that, for every quantum Banach space F , there

exists a complete isometric isomorphism between quantum Banach spaces maxE
o
⊗F and

max(E ⊗̂ F ), leaving elementary tensors unmoved [4, p. 289]. Combining both facts, we

see that any Banach algebra A, endowed with the maximal quantization, is an
o
⊗-algebra.

In what follows, speaking of L1(G) as of a quantum Banach space, we always mean

the maximal quantization.4

Thus, we see that L1(G) is not only a Banach (i.e. ⊗̂-) algebra, but it is also an
o
⊗-algebra. (However, one could show that it is, generally speaking, not an

h
⊗-algebra.)

Theorem 2.6 The algebra L1(G) is left projective as an ⊗̂-algebra and as an
o
⊗-algebra.

/ Denote by πb⊗
and π o

⊗
the respective product morphisms for L1(G) in A-⊗̂-mod and

A-
o
⊗-mod. Recall that our algebra is non-degenerate (more of this, by Cohen’s factor-

ization theorem, every function is the convolution product of two others). Consequently,

by virtue of Theorem 1.3, it is sufficient to show that π b⊗
(respectfully, π o

⊗
) has a right

inverse morphism in A-⊗̂-mod (respectfully, A-
o
⊗-mod).

Consider the Banach space L1(G×G) of functions, integrable with respect to the left

invariant Haar measure on G×G. Obviously, this is an L1(G)-⊗̂-module with respect to

the outer multiplication

a · u(s, t) :=

∫

G
a(r)u(r−1s, t)dr where a ∈ L1(G) and u ∈ L1(G×G)

4The same quantization of L1(G) could be introduced in an alternative way, as the so-called quanti-

zation of a predual space; here we mean, of course, the predual of L∞(G) ⊆ B(L2(G)) with its standard

quantization. But we do not use this observation now.
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(“convolution in the first variable”). This space participates in the diagram

L1(G) ⊗̂ L1(G)
ig - L1(G×G)

@
@

@
@

@
π o
⊗ R 	�

�
�

�
�

Π

L1(G)

where ig is the well known isometric isomorphism of Grothendieck (taking a ⊗ b to the

function u(s, t) := a(s)b(t)), and Π acts via u 7→ a(s) :=
∫
G u(t, t

−1s)dt. It is easy to verify

that ig and Π are morphisms of left L1(G)-modules and that the diagram is commutative.

Now fix an arbitrary compact set in G of Haar measure 1 and denote by χ its charac-

teristic function. The main ingredient of our proof is the map % : L1(G)→ L1(G×G), a 7→
u(s, t) := χ(t−1)a(st).

Let ∆(s) for s ∈ G denote, as usually, the modular function of the group G. Using the

well known relations
∫
G a(st)ds = ∆(t−1)

∫
G a(s)ds and

∫
G b(t

−1)∆(t−1)dt =
∫
G b(t)dt for

a, b ∈ L1(G) as well as Fubini’s theorem, we have

‖%(a)‖ =

∫

G×G
χ(t−1)|a(st)| d(s × t)

=

∫

G
χ(t−1)∆(t−1)

(∫

G
|a(s)| ds

)
dt

=

(∫

G
χ(t−1)∆(t−1) dt

)
‖a‖ =

∫

G
χ(t)dt‖a‖ = ‖a‖.

Thus % is an isometric operator. Further,

%(a ∗ b)(s, t) = χ(t−1)[a ∗ b](st)

= χ(t−1)

∫

G
a(r)b(r−1st)dr =

∫

G
a(r)(χ(t−1)b(r−1st))dr = [a · (%(b)](s, t),

and hence % is a morphism of left L1(G)-modules. Finally, we have

Π(%(a)) =

∫

G
[%(a)](t, t−1s)dt =

∫

G
χ(s−1t)a(tt−1s)dt = a(s)

∫

G
χ(s−1t)dt = a(s),

and hence Π ◦ % = 1L1(G). Combining all these observations, we see that % is a morphism

in L1(G)-⊗̂-mod and a right inverse of Π. It follows that ρb⊗
:= gr−1 ◦% is a morphism in

the same category and a right inverse of πb⊗
. This completes the proof in the traditional

(“⊗̂−”) context.

Now recall the contractive operator j1 : L1(G) ⊗̂L1(G)→ L1(G)
o
⊗L1(G), discussed in

the introductory section. (Here, of course, we specify both E and F as L1(G).)5 Set ρ o
⊗

:=

5In fact, this concrete operator is an isometric isomorphism, but we do not need it.
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j1 ◦ ρb⊗
. Since j1 is obviously a morphism of left L1(G)-modules, the same is true for ρ o

⊗
.

Further, of course we have π o
⊗
◦j1 = πb⊗

, and consequently π o
⊗
◦ρ o
⊗

= π o
⊗
◦j1 ◦ρb⊗

= 1L1(G).

Finally, because of the choice of the maximal quantization of L1(G), the operator ρ o
⊗
,

being bounded, is automatically completely bounded. It follows that ρ o
⊗

is a morphism in

L1(G)-⊗̂-mod and a right inverse of π o
⊗
. This completes the proof in the “

o
⊗−” context.

.

Dales and Polyakov [5], in the framework of traditional homology, have proved or

disproved the projectivity (as well as the injectivity and the flatness) of several other

important Banach modules over L1(G).

To conclude the section, we would like to say several words about another type of group

algebras. We mean the so-called Fourier algebras of locally compact groups, introduced

by P. Eymard in 1964. Gradually it was realized that these algebras play in harmonic

analysis a very important role, comparable with the role of L1-algebras. More of this,

the both classes of algebras are rather intimately connected. Namely, the dual spaces of

the L1-algebra and of the Fourier algebra of any locally compact group, being equipped

with a certain additional structure, turn out to be in some natural relation of a duality.

This duality, discovered by G. I. Kac and L. I. Vainerman, and, independently, by M.

Enock and J.-M. Schwartz, and defined in the general framework of the so-called Kac

algebras, can be considered as a “right” generalization of the classical Pontryagin duality

to non-Abelian groups. It is presented in the monograph [8].

Let G be a locally compact group, and let L2(G) be the Hilbert space of functions,

square integrable with respect to the left invariant Haar measure on G. Denote by A(G)

the set of functions on G of the form ϕ = ξ ∗ η̌, where ξ, η ∈ L2(G) and η̌(t) := η(t−1) for

t ∈ G. (It is easy to see that A(G) is a dense subset in C0(G).) The fundamental and non-

trivial fact is that A(G) is a Banach algebra with respect to the pointwise multiplication

and the norm

‖ϕ‖ := inf{‖ξ‖‖η‖ : ϕ = ξ ∗ η̌; ξ, η ∈ L2(G).

The Banach algebra A(G) is called the Fourier algebra of G. It is always non-degenerate,

and it is unital ⇐⇒ G is compact.

Is such an algebra left projective?

The answer is, of course, positive, if G is abelian. Indeed, let Ĝ be the Pontryagin dual

locally compact group to G. It is well known that the Fourier transform F : L1(Ĝ) →
C0(G) has A(G) as its image and, being corestricted on A(G), provides an isometric

isomorphism between the respective Banach algebras. Therefore the projectivity of the

⊗̃-algebra A(G) for an Abelian G can be considered as the particular case of Theorem

2.6.

But this result cannot be extended to non-abelian groups. The matter is that there are
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groups G such that the canonical morphism π : A(G) ⊗̂A(G)→ A(G) not only fails to be

a retraction in A(G)-⊗̂-mod, but even to be surjective: This was shown by H. Steiniger

(apparently unpublished) for the case of the discrete group F2, the free group with two

generators. Since, as it was already mentioned, every Fourier algebra is non-degenerate,

Theorem 1.3 implies that A(F2) is not a left projective ⊗̂-algebra.

The situation, however, changes, if if we consider Fourier algebras in the framework

of quantized functional analysis. Let V N(G) be the von Neumann algebra of G (that

is, the least von Neumann algebra on L2(G) that contains all left translation operators.)

Then, as it is well known, V N(G) is (up to an isometric isomorphism) the dual Banach

space of A(G). (Note that the respective duality is well defined, for a ∈ V N(G) and

ϕ ∈ A(G);ϕ = ξ ∗ η̌, ξ, η ∈ L2(G), by (a, ϕ) = 〈a(η), ξ̄〉.) Further, since V N(G), is an

operator norm closed subspace in B(L2(G)), it is automatically a quantum Banach space

with respect to the standard quantization, discussed in Section 0). Now we recall that if a

Banach space is a predual space of the “first floor space” of some quantum Banach space,

then it can be endowed with a special quantization “of an operator predual space” [6,

p.317]. This is exactly what we do with A(G). As it was shown by Effros and Ruan, the

quantum Banach space A(G)
o
⊗A(G) is completely isometrically isomorphic to A(G×G),

and this easily implies that A(G) is an
o
⊗-algebra. (However, generally speaking, it is not

an
h
⊗-algebra.)

The following theorem will be only formulated here. It is a partial case of a general

result of Z.-J. Ruan and G. Xu [25], concerning Kac algebras. Aristov [1] and, indepen-

dently, Wood [30] gave its direct proof.

Theorem 2.7 If G is a discrete group, then the
o
⊗-algebra A(G) is left projective.

(In fact, these authors have proved that, for a discrete G, A(G) possesses a much

stronger property, the so-called biprojectivity.)

3 Spatially projective operator algebras on Banach spaces

Let E be a Banach space, so far (but not for a long time) arbitrary. Let B(E) be the

Banach algebra of all bounded operators on E, equipped, as usually, with the composition

as the multiplication, and with the operator norm, denoted by ‖ · ‖∞. In this section we

widen the meaning of the term “operator algebra”: now an operator algebra on E is any

subalgebra in B(E) that is a Banach algebra with respect to a certain norm ‖ · ‖ ≥ ‖ · ‖∞.

If A is such an algebra, then, apart from its left ideals, one important example of an

A-module immediately comes to our mind. Namely, E itself is evidently a left Banach

A-module with the outer multiplication a · x := a(x) for a ∈ A and x ∈ E. (in other

words, the outer multiplication is the action of an operator on a vector). This particular

A-module is called spatial (or sometimes natural).
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Definition 3.1 An operator algebra A on a Banach space E is called spatially ⊗̂-pro-

jective (or, when there is no danger of misunderstanding, just spatially projective), if the

spatial left A-⊗̂-module E is projective.

Note that in this section we consider only the traditional version of projectivity. Par-

tially it is because we cannot suggest a reasonable quantization of B(E) for a non-Hilbert

space E.

We proceed to discuss one of typical questions of the homological theory of operator

algebras: Which operator algebras are spatially projective?

Let us begin with a rather important sufficient condition for spatial projectivity. For

x ∈ E and f ∈ E∗, we denote by x © f the operator on E, taking y to [f(y)]x. If

x, f 6= 0, then x© f is obviously an operator of rank 1 (in fact, Im(x© f) = span{x}),
and ‖x© f‖∞ = ‖x‖‖f‖. Evidently, for any a ∈ B(E), x, y ∈ E, and f ∈ East we have

a(x© f) = a(x)© f and, in particular, (x© f)(y© f) = [f(y)]x© f.

It is known (and easy to prove) that every bounded operator of rank 1 has the form x©f

for some x ∈ E and f ∈ E∗.
Fix, for a moment, some non-zero f ∈ E∗ and set Cf := {x© f ;x ∈ E}.

Definition 3.2 A subset in B(E) of the form Cf with f 6= 0 is called a column of rank 1

operators.

Theorem 3.1 Let an operator algebra A on a Banach space E contain a column of rank

1 operators, say, Cf . Then it is spatially projective.

/ Lemma The set Cf is a closed left principal ideal in A, generated by an idempotent

element.

/ It follows from the first relation in (1) that Cf is a left ideal in B(E) and hence in A.

Take y ∈ E such that f(y) = 1 Then, for any x ∈ E, it follows from the second relation

in (1) that p := y© f is a left ideal idempotent element in A, and Cf is generated by

p. Finally, if a sequence an ∈ Cf converges to a in A, then an = anp implies a = ap.

Consequently, Cf is closed. .

The end of the proof Let A+ be the unitization of A as a Banach algebra. Consider

the natural embedding in : Cf → A+; of course, it is a morphism in A-⊗̂-mod. Further,

according to the Lemma, Cf is generated by some idempotent element, say p. Consider

the map τ : A+ → Cf : a 7→ ap; obviously, it is a morphism in A-⊗̂-mod, such that

τ ◦ (in) = 1Cf
. We see that Cf is a retract of A+ in A-⊗̂-mod. Since the latter module is

a free module (of rank 1), it follows from Theorem 1.2’(ii) (with C as E) that the former

module is projective.
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Now consider the map i : Cf → E : x©f 7→ x; obviously it is a bijection. Further, the

relation (1) implies that i is a morphism of left A-modules, and the estimation ‖x© f‖ ≥
‖x© f‖∞ = ‖x‖‖f‖ implies that i is a bounded operator. But Cf , being closed in A,

is a Banach space. Therefore, by virtue of Banach’s theorem, we have that the inverse

operator of i is also bounded, and hence i is an isomorphism in A-⊗̂-mod. But we already

know that the left A-⊗̂-module Cf is projective; hence, the same is true for E. .

.

Is a spatially projective operator algebra bound to contain a column of rank 1 op-

erators? Of course, not: it is sufficient to observe that the algebra of scalar operators

{λ1E} is certainly spatially projective. However, the question becomes more interesting,

if we shall restrict ourselves to the consideration of the so-called indecomposable algebras.

Recall that an operator algebra A on a Banach space E is called indecomposable, if there

is no decomposition of E into the direct sum of two non-trivial closed subspaces, invariant

with respect to A. It is clear that the operator algebra, possessing a column of rank 1

operators, is always indecomposable. Could it be that within the class of indecomposable

algebras those that are spatially projective are exactly those that possess a column of rank

1 operators ?

It turns out that for some important classes of operator algebras the answer is “yes”.

Not surprisingly, the majority of results of this kind concerns the most investigated case of

operator algebras on Hilbert spaces. Somewhat later we shall see that both discussed prop-

erties are equivalent for indecomposable operator C ∗-algebras. Now we shall formulate the

similar result for another class of operator algebras, this time essentially non-selfadjoint.

Let A be an operator algebra on a Hilbert space H. Denote by Lat(A) the set of

invariant subspaces of this algebra. Recall that A is called reflexive, if any a ∈ B(H) such

that every space in Lat(A) is invariant with respect to a, belongs to A. (We immediately

see that a reflexive algebra is always weak-operator closed and hence uniformly closed in

B(H)). A reflexive algebra is called CSL-algebra, if all projections on spaces in Lat(A)

commute. (“CSL” is an abbreviation for “commutative subspace lattice”). The most

popular CSL-algebras are the so-called nest algebras, defined as reflexive algebras A with

Lat(A) linearly ordered under inclusion. These algebras can be considered as reasonable

infinite-dimensional generalizations of the algebra of upper triangular matrix. Certainly,

nest algebras are indecomposable.

Theorem 3.2 (Yu. O. Golovin) Let A be an indecomposable CSL-algebra on a Hilbert

space H. Then the following conditions are equivalent:

(i) A is spatially projective;
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(ii) the closure of the algebraic sum of all spaces in Lat(A), other than H, does not

coincide with H;

(iii) A contains a column of rank 1 operators.

The proof is given in [9].

Note that for a nest algebra the second condition means that H, as a biggest element

of a linearly ordered set Lat(A), has an immediate predecessor.

Example 3.1 Take the concrete Hilbert space L2(0,∞) and set, for any s > 0, Hs :=

{f ∈ L2(0,∞) : f(t) = 0 if 0 < t < s}. Now consider two nest algebras: A1 with

LatA1 := {Hn;n = 1, 2, . . .} and A2 with LatA2 := {Hs; s > 0}. Then, by virtue of

Golovin’s result, the first algebra is spatially projective (you are invited to display its

columns of rank 1 operators) whereas the second one is not.

Nevertheless, indecomposable operator algebras with no column of rank 1 operators

do exist. Here is apparently the simplest example.

Exercise 3.1 Show that the operator algebra on C
2, consisting of operators that have,

in the natural basis, matrices of the form
(
λ µ

0 λ

)

is spatially projective and indecomposable, but it does not contain any column of rank 1

operators.

Note that the indicated algebra is neither reflexive nor semi-simple; so it is rather

“bad”. The following result, this time concerning a “very good” algebra, is much more

interesting:

Theorem 3.3 (S. B. Tabaldyev) There exists a uniformly closed operator algebra on a

Hilbert space with the following properties:

(i) it is indecomposable, reflexive and semi-simple;

(ii) it is commutative and hence has no column of rank 1 operators;

(iii) and nevertheless it is spatially projective.

The concrete algebra, suggested by Tabaldyev, was called by him a Sobolev algebra. It

acts on the Sobolev space W 1[0, 1] of functions f ∈ L2[0, 1], whose generalized derivatives

f ′ are also regular generalized functions from L2[0, 1]. As it is well known, W 1[0, 1] is a

Hilbert space with respect to the inner product

〈f, g〉 :=

∫ 1

0
f(t)g(t)dt+

∫ 1

0
f ′(t)g′(t)dt.
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The Sobolev algebra consists of all operatorsmf with f ∈W 1[0, 1], acting by the pointwise

multiplication, i.e. mf : g 7→ fg for f ∈W 1[0, 1]. See the details in [29, pp. 207-209].

However, if we replace the condition of indecomposability by much stronger condition

of irreducibility, examples of that kind are impossible:

Proposition 3.1 (Tabaldyev) Let A be a spatially projective operator algebra on a Ba-

nach space. If, in addition, A is irreducible, then it contains a column of rank 1 operators.

The proof see [29, p. 204].

In a well known class of operator algebras that is intermediate between indecomposable

and irreducible algebras, the situation is not clear:

Problem Problem. Let a topologically irreducible operator algebra on a Banacg space

be spatially projective. Does it imply that it contains a column of rank 1 operators?

If we know, in addition, that our algebra A on E is semi-simple, and also that either A

or E has the approximation property, then it is irreducible and, as a corollary, the answer

is “yes” ([29, p. 205]).

4 Projectivity in Hilbert modules

From now on, we again consider the algebras and modules as object of quantized as well

as of classical functional analysis, and accordingly we use freely the notation “⊗̃” of the

unpersonified tensor product. Besides, the term “operator algebra” again means only a

uniformly closed subalgebra of B(H).

In this section we concentrate on another outstanding class of ⊗̃-modules, the so-called

Hilbert modules over C∗-algebras. We shall present a criterion for the projectivity of these

modules and, as a particular case, we shall describe all spatially projective operator C ∗-

algebras. It will turn out that both results depend on our choice of homological theory

(that is, on the choice of “⊗̃”). We shall see that the “quantized” approach gives us a

larger class of projective modules than the “classical” approach. However, if we leave

the class of C∗-algebras and turn to non-selfadjoint operator algebras, we encouter quite

different phenomena. That will be shown at the very end of the section.

Here is the principal object of our study in this section:

Definition 4.1 Let A be a C∗-algebra. A left Banach A-module H is called a Hilbert A-

module if it has an underlying Hilbert space and, besides, the identity 〈a ·x, y〉 = 〈x, a∗ ·y〉
holds.

Remark We must warn the reader that the terminology concerning these modules is still

not fixed in the literature. In fact, there are not less than five different objects bearing in

various papers the name of Hilbert modules (cf. [16, p. 79]).
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It is evident that the notion of a Hilbert module over a C ∗-algebra is equivalent to

that of a representation of a C∗-algebra on a Hilbert space. (We mean, of course, an

involutive representation.) Namely, if A and H are respective algebra and module, then

the map T : A → B(H), a 7→ T (a) with T (a)x := a · x for x ∈ H is obviously an

involutive representation. It will be called the representation, associated with the module

H. Conversely, if we are given a representation of A, say T , then H immediately becomes

a Hilbert A-module with the outer multiplication a · x := [T (a)](x) for a ∈ A and x ∈ H.

Needless to say, the most natural examples of Hilbert modules are provided by spatial

modules over operator C∗-algebras.

The previous definition, in the form as it is given, concerns a ⊗̂-module over a ⊗̂-

algebra. But we shall show that, as a matter of fact, it provides automatically a
h
⊗-

module over an
h
⊗-algebra and hence a

o
⊗-module over an

o
⊗-algebra with respect to some

reasonable quantizations ofA andH. These are the well-known standard and, respectively,

column quantization. Recall what they are.

As to a given (abstract) C∗-algebra A, we always take its quantization provided by

its arbitrarily chosen faithful representation in a Hilbert space H. In other words, as

a quantization we take an arbitrary injective ∗-homomorphism of A into B(H); recall

that the latter is automatically isometric. But observe: after this the algebra Mn(A) for

n = 1, 2, . . . itself becomes a C∗-algebra (being a C∗-subalgebra of B(nH)), and we recall

that ∗-isomorphisms of C∗-algebras are automatically isometric. Therefore the resulting

quantum Banach space does not depend on a particular choice of a faithful representation.

The indicated quantization of a C∗-algebra will be called standard .

Note that every ∗-homomorphism between C∗-algebras, quantized in the indicated

way, is automatically completely contractive. (It is because its amplifications are also
∗-homomorphisms between C∗-algebras, and therefore they are contractive.)

Being equipped with the standard quantization, a C ∗-algebra becomes an
h
⊗- and

hence an
o
⊗-algebra. (Indeed, for any n = 1, 2, . . ., the space Mn(A) is itself a C∗-algebra,

and the respective amplification of the multiplication in A is itself a multiplication in this

C∗-algebra. Hence, the latter bioperator is contractive.)

Now we proceed to a quantization of H. It is well known that Hilbert spaces can

be quantized by a great multitude of different ways , and many of these ways are of a

great use in studying various problems of functional analysis. For our present purposes,

however, we need only one concrete quantization. As we shall see, it is a generalization of

the concrete quantization of the spaces l2 and l22, cosidered in Section 1.

In what follows we denote by x© y with x, y ∈ H the rank-one operator on H, taking

z to 〈z, y〉x. (Compare the notation x© f in the previous section.) Fix an arbitrary unit

vector e ∈ H and consider the map H → B(H) : x 7→ x© e; it is, of course, an isometric

operator and thus a quantization of H. This particular quantization is called the column
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quantization, and the resulting quantum space is called the column Hilbertian space, or

just column space. It is easy to see that the matrix-norm of this quantum space does not

depend on a particular choice of e ∈ H. More of this, for any n the Banach space Mn(H)

can be identified with the space B(Cn, nH), if we identify a n× n matrix with entries in

H with the operator from C
n to nH, depicted by this matrix. (This operator acts on a

vector of C
n, arranged as a column of complex numbers, by multiplying the given matrix

by this column.)

Proposition 4.1 Any Hilbert module H over a C∗-algebra A is an A-
h
⊗-module, and

hence A-
o
⊗-module, with respect to the standard quantization of A and the column quan-

tization of H. Moreover, the outer multiplication ṁ : A × H → H is a multiplicatively

contractive bioperator.

/ Fix a natural n and consider the respective multiplicative amplification of ṁ, that is

the bioperator ṁ(n) : Mn(A) ×Mn(H) → Mn(H), taking a pair a = (aij) ∈ Mn(A), x =

(xij) ∈ Mn(H) to the matrix with entries yij :=
∑n

k=1 ṁ(aik, xkj) ∈ H for 1 ≤ i, j ≤ n.

We must show that this bioperator is contractive.

Let T : A → B(H) be the representation, associated with our module. Then we

obviously have yij =
∑n

k=1[T (aik)](xkj). Recall that H is a column space, and therefore

we can identify Mn(H) with B(Cn, nH). Let Tn be the amplification of T . Then, using

the previous equality, it is easy to observe that ṁ(n)(a,x), now an operator in B(Cn, nH),

turns out to be the operator composition [Tn(a)] ◦ x. But T , being a ∗-homomorphism

of C∗-algebras, is completely contractive (see above). Thus ‖Tn(a)‖ ≤ ‖a‖, and hence

‖ṁ(n)(a,x)‖ ≤ ‖a‖‖x‖. And this is just what we need. .

From now on, speaking about a Hilbert module H as about a ⊗̃-module over an ⊗̃-

algebra A, we always mean, in the both two “quantum” cases, the standard quantization

of A and the column quantization of H.

We begin to prepare the theorem that will describe projective Hilbert modules. The

first well known observation is of independent interest.

Proposition 4.2 Let ϕ : H → K be a bounded operator between two column spaces.

Then it is automatically completely bounded, and ‖ϕ‖cb = ‖ϕ‖.

/ Fix a natural n and consider the operator ϕ⊗̇1 : nH = H⊗̇C
n → K⊗̇C

n = nK.

Identifying Mn(H) with B(Cn, nH) and Mn(K) with B(Cn, nK), we easily see that the

n-th amplification ϕn : Mn(H) → Mn(K) of ϕ takes a ∈ B(Cn, nH) to the operator

composition (ϕ⊗̇1) ◦ a ∈ B(Cn, nK). Therefore ‖ϕn(a)‖ ≤ ‖ϕ⊗̇1‖‖a‖ = ‖ϕ‖‖a‖ holds.

The rest is clear. .

The following class of module morphisms will serve us as one of our principal tools.

Therefore it deserves a special name.
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Definition 4.2 Let X be a left ⊗̃-module over a (so far arbitrary) ⊗̃-algebra A. Then

any ⊗̃-bounded morphism from X to the basic algebra A is called a module character of

X, or just a character of X, if there is no danger of confusion.

We say that a left A-⊗̃-module X has a sufficient set of characters, if, for any x ∈ X,

x 6= 0 there exists a character χ of X such that χ(x) 6= 0.

It is well known in abstract algebra that any projective left module over an algebra

has a sufficient set of characters (now we mean, of course, the algebraic prototype of the

latter notion). We shall need a functional-analytic version of this result. At first we shall

prove a preparatory assertion that will be used right now and also, for other purposes,

later.

In what follows, for any vector e ∈ H we denote by ě the functional y 7→ 〈y, e〉 on H. If

E is an arbitrary ⊗̃-space, such a functional gives rise to the operator 1⊗̃ě : E⊗̃H → E⊗̃C.

Identifying E ⊗̃ C with E, we can consider 1 ⊗̃ ě as a morphism from E ⊗̃H to E, well

defined by taking x⊗ y for x ∈ E and y ∈ H to 〈y, e〉x.

Proposition 4.3 Let H and E be as above, and u be a non-zero vector in E ⊗̃H. Then

there exists e ∈ H, e 6= 0 such that the morphism 1 ⊗̃ ě : E ⊗̃H → A takes u to a non-zero

vector in H.

/ We shall show that the desired e can be found among vectors of an arbitrary orthonor-

mal basis in H. Fix such a basis, and denote it by eν for ν ∈ Λ.

Denote by N(Λ) the family of all finite subsets of Λ, directed by the inclusion relation,

and, for any λ ∈ N(Λ), denote by pλ : H → H the projection onto the finite-dimensional

Hilbert space Kλ := span{eν ; ν ∈ λ}. It follows from Proposition 2 that ‖pλ‖cb = 1

for all λ ∈ N(Λ). Consequently, for all λ we have ‖1 ⊗̃ pλ‖cb = 1 for the operator

1 ⊗̃ pλ : E ⊗̃H → E ⊗̃H. The latter equality easily implies the estimate

‖v − (1 ⊗̃ pλ)(v)‖ ≤ 2‖v − w‖+ ‖w − (1 ⊗̃ pλ)(w)‖

for all v, w ∈ A ⊗̃H and λ ∈ N(Λ).

We claim that, for any v ∈ E ⊗̃H, the net (1 ⊗̃ pλ)(v) converges to v. Indeed, since

every y ∈ H is a limit of pλ(y), it is true if v is an elementary tensor. Hence it is true for

all sums of elementary tensors and, by virtue of the previous inequality, for their cluster

points, that is for all v ∈ E ⊗̃H.

Since our given u is not zero, it follows that (1 ⊗̃ pλ)(u) 6= 0 at least for one λ. Hence,

by additivity, there exists ν ∈ Λ such that the operator 1 ⊗̃ qν, where qν is the rank-one

projection eν © eν , does not take u to zero. But for every elementary tensor v ∈ E ⊗̃H,

say v := x⊗ y, we have

(1 ⊗̃ qν)(v) = x⊗ 〈y, eν〉eν = (1 ⊗̃ ěν)(x⊗ y)⊗ eν = (1 ⊗̃ ěν)(v)⊗ eν .
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Now again the habitual transfer from elementary tensors to arbitrary elements of E ⊗̃H
works, and we have (1 ⊗̃ qν)(u) = (1 ⊗̃ ěν)(u)⊗ eν . The rest is clear. .

Remark As a matter of fact, if we shall restrict ourselves to the “⊗̂-case”, the previous

proposition can be considerably strengthened. Namely, let A be a Banach algebra and X

be a left projective Banach A-module. Take the underlying Banach spaces of A and X,

and suppose that at least one of them has the approximation property. Then, as it was

observed by Yu. V. Selivanov, X has a sufficient set of characters. Details see, e.g., [10,

Proposition 4.4].

Proposition 4.4 Let H be a left ⊗̃-module over C∗-algebra A. Suppose that H is non-

degenerate and projective. Then it has a sufficient set of characters.

/ Fix a non-zero x ∈ X. By virtue of Theorem 3, there exists a morphism ρ : H →
A ⊗̃H, right inverse to the respective outer product morphism and therefore injective. In

particular, u := ρ(x) 6= 0.

Apply the previous proposition to the case A as E and the present u. We get an

operator 1 ⊗̃ ě : A ⊗̃H → A such that 1 ⊗̃ ě(u) 6= 0. Observing its action on elementary

tensors, we see that it is a morphism in A-⊗̂-mod. It remains to set χ := (1 ⊗̃ ě) ◦ ρ. .

Later it will turn out that in the framework of “quantum” homology projective Hilbert

modules are exactly those with a sufficient set of characters. At the same time, in the

“classical” context the modules with sufficient set of characters are not bound to be

projective.

Now we introduce an important notion that will participate in the formulation of the

main result.

Definition 4.3 Let A be a C∗-algebra. A projection (that is, self-adjoint idempotent

element) p ∈ A, p 6= 0 is called elementary , if pap is a multiple of p for any a ∈ A.

Let p be an elementary projection in a C∗-algebra A. We introduce the

Ip := {ap : a ∈ A};

in other words, Ip is the principal left ideal in A, generated by p. Recall several well-known

facts of the structure theory of C∗-algebras:

Proposition 4.5 (i) Ip is a minimal left ideal in A (in other words, an irreducible

submodule of the A-module A). Conversely, any minimal left ideal in A is of the

form Ip for some elementary projection p ∈ A. Moreover, the map p 7→ Ip is a

bijection between the set of elementary projections in A and the set of minimal left

ideals in A;
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(ii) the ideal Ip is always closed, and its norm, induced from A, is the norm of a Hilbert

space. Moreover, it is generated by the inner product, well defined by the equation

〈ap, bp〉p = pb∗ap for a, b ∈ A.

For the proof see, e.g., [24, Ch. IV, Section 10]).

In fact, we can say more:

Proposition 4.6 The ideal Ip, as a submodule of A, is a Hilbert A-module. Moreover,

its quantization as of the subspace of A, and its column quantization provide the same

matrix-norm.

/ Let a, b, c, d ∈ A, and x := cp, y := dp ∈ Ip. Then

〈ax, y〉p = 〈acp, dp〉p = pd∗acp = 〈cp, a∗dp〉p = 〈x, a∗y〉p,

and hence we obtain the first assertion.

Further, take a matrix x = (xij) ∈ Mn(Ip). Denote by ‖x‖1 its norm with respect

to the standard quantization of A, and by ‖x‖2 its norm with respect to the column

quantization.

Since ‖ · ‖1 is a C∗-algebra norm, and the adjoint matrix x∗ has the entries (x∗)ij :=

(xji)
∗, the number ‖x‖22 is the norm of the matrix y := x∗x with the entries

yij =

n∑

k=1

(x∗)ikxkj =

n∑

k=1

(xki)
∗xkj =

n∑

k=1

p(xki)
∗xkjp =

n∑

k=1

〈xkj, xki〉p.

It obviously follows that ‖x‖21 is the norm of the scalar n × n matrix α with the entries

αij :=
∑n

k=1〈xkj, xki〉 for 1 ≤ i, j ≤ n.

On the other hand, ‖x‖2 is the norm of the respective operator in B(Cn, nH), and hence

‖x‖22 is the norm of the operator composition f ◦ x ∈ B(Cn,Cn), where f ∈ B(nH,Cn) is

the adjoint operator of x. Obviously this latter operator has the matrix (fij ∈ H∗), where

fij : H → C takes y to 〈y, xji〉. It remains to observe that f ◦ x is depicted by the same

matrix α as before. .

In what follows, Hilbert A-modules of the form Ip, where p is an elementary projection

in A, will be called elementary Hilbert A-modules.

Now we are almost ready to obtain the simplest particular case of a future general

theorem and, doing this, to describe the “elementary bricks” for the building of arbitrary

projective Hilbert modules. This initial result will concern irreducible Hilbert modules,

that is, non-zero Hilbert modules without proper submodules (in pure algebraic sense)

save {0}. 6

6Note that, by virtue of Kadison’s representation theorem, a Hilbert module over a C∗-algebra without

proper closed submodules automatically has no proper submodules at all.
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Theorem 4.1 Let H be an irreducible Hilbert modules over a C ∗-algebra A, considered

as a ⊗̃-module over an ⊗̃-algebra. The following assertions are equivalent:

(i) H is ⊗̃-projective;

(ii) H has a sufficient set of characters (in A-⊗̃-mod);

(iii) H has at least one non-zero character (in A-⊗̃-mod);

(iv) H is algebraically isomorphic to an elementary Hilbert A-module;

(v) H is ⊗̃-isometrically ⊗̃-isomorphic to an elementary Hilbert A-⊗̃-module.

In particular, (because of the presence of the pure algebraic condition (iii)) the class of

projective irreducible Hilbert A-⊗̃-modules does not depend on the particular choice of

“⊗̃”, i.e. it is the same in all three theories.

(As to the concluding assertion of the theorem, we shall see later that outside the class

of irreducible modules the situation is different.)

/ (i) =⇒ (ii). This is provided by Proposition 4.

(ii) =⇒ (iii). This is clear.

(iii) =⇒ (iv). Let χ be a non-zero character of H. Since H is irreducible, χ is an

injective map and hence its corestriction χ0 : H → Im(χ) is an algebraic isomorphism of

A-modules. It follows that the sub-A-module Im(χ) in A is also irreducible, and hence it

is a minimal left ideal in A. It remains to use Proposition 4(i).

(iv) =⇒ (v). Let i : H → Ip be an algebraic isomorphism of A-modules. Take x ∈ H
such that i(x) = p; since i is injective, and i(p · x) = p[i(x)] = p, we have p · x = x. Now

take arbitrary y, z ∈ H. SinceH is irreducible, there are a, b ∈ A such that y = a·x = ap·x
and z = b · x = bp · x and hence i(y) = ap and i(z) = bp. Therefore, using the form of the

inner product in Ip (see Proposition 4(ii)) and the definition of a Hilbert module, we have

‖x‖2〈i(y), i(z)〉 = ‖x‖2〈ap, bp〉 = 〈〈ap, bp〉x, x〉
= 〈〈ap, bp〉p · x, x〉 = 〈(pb∗ap) · x, x〉 = 〈ap · x, bp · x〉 = 〈y, z〉.

Thus the operator ‖x‖i is an isometric morphism from H onto Ip, and this completes our

assertion in the “⊗̂”-case. Since in both “quantum” cases the spaces H and (by virtue of

Proposition 5) Ip have the column quantization, the rest follows from Proposition 2.

(v) =⇒ (i). Since p is a right identity for Ip, the latter is ⊗̃-projective by Proposition

2.1. .

The most transparent particular case of this theorem is apparently the following as-

sertion. From now on, the term “spatially ⊗̃-projective operator C∗-algebra” means, of

course, that the spatial module over this algebra is ⊗̃-projective.
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Theorem 4.2 Let A be an irreducible operator C∗-algebra on a Hilbert space H. Then

A is spatially ⊗̃-projective ⇐⇒ it contains all compact operators (i.e. A ⊇ K(H)).

/ “⇐=”. Since A, together with K(H), contains a lot of columns of rank 1 operator, H

is ⊗̂-projective by virtue of Theorem 3.1. Hence the concluding assertion of the previous

theorem guarantees that H, being an irreducible module, is also
h
⊗- and

o
⊗-projective.

“=⇒”. It follows from the previous theorem that A contains an elementary projection,

say p. Take arbitrary x, y ∈ Im(p) with x 6= 0. Since A is irreducible, x is its cyclic vector.

Hence y = a(x) holds for some a ∈ A. We remember that pap is a multiple of p; therefore

y = [pap](x) is a multiple of x = p(x). It follows that p is an operator of rank 1. But the

following is well known (and easy to show; do it!): if an irreducible C ∗-algebra contains

at least one operator of rank 1, then it contains all compact operators. The rest is clear.

.

Recall that an indecomposable operator C∗-algebra is automatically irreducible. We

therefore redeem a promise, given in the previous section. Namely, as a direct corollary of

the previous theorem, we obtain that every spatially projective indecomposable operator

C∗-algebra is bound to have columns of rank 1 operators.

Counterexample Consider the well-known fermion (or CAR-) algebra. It is irreducible,

but contains no compact operator. Hence, it is not spatially ⊗̃-projective, whatever

concrete “⊗̃” we choose. The same is true for general Glimm algebras.

In fact the modules, participating in Theorem 2, admit a complete classification. We

have to restrict ourselves to a mere formulation of the relevant result. In what follows,

the word “isomorphism” means whatever you can imagine: from a pure algebraic isomor-

phism (through a topological isomorphism of Banach modules) to a completely isometric

isomorphism of quantized modules.

We recall that projections p and q in a C∗-algebra A are called equivalent or, more

precisely, equivalent in the sense of Murray and von Neumann if there exists v ∈ A (called

a partial isometry) such that v∗v = p and vv∗ = q and consequently, as an easy calculation

shows, v = vp = qv and v∗ = pv∗ = vq∗.

The following assertion (Proposition 21 in [13]) is rather easy, and we leave its proof

to the listener/reader.

Proposition 4.7 Let p and q be elementary projections in A. Then they are equivalent

⇐⇒ paq 6= 0 for some a ∈ A ⇐⇒ A-modules Ip and Iq are isomorphic.

This proposition, being combined with the previous theorem, immediately implies:

Theorem 4.3 The assignment p 7→ Ip induces a bijection between the set of equivalence

classes of elementary projections in A and the set of isomorphism classes of irreducible

projective A-⊗̃-modules. /.
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Exercise 4.1 Let A be an operator C∗-algebra, containing at least one operator of rank

1. Show that all irreducible projective A-⊗̃-modules coincide, up to an isomorphism, with

the spatial A-module.

We proceed from irreducible to general Hilbert modules.

Unfortunately, the lack of space/time prevents us from giving the thorough description

and classification of projective objects within this class of modules. Nevertheless, we shall

try to illuminate some crucial points with sufficient degree of completeness.

To begin with, we shall provide some valuable information about the behavior of

characters of our modules. As a matter of fact, we have a full knowledge of their structure

(see [21]). However, for our present aims we need only part of the relevant general result.

Theorem 4.4 Let H be a Hilbert module over a C∗-algebra A, and let χ : H → A be its

non-zero character. Then the image of χ contains an elementary projection.

Regretfully, we have no possibility to present here the complete proof of this theorem,

given in [16, p. 20–22]. However, we shall point out its principal stages. It may well

happen that our listener/reader will be able to restore, embarking from these “lemmas”,

all missing details.

First of all, relying heavily on the “Hilbert” and “C ∗-” stuff, we get the rather technical

Lemma 1 Let x ∈ H and let a := χ(x). Suppose that there are selfadjoint normed

elements b1, . . . , bn ∈ A such that bkbl = blbk = 0 for k, l = 1, . . . , n and, for some θ > 0,

we have ‖bka‖ ≥ θ for k = 1, . . . , n. Then the number n of these elements does not exceed

(θ)−2‖χ‖2‖x‖2.

From this lemma, using the apparatus of the continuous functional calculus in C ∗-

algebras, one can deduce

Lemma 2 Let a be a non-zero positive element in the image of χ, and Ω ⊂ R
+ be its

spectrum. Then this spectrum consists of isolated points, save, perhaps, 0.

Thanks to this lemma, we can apply “δ-functions” to elements in the image of χ. With

their help, we get

Lemma 3 Let a and Ω be as above. Then the image of χ contains a projection p such

that pa = ap = pap, and the latter element is a non-zero multiple of p.

From this lemma, in its turn, follows

Lemma 4 If a projection in Im(χ) is not elementary, then it strictly majorizes another

projection in Im(χ).

47



On the other hand, the same Lemma 1, being a source of the formulated lemmas, also

implies

Lemma 5 Let p = p0 > p1 > . . . > pn be a family of strictly decreasing non-zero projec-

tions in A, and p = χ(x) for some x ∈ H. Then n ≤ ‖χ‖2‖x‖2. As a corollary, every

projection in the image of χ majorizes a projection, which is minimal in A.

Now one can obtain the formulated theorem, combining three last lemmas.

As the second step to the main results, we use the previous theorem to obtain

Proposition 4.8 Let H be a Hilbert module over a C ∗-algebra. Suppose H has a non-

zero character. Then it has a closed irreducible submodule, isomorphic to some elementary

Hilbert module.

/ Let χ be a mentioned character. Then, by virtue of the previous theorem, there exist

x ∈ H and an elementary projection p = χ(x). Replacing x by p · x, we can assume that

p · x = x. Take a submodule Hx := {a · x; a ∈ A} in H. Our aim is to show that this is

just what we need.

Let a sequence yn = an · x ∈ Hx converge to y ∈ H. Since the map χ is continuous,

χ(yn) = an · χ(x) = anp ∈ Ip converge to χ(y). Since Ip is closed, χ(y) = ap for some

a ∈ A. But then

a · x = ap · x = lim
n→∞

(anp · x) = lim
n→∞

(anp · x) = lim
n→∞

(an · x) = lim
n→∞

yn = y.

Therefore y ∈ Hx, and hence Hx is closed.

Further, χ evidently maps Hx onto Ip. Consider the respective birestriction χ0 : Hx →
Ip; of course, it is a morphism of A-modules. Take y ∈ Hx; y = a · x; then y = ap · x.
Therefore, if y 6= 0, then ap 6= 0 and hence χ0(y) = χ(a · x) = aχ(x) = ap 6= 0. We see

that χ0 is an injective morphism of Hx onto Ip. Consequently, it is an isomorphism. The

rest is clear. .

Theorem 4.5 Let H be a Hilbert module over a C∗-algebra A such that the set of its

characters is sufficient. Then H decomposes into a Hilbert sum of its closed irreducible

submodules. Moreover, every of these submodules is isomorphic to an elementary Hilbert

module.

/ If K is a closed submodule in H, the “direct difference” H 	 K is obviously also

a submodule in H. This enable us to deduce the desired assertion from the previous

theorem with the help of a ritual dance around Zorn’s Lemma. The respective partially

ordered set is the set of all families of pairwise orthogonal submodules of H, isomorphic

to some elementary Hilbert module. We left the details to the listener/reader. .
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Formally this theorem belongs to the representation (= module) theory of C ∗-algebras.

But its impact on the homological theory is obvious. We remember (Proposition 4) that a

Hilbert module, which is projective in the sense of at least of one of our three homological

theories, automatically satisfies the conditions of the previous theorem and thus has a

Wedderburn-type decomposition of the indicated form. Now we are at the threshold of

the theorem, showing that in both “quantum” homological theories the converse is also

true. As a corollary, we shall get a complete description of ⊗̃-projective Hilbert modules

for ⊗̃ =
h
⊗ and ⊗̃ =

o
⊗.

We want to rearrange our decomposition, grouping isomorphic summands. As it could

be expected because of Theorem 3, the set of equivalence classes of elementary projections

in A plays an important role. We denote it by P(A), or just P. It will be convenient to

identify P with some fixed (arbitrarily chosen) maximal family of mutually non-equivalent

elementary projections in A and respectively write, say, p ∈ P. If β : P → N is an

arbitrary cardinality-valued function, we denote by β(p)Ip the Hilbert sum of β(p) copies

of the Hilbert space Ip and introduce, as one of our main objects, the quantum column

Hilbertian A-module ⊕̇{β(p)Ip : p ∈ P}, denoted by Iβ . (if P is empty, we put Iβ := 0).

Theorem 4.6 The following properties of a non-degenerate Hilbert module H over a C ∗-

algebra A are equivalent:

(i) H is projective as a
o
⊗-module over a

o
⊗-algebra;

(ii) H is projective as a
h
⊗-module over a

h
⊗-algebra;

(iii) H has a sufficient set of characters;

(iv) H is completely isometrically isomorphic to the Hilbert sum of a family of elementary

A-modules, that is (by Theorem 3) to Iβ for some β : P → N.

/ (i) =⇒ (ii). This follows from Proposition 1.7.

(ii) =⇒ (iii). This is Proposition 3.

(iii) =⇒ (iv). This is Theorem 5.

(iv) =⇒ (i). And now it is time to work in earnest. . .

Again we intend to use Theorem 1.3. Accordingly, our aim is to produce a completely

bounded morphism of A-modules ρ : Iβ → A
o
⊗ Iβ, right inverse to the outer product

morphism π := πIβ . We shall provide such a morphism, and the latter, in addition, will

happen to be completely contractive.7

For any p ∈ P, we denote by β(p) the segment of the transfinite line from 1 to β(p).

If m ∈ β(p), we denote by Im
p the “m-th replica” (or copy) of Ip in a Hilbert sum β(p)Ip.

7And even better than this; see the future Exercise 2.
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In what follows, for x ∈ Ip(⊆ A) the notation xm means that we consider the respective

replica of of x in Im
p .

Denote by Iβ
0 the linear span or, what is now the same, the direct linear sum of all

Im
p : p ∈ P,m ∈ β(p). Consider the linear operator ρ0 : Iβ

0 → A
o
⊗ Iβ , well defined by

taking a replica xm ∈ Im
p of x ∈ Ip to

ρ0(x
m) := x⊗ pm.

Observe that, for any xm ∈ Im
p and a ∈ A, we have ρ0(a · xm) = ρ0((a · x)m) = ax⊗ pm =

a · (x⊗ pm) = a · ρ0(x
m), and π(ρ0(x

m)) = x · pm = (xp)m = xm. By linearity, this implies

that the operator ρ0 has the properties

ρ0(a · y) = a · ρ0(y) (9)

and

π(ρ0(y)) = y (10)

for all a ∈ A and y ∈ Iβ
0 .

Fix n ∈ N and an arbitrary matrix y = (yij) ∈ Mn(Iβ
0 ). To begin with, we want to

show that, for the matrix u := ρ0n(y) ∈Mn(A
o
⊗ Iβ), where ρ0n is the amplification of ρ0

(i.e. for u with the entries uij := ρ0(yij) ∈ A
o
⊗ Iβ) we have ‖u ≤ ‖y‖.8

Since Iβ
0 is the direct sum of the spaces Im

p , we we can express the matrix entries yij

in the form

yij =

L∑

l=1

K∑

k=1

xk
lk,ij.

In this expression xk
lk,ij ∈ Imk

pl
is the “mk-th replica of a certain element xlk,ij ∈ Ipl

, where

pl ∈ P for l = 1, . . . , L are certain elementary projections, mk ∈ β(pl); k = 1, . . . ,K are

ordinals, and from now on we write, for brevity, the superscript k instead of mk.

Take, for every l = 1, . . . , L, the span of all xlk,ij in Ipl
, and then some orthonormal

basis, say el1, . . . , elMl
of that span. Then we have, for all relevant l, k, i, j, the expansion

xlk,ij =

Ml∑

m=1

λlkm,ijelm, and consequently xk
lk,ij =

Ml∑

m=1

λlkm,ije
k
lm

for some λlkm,ij ∈ C.

The following important introduced vectors will be used a little bit later.

Lemma 1 (i) For all l = 1, . . . , L,m,m′ = 1, . . . ,Ml we have e∗lmelm′ = pl, if m = m′,

and e∗lmelm′ = 0, if m 6= m′;

8The advanced reader will realize that our argument is rather near to the proof of the well known fact

that the
o

⊗-product of two column Hilbertians is again a column Hilbertian. Moreover, we could, after

some preparation, use this fact, showing that the image of ρ is actually contained in such a
o

⊗-product.

But it will not make our life much easier. We prefer the direct proof, which seems to us more instructive.
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(ii) for all l, l′ = 1, . . . , L, l 6= l′ and all m = 1, . . . ,Ml,m
′ = 1, . . . ,Mm′

we have

e∗l′m′elm = 0.

/ (i). Since vectors elm for all m belong to Ipl
, we have elm = elmpl. Therefore, using

the form of an inner product in Ipl
(see Proposition 4(ii)), we have

e∗lmelm′ = ple
∗
lmelm′pl = 〈elm, elm′〉pl.

The rest is clear.

(ii). Suppose that, on the contrary, e∗l′m′elm 6= 0. Let us denote, for brevity, this

element by a. Since a = pl′e
∗
l′m′elmpl, we have a∗a = pla

∗p∗l′apl and aa∗ = pl′ap
∗
l a
∗pl′ .

Therefore a∗a is a multiple of pl, whereas aa∗ is a multiple of pl′ . Set b := a/‖a‖. The C∗-

identity for the norm in A immediately implies b∗b = pk and bb∗ = pl. But this means that

the projections pl and pk, despite they represent different elements of P, are equivalent.

We came to a contradiction. .

The continuation of the proof Remembering that Iβ has the column quantization of

Iβ, we identify the matrix y with the respective operator in B(Cn, (Iβ)n), also denoted

by y. This operator takes ξ = (ξ1, . . . , ξn) ∈ C
n to

y(ξ) =




n∑

j=1

ξjy1j, . . . ,
n∑

j=1

ξjynj


 .

The i-th vector in this n-tuple is

n∑

j=1

ξjyij =
n∑

j=1

ξj

(
L∑

l=1

K∑

k=1

xk
lk,ij

)

=

n∑

j=1

ξj

(
L∑

l=1

K∑

k=1

(
Ml∑

m=1

λlkm,ije
k
lm

))
=

L∑

l=1

K∑

k=1

Ml∑

m=1




n∑

j=1

ξjλlkm,ij


 eklm.

Since the system ek
lm for all possible l, k,m is orthonormal in Iβ, we have

‖y‖2 = max

n∑

i=1

∥∥∥∥∥∥

n∑

j=1

ξjyij

∥∥∥∥∥∥

2

= max

n∑

i=1

L∑

l=1

K∑

k=1

Ml∑

m=1

∣∣∣∣∣∣

n∑

j=1

ξjλlkm,ij)

∣∣∣∣∣∣

2

where the maximum is taken over all ξ = (ξ1, . . . , ξn) ∈ C
n such that

∑n
j=1 |ξj |2 = 1.

Keeping this in our memory, we turn to the matrix u := ρ0n(y). Its entries have the

form

uij =

L∑

l=1

K∑

k=1

xlk,ij ⊗ pk
l .
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(Recall that by pk
l we denote the replica of pl in Imk

l .) Therefore

uij =
L∑

l=1

K∑

k=1

[(
Ml∑

m=1

λlkm,ijelm

)
⊗ pk

l

]
=

L∑

l=1

K∑

k=1

Ml∑

m=1

[λlkm,ij(elm ⊗ pk
l )].

To present it in slightly more convenient form, we set, for all l,m, k, i, j, participating

in the calculations above, and for all s = 1, . . . , L, µslkm,ij := λlkm,ij, if s = l, and

µslkm,ij := 0 otherwise. Then obviously we have

uij =

L∑

s,l=1

K∑

k=1

Ml∑

m=1

µslkm,ij[elm ⊗ pk
s ]. (11)

Observe that this formula deals with N := M1 + . . . + ML elements elm ∈ A and KL

vectors pk
s ∈ Iβ . For brevity, we renumerate arbitrarily the double indexes “(·)lm” by single

numbers t = 1, . . . , N , and the double indexes “(·)k
s” by single numbers r = 1, . . . ,KL.

From now on we shall write et, qr and µtr,ij instead of respective elements elm, vectors pk
s

and complex numbers µslkm,ij. The formula (11) transforms into

uij =
N∑

t=1

KL∑

r=1

µtr,ij[et ⊗ qr].

After this, we introduce the following three matrices:

10. A certain matrix v ∈Mn,Nn(A). It has the form of the “block-row”

bfv1, . . . vt, . . . ,vN ),

where, for any t = 1, . . . , N , vt = (vt,ij) ∈ Mn(A) is the diagonal matrix with entries et

in the main diagonal and 0 in other places.

20. A certain matrix, more precisely, a row w ∈M1,KL(Iβ). It has the form

(q1, . . . , qr, . . . , qKL).

30. A certain scalar (“usual”) matrix γ ∈MNKLn,n(C). It has the form of the “block-

column” 


...

γtr

...


 ,

where the respective blocks are n× n matrices γtr := (µtr,ij); t = 1, . . . , N, r = 1, . . . KL.

Now let us have a look at the tensor product v⊗w. According to what was said above,

we see a matrix in Mn×1,Nn×KL(A⊗ Iβ) that obviously has the form of the “block-row”

(. . . , ztr, . . .) with 1 ≤ t ≤ N, 1 ≤ s ≤ KL, where ztr ∈Mn(A⊗ Iβ) is the diagonal matrix
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with entries et ⊗ qr in the main diagonal and 0 in other places. (We can arrange these

matrices from left to right in the lexicographical order).

We came to the crucial observation. From the structure of our matrices it easily follows

that the n × n matrix (v ⊗ w)γ has, in the “ij-th” place, for 1 ≤ i, j ≤ n, the entries
∑N

t=1

∑KL
r=1 µtr,ij [et ⊗ qr]. But by (6) these entries are exactly uij . We got the equality

ρ0(y) = u = (v ⊗w)γ.

Consequently, we can apply the formula (2) in Section 0, where we set, of course, A as

E, Iβ as F , our concrete matrices of the same notation as v, w and γ, and the identity

matrix in Mn(C) as α. This gives the estimate

‖ρ0n(y)‖ ≤ ‖v‖‖w‖‖γ‖. (11)

But what can be said about the norms of our three matrices?

Lemma 2 ‖v‖ = ‖w‖ = 1, whereas ‖γ‖ = ‖y‖.

/ Consider at first v ∈Mn,Nn(A). The norm of this rectangular matrix is, by definition,

the norm of the square matrix in MNn(A) with v as its upper block-row and with 0 in

other places; we preserve for this square matrix the same notation v. But MNn(A) is a

C∗-algebra; therefore ‖v‖2 = ‖v∗v‖ holds. Further, v∗v can be represented as the block-

matrix of the size N × N with blocks from Mn(A). In this “big” matrix the block with

the subscript “tr” for 1 ≤ t, r ≤ N is obviously the n × n matrix with e∗t er in the main

diagonal and 0 in other places. Now we recall that by et we began, after an arbitrary

renumeration, to denote the vectors elm for l = 1, . . . , L,m = 1, . . . ,Ml, and these vectors

were the subject of Lemma 1. It is evident that in the new notation of our vectors Lemma

1 exactly asserts that e∗t er = pt, if t = r, and e∗t er = 0 otherwise. Consequently, our “big”

matrix v∗v has no non-zero entries, save in the main diagonal, and those are non-zero

projections. This implies, of course that ‖v∗v‖ = 1, and hence ‖v‖ = 1.

Now we turn to the row w = (q1, . . . , qKL) ∈ M1,KL(Iβ). Because of the column

quantization of Iβ , its norm is the norm of the operator in B(CKL, Iβ), depicted by

this row. This operator takes the t-th ort (= vector of the natural basis) in C
KL to

qt. Recall that by qt we began, after an arbitrary renumeration, to denote the vectors

pk
l for l = 1, . . . , L, k = 1, . . . ,K, and that these vectors, because of their choice, form

an orthonormal system in Iβ. This means, of course, that our operator is isometric.

Consequently, ‖w‖ = 1.

Finally, take the scalar matrix γ. Its norm is the norm of the respective operator in

B(Cn,CNKLn). This means that

‖γ‖2 = max

n∑

i=1

N∑

t=1

KL∑

r=1

∣∣∣∣∣∣

n∑

j=1

ξjµtr,ij

∣∣∣∣∣∣

2

,

53



where the maximum is taken over all ξ = (ξ1, . . . , ξn) ∈ C
n such that

∑n
j=1 |ξj |2 = 1.

Recall that by µtr,ij we began, after an arbitrary renumeration, to denote the complex

numbers µslkm,ij for s, l = 1, . . . , L, k = 1, . . . ,K, m = 1, . . . ,Ml, and the latter, in their

turn, were taken equal to λlkm,ij, if s = l, and to 0 otherwise. Therefore, we have

‖γ‖2 = max
n∑

i=1

L∑

s,l=1

K∑

k=1

Ml∑

m=1

∣∣∣∣∣∣

n∑

j=1

ξjµslkm,ij

∣∣∣∣∣∣

2

= max
n∑

i=1

L∑

l=1

K∑

k=1

Ml∑

m=1

∣∣∣∣∣∣

n∑

j=1

ξjλlkm,ij

∣∣∣∣∣∣

2

,

where the maximum is taken over the same ξ as before. We see that exactly ‖γ‖ = ‖y‖.
.

The end of the proof This lemma, together with the estimate (11), gives ‖ρ0n(y)‖ ≤
‖y‖ for any n ∈ N and y ∈ Mn(Iβ

0 ). Thus the operator ρ0n : Mn(Iβ
0 ) → Mn(A

o
⊗ Iβ)

is contractive. In particular, taking n = 1, we see that our initial operator ρ0 : Iβ
0 →

A
o
⊗ Iβ is contractive. Since Iβ

0 is a dense subspace in Iβ , ρ0 has a unique extension to

a contractive operator ρ : Iβ → A
o
⊗ Iβ . Clearly, for any n, the respective amplification

ρn : Mn(Iβ) → Mn(A
o
⊗ Iβ) is just the extension by continuity of ρ0n and therefore it is

also contractive. We see that ρ is completely contractive.

It remains to observe that the equality (9), combined with the continuity of ρ, implies

that ρ is a morphism of A-modules whereas the equality (10) similarly implies that ρ is a

right inverse of the canonical projection π. Now Theorem 1.3 closes the matter. .

Exercise 4.2 Show that, as a matter of fact, the just constructed morphism ρ is com-

pletely isometric.

Thus we have just seen that a “quantum projective” Hilbert module over a C ∗-algebra

is exactly what one can build from the “elementary bricks”, described in Theorem 1, by

taking arbitrary Hilbert sums.

Proceeding from the “quantum” to the “classical” context, we discover that the situ-

ation becomes more complicated.

The reason of the appearance of new difficulties is as follows. Now, trying to prove

that a module of the type Iβ is ⊗̂-projective, we should like to construct a morphism from

such a module to A⊗ Iβ, where the latter is equipped with the ⊗̂-norm. But this norm is

considerably bigger than
o
⊗-norm, with which we have just worked. Therefore an operator

from Iβ to A⊗ Iβ, that was bounded with respect to the
o
⊗-norm in the latter space, can

fail to be bounded after the replacing this norm by the ⊗̂-norm. More of this, one can

observe that the concrete morphism ρ0, constructed in the previous proof, is, generally

speaking, no more bounded.

Nevertheless, the “classically projective” Hilbert modules also can be completely de-

scribed, and this can be done with the help of some modification of the morphism ρ0,
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discussed above. The existing proof of the relevant result, as a whole, is more difficult

than that of Theorem 6 (and this is despite we have “only one floor” to work with). We

shall present only its formulation.

Definition 4.4 A cardinality-valued function β : P → N is essentially finite, if the car-

dinality β(p) is finite for all p ∈ P such that dim Ip =∞.

Theorem 4.7 Let H be a non-degenerate Hilbert module over a C ∗-algebra A. Then its

following properties are equivalent:

(i) H is ⊗̂-projective;

(ii) there is an essentially finite cardinality-valued function β : E → N such that H is

topologically isomorphic to the Banach A-module Iβ;

(iii) the same, with “isometrically” instead of “topologically”.

The complete proof is presented in [13].

Counterexample Let A be an operator C∗-algebra, acting on a Hilbert space H and

containing at least one operator of rank 1, and hence all of K(H). Take any projection p

of rank 1. Then it is easy to see that dim Ip =∞. (In fact, the A-module Ip is isomorphic

to the spatial module H; cf. Exercise 1.) Therefore Theorems 6 and 7 imply that the A-

module ℵ0Ip, the Hilbert sum of a countable family of copies of Ip, is
h
⊗- and

o
⊗-projective,

but it is not ⊗̂-projective.

(In fact, the most difficult part in the proof of Theorem 7 is just to demonstrate that

such a module is not ⊗̂-projective.)

Recall that, within the class of irreducible modules, ⊗̃-projective Hilbert modules

admit the complete classification (Theorem 3). This classification can be extended to

general ⊗̃-projective Hilbert modules. For this aim, apart from the mentioned theorem,

we use

Proposition 4.9 Let β, β ′ : P → N be two arbitrary cardinality-valued functions. If the

Hilbert modules Hβ and Hβ′ are topologically isomorphic, then β = β ′.

For the proof, see [13, Theorem 4].

Theorems 6 and 7, combined with this proposition, give the theorem, formulated be-

low. There, in the “classical” part (i) the word “isomorphism” means either topological

or, according to your wish, isometric isomorphism of Banach modules. In the “quantum”

part (ii) of the theorem the same word means whatever you choose between topologi-

cal isomorphism of Banach modules and completely isometric isomorphism of quantum

Banach modules.
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Theorem 4.8 Let A be a C∗-algebra, P be the set of equivalence classes of its elementary

projections. The the assignment β 7→ Hβ generates a bijection

(i) between the class of all essentially finite cardinal-valued functions on P and the class

of isomorphism classes of non-degenerate ⊗̂-projective Hilbert modules over A;

(ii) between the class of arbitrary cardinal-valued functions on P and the class of isomor-

phism classes of non-degenerate
h
⊗-projective (or, equivalently,

o
⊗-projective) Hilbert

modules over A.

Following the line of our most transparent illustrations, opened by Theorem 2 and

Exercise 1, you are invited to do

Exercise 4.3 Let A be as in the counter-example above. Taking Theorem 8 for granted,

show that any ⊗̃-projective Hilbert A-module has, up to an isomorphism, the form mH,

where m is a uniquely determined cardinality. This cardinality must be finite in the

“classical” case and can be arbitrary in the “quantum” case.

Remark Observe, in the context of this exercise, that the A-modules ℵ0H and ℵH are

not topologically isomorphic, but they are certainly algebraically isomorphic. Thus we

see that the variety of types of isomorphisms, considered in the previous theorem, cannot

include (contrary to what was said in Theorem 3) the pure algebraic isomorphism of

modules.

As you have noticed, all the time our modules were assumed to be non-degenerate.

However, we did not loose generality. Degenerate modules do not create new problems:

Exercise 4.4 Let H be an arbitrary Hilbert module over a C ∗-algebra A, He be its

non-degenerate submodule. Show that

(i) if A is unital, then H is ⊗̃-projective ⇐⇒ He is ⊗̃-projective

(ii) if A is not unital and H is ⊗̃-projective, then H is non-degenerate (that is H = He).

5 Wedderburn algebras and spatially projective C∗-algebras

From now on, we concentrate on the outstanding particular case of Hilbert modules. This

is the case of spatial modules over operator C∗-algebras. Theorems 6 and 7, being applied

to these modules, lead to the complete description of spatially projective C ∗-algebras in

both of contexts, the classical one and the quantum one. In fact, this description, the

future Theorem 3, is equivalent to the combination of Theorems 6 an 7: each of them

can be deduced from another one (see [16] [13]). The argument has a somewhat technical

character. We shall omit it, restricting ourselves with the following hint about the whole

business.
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Exercise 5.1 Let A be an operator C∗-algebra, and H be the spatial A-module. Further,

let p be an elementary projection in A, and x be a vector in the image of p. Show that the

set Hp,x := {a(x); a ∈ A} is an irreducible closed submodule of H, isomorphic to Ip. Then

show that, if A has a sufficient set of characters, the converse is true: every irreducible

submodule of H has the form Hp,x for some p and x as above.

Instead of going to details of the proofs, we shall say more about the connections of the

spatial projectivity of operator algebras with some old questions of the structure theory

of operator algebras.

As we shall see, the conditions of the spatial projectivity of an operator algebra will

turn out to be equivalent (or closely related) to the existence of what could be reasonably

called the Wedderburn structure of this algebra, on the lines of the classical Wedderburn

structure theorems for semisimple finite-dimensional operator algebras. We mean the

celebrated result, established in the beginning of 20th century. In the modern language it

can be formulated as follows.

Wedderburn Theorem Let A be a non-degenerate algebra of operators acting on a

finite-dimensional linear space H. Suppose that A is semi-simple. Then there are de-

compositions H =
⊕{H ′m;m = 1, . . . , n} and, for any m, H ′m = Hm ⊗Km, such that A

consists of all operators a with the following properties:

(i) H ′m for m = 1, . . . , n are invariant subspaces of a;

(ii) the restriction of a on every H ′m with m = 1, . . . , n has the form b ⊗ 1 where b is

an operator acting on Hm, and 1 is the identity operator on Km.

In the more traditional language of matrices the described structure obviously means

the following. Operators in A are depicted, with respect to some basis in H, by diagonal

block matrices, and each of these “big” blocks is, in its turn, a scalar block matrix. In

other words, an operator in A has the block matrix of the form




a 0 . . . 0 0 . . . 0 0 . . .

0 a . . . 0 0 . . . 0 0 . . .
...

...
. . .

...
...

...
... . . . . . .

0 0 . . . a 0 . . . 0 0 . . .

0 0 . . . 0 b . . . 0 0 . . .
...

...
...

...
...

. . .
... . . . . . .

0 0 . . . 0 0 . . . b 0 . . .

0 0 . . . 0 0 . . . 0 c . . .
...

...
...

...
...

...
...

...
. . .



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(Here the sizes of the “small” blocs a, b, c, . . . are respectively dimH1,dimH2, . . ., that is

the linear dimensions of left tensor factors. On the other hand, the numbers of identical

“small” blocks inside the “big” blocs are respectively dimK1,dimK2, . . ., the dimensions

of of right tensor factors.)

With the establishment of functional analysis some people, and notably von Neumann

began to be interested in possible functional-analytic (i.e. infinite-dimensional) general-

ization of this theorem. We recall that this interest was one of the main impulses that led

von Neumann to discover what is now called “von Neumann algebras”(cf, e.g., [27]). The

most desirable structure of algebras that could be thought as a “right” infinite-dimensional

analogue of the classical Wedderburn structure, could be described in the following terms.

Let H be an arbitrary Hilbert space. Suppose that H is represented as a Hilbert

sum H =
⊕̇{H ′ν : ν ∈ Λ}, and every H ′ν, in its turn, is represented as a Hilbert tensor

product H ′ν = Hν⊗̇Kν . In this situation we shall say, for brevity, that a double compo-

sition (Hν ,Kν) for ν ∈ Λ of H is given. Further, we shall say that the indicated double

decomposition is essentially finite9, if, for any ν, at least one of Hilbert dimensions of the

spaces Hν and Kν is finite.

Let (Hν ,Kν) for ν ∈ Λ be a double decomposition of a Hilbert space H, and, for some

ν ∈ Λ, Aν , Aν be an operator algebra on Hν . We shall denote by Aν⊗̇1 the algebra of all

operators, acting as a⊗̇1 with a ∈ Aν on Hν⊗̇Kν and as zero on H 	 (Hν⊗̇Kν). Further,

the symbol
⊕
∞

will denote the direct (= l∞-) sum of operator algebras.

Definition 5.1 An operator algebra A on H is called a Wedderburn (operator) algebra,

if it has the form
⊕
∞
{B(Hν)

⊗̇
1; ν ∈ Λ} for some double decomposition (Hν ,Kν) for

ν ∈ Λ of H. (In other words, A consists of all bounded operators, acting as a⊗̇1 with

a ∈ B(Hν) on Hν⊗̇Kν .)

Sometimes we shall use the expression “the Wedderburn algebra, associated with such-

and-such double decomposition”; its meaning is clear.

In matrix language this means that a Wedderburn algebra A consists of all operators

depicted, exactly as in the picture above, by diagonal block-matrices such that every “big”

block is a scalar block-matrix. However, now it is done with respect to some orthonormal

basis in H, and, of course, we must speak about bounded operators. Apart from this,

now the number of “big” blocks, the sizes of “small” blocks a, b, c, . . ., and the numbers of

identical “small” blocks, situated in the main diagonals of the “big” blocks, are arbitrary

cardinalities.

The condition of the essential finiteness of a given double composition evidently means

for the respective Wedderburn algebra the following thing. Any of “big” blocks of matrices

9This new “essential finiteness” is intimately connected with the property, of the same name, of cardinal-

valued functions in the previous section. One can guess about it, comparing Theorem 4.8(i) with the future

Theorem 3.
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of operators, belonging to these algebras, must have at least one of the following two

properties: either this block, as a block-matrix, has a finite size, or the “small” blocks,

belonging to that “big” one, are matrices of a finite size. (The number of “big” blocks is,

of course, not restricted and can be any cardinality.)

Obviously, any Wedderburn algebra is a von Neumann algebra with a discrete (=

isomorphic to l∞(·)) center. It is known that at the beginning of 30s von Neumann

supposed that the converse is also true. But in 1935, jointly with Murray, he discovered

that even a von Neumann algebra with the scalar center, that is a factor, is not bound

to be a Wedderburn algebra. Now, in retrospective, we know that the respective counter-

examples, the celebrated “continuous” factors, represent one of major discoveries of 20th

century mathematics.

What kind of additional conditions, imposed on a von Neumann algebra, distinguish

Wedderburn algebras? A venerable algebraic tradition suggests to look for such conditions

in the realm of homology. And indeed, one can prove:

Theorem 5.1 (i) The class of all Wedderburn algebras coincides with the class of spa-

tially
h
⊗-projective as well as with the class of spatially

o
⊗-projective von Neumann

algebras

(ii) the class of Wedderburn algebras, associated with essentially finite double decompo-

sitions, coincides with the class of spatially ⊗̂-projective von Neumann algebras.

The original proof of the part (ii) of this theorem see [12]. (This was the earliest result

concerning homological properties of Hilbert modules.)

We see, in particular, that the class of quantum spatially projective von Neumann

algebras is wider, than class of traditionally spatially projective von Neumann algebras.

To display the simplest illustration, consider an infinite-dimensional Hilbert space, say

H0. Let A be what is called the algebra B(H0) in the standard form. This means that

we set H := H0⊗̇H0 and take, in the capacity of A, the algebra B(H0)
⊗̇

1 (that is, the

Wedderburn algebra, associated with the double decomposition, consisting of only one

pair (H0,H0)). Since the condition of the essential finiteness is obviously not fulfilled, our

algebra is spatially projective in the quantum, but not in the traditional homology theory.

But what happens in the larger class of arbitrary (generally speaking, not weak-

operator closed) operator C∗-algebras? To formulate the relevant criterion, let us in-

troduce a new term.

Definition 5.2 We say that an operator algebra A on H (so far arbitrary) is coherent

with a double composition (Hν ,Kν) for ν ∈ Λ of that space, if, for any ν ∈ Λ, there exists

an operator algebra Aν on Hnu with the following properties:

(i) A is a subalgebra of
⊕
∞
{Aν

⊗̇
1; ν ∈ Λ}
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(ii) for any ν ∈ Λ, the algebra Aν contains at least one column of rank 1 operators.

Again, taking a proper orthonormal basis in H, we see that operators in A are depicted

by matrices, consisting of “big” and “small” blocks as above. (The difference is that now A

is not bound to contain all such operators.) As to the meaning of the additional condition

(ii), we can choose our orthonormal basis in such a way that the following happens. Taking

matrices of operators in A and looking at any of their “small” blocks, one can find in this

block all possible matrices with zero entries outside the first column.

Fix a double decomposition (Hν ,Kν) for ν ∈ Λ of H. Evidently, among all operator

algebras that are coherent with this decomposition, there is the largest one, and this is

the respective Wedderburn algebra. Besides, it is equally clear that among these algebras

there is no smallest.

However, such a smallest algebra exists, if we shall restrict ourselves with the con-

sideration of C∗- (i.e. self-adjoint) operator algebras. Indeed, if A is a C ∗-algebra, the

same is true for all Aν with ν ∈ Λ. Since any Aν contains a column of rank 1 operator,

then, being self-adjoint, it contains all operators of finite rank and hence, being uniformly

closed, it contains all compact operators. Thus A ⊇ K(Hν). But A is also uniformly

closed, this time in B(H). Therefore A contains the algebra
⊕

0

{
K(Hν)

⊗̇
1; ν ∈ Λ

}
,

where
⊕

0 is the symbol for the restricted (= c0-) sum of operator algebras. Conse-

quently,
⊕

0

{
K(Hν)

⊗̇
1; ν ∈ Λ

}
is the smallest C∗-algebra, coherent to the given double

decomposition of our Hilbert space.10

Now we are able, at last, to formulate the promised “spatial” version of Theorems 4.6

and 4.7.

Theorem 5.2 Let A be an operator C∗-algebra, acting on a Hilbert space H. Then:

(i) A is spatially
h
⊗-projective⇐⇒ A is spatially

o
⊗-projective⇐⇒ A is coherent to some

double decomposition of H.

(ii) A is spatially ⊗̂-projective ⇐⇒ A is coherent to some essentially finite double de-

composition of H.

In other words, the spatial projectivity of A in any of two quantum homological theories

means exactly that, for some double decomposition (Hν ,Kν) for ν ∈ Λ of H we have the

inclusions ⊕

0

{
K(Hν)

⊗̇
1; ν ∈ Λ

}
⊆ A ⊆

⊕

∞

{
B(Hν)

⊗̇
1; ν ∈ Λ

}
.

10If the algebras
L

∞

n

Aν) ˙N

1; ν ∈ Λ
o

deserve to be called “Wedderburn” among von Neumann alge-

bras, the algebras
L

0

n

K(Hν) ˙N

1; ν ∈ Λ
o

could reasonably claim the same honorary title among general

operator C∗-algebras.
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At the same time, the spatial projectivity of A in the traditional homological theory

means exactly that the same inclusions hold with respect to some essentially finite double

decomposition of the given Hilbert space.

What can happen, if we pass to arbitrary, not necessarily self-adjoint, operator alge-

bras? In the framework of the quantum homological theory, the “⇐=” part of the previous

criterion still holds:

Proposition 5.1 [16] An arbitrary operator algebra on H, coherent to some double de-

composition of H, is spatially
h
⊗- and

o
⊗-projective.

However, in the traditional theory the respective sufficient condition of the spatial

projectivity is no longer valid. In fact, there is no guarantee, even if we assume that

all tensor factors, participating in a given double decomposition, have finite dimensions.

Consider, for example, the Hilbert space

(C⊗̇C)⊕̇(C2⊗̇C
2)⊕̇(C3⊗̇C

3)⊕̇ · · ·

As it was shown in [16, pp. 22–24], there exists an operator algebra, coherent to the relevant

double decomposition, that is not spatially ⊗̃-projective.

The complete description of spatially ⊗̂-projective operator algebras, coherent to dou-

ble decompositions of Hilbert spaces, was obtained by M. E. Polyakov [20].

Thus we see that a Hilbert module over an operator algebra can be at the same time

projective in quantum homological theories and non-projective in the classical homological

theory (“after forgetting about the quantization”). But the phenomena of the opposite

sense also happen: there are Banach modules that are projective in the traditional context,

but they fail to have this property after some quantization of these modules and their basic

algebras. We shall conclude our notes with the example of that kind, due to O. Yu. Aristov

(still unpublished). It relies heavily on a following construction of an
h
⊗-algebra, given by

D. Blecher and C. le Merdy [3].

Fix an infinite-dimensional Hilbert space H and consider the set N (H) of nuclear (=

trace-class) operators on H. We recall that N (H) is a Banach algebra with respect to

the so-called nuclear norm, and that, as a Banach space, it is isometrically isomorphic to

the space H ⊗̂ H, where H denotes the complex conjugate space of H. The respective

isomorphism (going back to von Neumann) is well defined by taking every rank 1 operator

x©y with x, y ∈ H to x⊗y. Blecher and Merdy discovered that there exists a quantization

of N (H) such that this algebra becomes an
h
⊗-algebra. In the light of Blecher’s theorem,

mentioned in our introductory section, this assertion is equivalent to the following (rather

surprising!) statement: there exists a topological isomorphism of the Banach algebra

N (H) onto some uniformly closed operator algebra on some Hilbert space. (And this is
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although the original nuclear norm in N (H) is by no means equivalent to the operator

norm.)

Here is their construction. Consider H, and also H as a quantized spaces, but this

time not with respect to the column quantization, as we are accustomed to, but with

the maximal quantization (discussed in Section 2). Take the Haagerup tensor product

maxH
h
⊗maxH. It turns out that the Banach space in the first floor of this quantized

Banach space coincides, up to an isometric isomorphism, with N (H).

Let us explain, why it is so. To begin with, we have the contracting operator j2 ◦ j1 :

H ⊗̂H → maxH
h
⊗maxH (cf. diagram (3) in Section 0). Further, we consider the quantum

Banach space Hr

h
⊗ Hc. Here and later Hc denotes the Hilbert space H, equipped by

our habitual column quantization space whereas Hr denotes the so-called row Hilbertian

space. (We recall that the latter is defined as H, quantized by the isometric operator

H → B(H : x 7→ e© x, where e is an arbitrary fixed vector in H). It is well known

(and it not difficult to prove) that there is a contractive operator from Hr

h
⊗Hc to N (H),

taking an elementary tensor x ⊗ y to the rank 1 operator x© y (cf. [6]). Combining all

this information, we obtain the chain of contractive operators

N (H) −→ H ⊗̂H −→ maxH
h
⊗maxH −→ Hr

h
⊗Hc −→ N (H)

where the third arrow depicts the operator, identical on elementary tensors, and other

arrows depict operators discussed above. Since the composition of all four operators is

obviously the identity operator on N (H), the composition of two first operators is the

desired isometric isomorphism. Note that this map, as well as its classical prototype that

participated in its construction, identify rank 1 operators with elementary tensors.

Thus we can equip the space N (H) with the quantization, induced from the quantum

Banach space maxH
h
⊗maxH. What is essential is that the resulting quantum Banach

space is an
h
⊗-algebra, in other words, the multiplication in N (H) is a multiplicatively

bounded bioperator. By Theorem 0, this, in its turn, exactly means the existence of

the respective product operator, that is of a completely bounded linear operator π :

N (H)
h
⊗ N (H) → N (H), uniquely determined by taking elementary tensors a ⊗ b for

a, b ∈ N (H) to ab.

To produce such an operator, we consider at first the inner product bilinear functional

F : maxH × Hc → C, (y, x) 7→ 〈x, y〉. Show that it is multiplicatively contractive.

Assign to every x ∈ H the operator x̂ : C → H,λ 7→ λx, and to every y ∈ H the

operator ỹ : H → C, z 7→ 〈z, y〉. Then, identifying C with B(C), we see that F(y, x)

is not other thing than the composition ỹ ◦ x̂. Now fix n ∈ N, and consider matrices

y = (yij) ∈ Mn(maxH) and x = (xij) ∈ Mn(Hc). Then, for the n-th multiplicative

amplification Fn of F , we see that Fn(y,x) is the matrix z ∈ Mn(Cn) with the entries
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zij =
∑n

k=1〈xik, ykj〉 for 1 ≤ i, j ≤ n. Observe that this is exactly the matrix of the

operator composition ỹ ◦ x̂, where x̂ : C
n → B(nH) is the operator, depicted by the

matrix with the entries x̂ij, and ỹ : B(nH)→ C
n is the operator, depicted by the matrix

with the entries ỹij. Consequently ‖Fn(y,x)‖ ≤ ‖ỹ‖‖x̂‖. But ‖x̂‖, by the definition of the

column Hilbertian space, is the norm of x whereas ‖ỹ‖ is the norm of y in the n-th floor

of the recently discussed row Hilbertian space H. Needless to say, we have ‖ỹ‖ ≤ ‖y‖max,

where the symbol ‖ · ‖max denotes the norm in the n-th floor of the maximal quantization

of the respective space. Therefore ‖Fn(y,x)‖ ≤ ‖y‖max‖x‖.
We see that F is indeed multiplicatively contractive, and consequently it gives rise to

the associated completely bounded linear functional F : maxH
h
⊗Hc → C. We shall need

this functional a little bit later. Right now we shall use the composition of F with the

contractive operator J : maxH
h
⊗maxH → maxH

h
⊗Hc, identical on elementary tensors.

Denote, for brevity, F ◦ J by G. Of course, G : maxH
h
⊗maxH → C is also a completely

contractive functional, that acts on elementary tensors exactly as F does.

Now consider the chain of operators

(maxH
h
⊗maxH)

h
⊗ (maxH

h
⊗maxH)

−→ maxH
h
⊗ (maxH

h
⊗maxH)

h
⊗maxH

1
h
⊗G

h
⊗1−→ maxH

h
⊗ C

h
⊗maxH −→ maxH

h
⊗maxH.

Here the first arrow depicts the completely isometric isomorphism, provided by the as-

sociativity of the Haagerup tensor product, and the last one depicts the identification,

determined by x ⊗ λ ⊗ y 7→ λ(x ⊗ y). Their composition, after the indicated identifica-

tion maxH
h
⊗maxH with N (H), provides a completely contractive operator π : N (H)

h
⊗

N (H)→ N (H), uniquely determined by taking elementary tensors (x1© y1)⊗ (x2© y2)

to 〈x2, y1〉x1© y2, that is to (x1© y1)(x2© y2). Since the span of operators of rank 1 is

dense in N (H), we see that π is indeed the desired product operator.

Thus, the algebra N (H) is made an
h
⊗-algebra by the recipe of Blecher/le Merdy.

Now Aristov enters. At first he observes that the spatial N (H)-module H, equipped

this time with our customary column quantization, is a N (H)-
h
⊗-module. The argument

is as follows. By Theorem 0, it is sufficient to show that the outer product operator

πH : N (H)
h
⊗ Hc → Hc, a ⊗ x 7→ a(x) with a ∈ N (H) and x ∈ H is well defined and

completely bounded. Because of the identification of N (H) with maxH
h
⊗maxH, this is

the same thing as to produce a completely bounded operator from (maxH
h
⊗maxH)

h
⊗Hc

to Hc, taking elementary tensors of the form (x⊗y)⊗ z for x, y, z ∈ H to (x©y)(z), that
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is to 〈z, y〉x. But look at the composition of the operators in the chain

(maxH
h
⊗maxH)

h
⊗Hc

−→ maxH
h
⊗ (maxH

h
⊗Hc)

1
h
⊗F−→ maxH

h
⊗ C −→ maxH

1−→ Hc,

where the first operator is provided by the associativity of our tensor product, the third

one is the standard identification, and the functional F is the same as before. Obviously,

this composition is exactly the desired operator.

Note that the spatial N (H)-module H is certainly projective as a Banach module, i.e.

⊗̂-projective; this follows directly from Theorem 3.1. And nevertheless:

Proposition 5.2 (Aristov) Consider N (H) as an
h
⊗-algebra with respect to the quanti-

zation, induced from maxH
h
⊗maxH. Then the N (H)-

h
⊗-module Hc is not

h
⊗-projective

(and hence, by Proposition 1.7, it is not
o
⊗-projective as well).

/ Assume, on the contrary, that H is
h
⊗-projective. Then, by Theorem 1.3, there exists

a morphism ρ : Hc → N (H)
h
⊗ Hc in N (H)-

h
⊗-mod, right inverse to the outer product

morphism for H and therefore injective.

Fix an arbitrary non-zero x ∈ H; then u := ρ(x) is also not zero. Consequently, by

Proposition 4.3 (with N (H) as E) there exists e1 ∈ Hc such that the completely bounded

operator 1
h
⊗ ě1 : N (H)

h
⊗Hc → N (H), b⊗ y 7→ 〈y, e1〉b where b ∈ N (H) and u ∈ H sends

u to a non-zero operator, say a. Observing the action of 1
h
⊗ ě1 on elementary tensors, we

see that it is a morphism of N (H)-modules.

Now choose any e2 ∈ H with a(e2) 6= 0 and take the functional ě2 : H → C, y 7→ 〈e2, y〉.
Consider the bounded operators τ : N (H) → maxH : b 7→ b(e2) and 1

h
⊗ ě2 : maxH

h
⊗

maxH → maxH, z⊗ y 7→ 〈e2, y〉z. (Here, of course, we identify maxH with maxH
h
⊗C.)

Taking into account the action of τ on operators of rank 1 and the action of 1 ⊗̃ ě2 on

elementary tensors, we see that, after the identification of N (H) with maxH
h
⊗ maxH,

these two operators coincide. Therefore, since 1
h
⊗ ě2 is completely bounded, the same is

true for τ . Note that τ is obviously a morphism of N (H)-modules.

Finally, consider the composition ϕ := τ ◦ (1
h
⊗ ě1) ◦ ρ : Hc → maxH. All its factors

are completely bounded operators as well as morphisms of N (H)-modules; therefore ϕ

has both of these properties. Further, the spatial N (H)-module H is evidently irreducible

and hence ϕ is, in addition, an endomorphism of an irreducible module over a Banach

algebra. Consequently, by the respective version of Shur’s Lemma (see, e.g., [11, Theorem

VI.2.48]), ϕ is a multiple of 1. But the factors of ϕ were chosen just to provide ϕ(x) 6= 0. It

follows that the identity operator 1, considered with the domain Hc and the range maxH

is, in its turn, a multiple of ϕ, and hence it is also completely bounded. Consequently,
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the column quantization of H is equivalent to the maximal quantization, and this is a

knowingly false conclusion. .

Note that, despite, as it was mentioned, the
h
⊗-algebra N (H) is completely isomorphic

to a (uniformly closed) operator algebra, theN (H)-module Hc is not a spatial module over

the latter algebra. It would be interesting to find an example of a spatially ⊗̂-projective,

but not spatially
h
⊗-projective operator algebra. (Needless to say, such an algebra, if it

exists, can not be selfadjoint.)

Epilogue. Homological dimensions

Throughout these lecture notes, the main question, concerning a given module, was

whether it is projective or not. If our module is projective, we rejoice, but what if not? It

turns out that non-projective modules do not form an amorphic mass of “homoilogically

hopeless” objects: they have an hierarchy. There is a number (or ∞) that measures how

much our module is “homologically worse” than projective. This is the so-called homo-

logical dimension; we intend to explain very briefly what it is and present several related

results and problems.

The initial definitions are of a general categorical character. Let K be an additive

category, so far arbitrary, and X be its object. We recall that a complex over X is a

sequence in K of the form

0←− X d−1←− P0
d0←− P1

d1←− P2
d2←− · · · (P)

such that dn−1dn = 0 for all n = 0, 1, 2, . . .. We say that a complex (P) over X splits if

there exist morphisms s−1 : X → P0 and sn : Pn → Pn+1 for n = 0, 1, 2, . . . in K such

that d−1 ◦ s−1 = 1 and dn ◦ sn + dn+1 ◦ sn+1 = 1 for n = 0, 1, 2, . . ..

(Splittable or, as they also say, contractible complexes have, in a sense, the best

structure. Their instructive equivalent definitions see, e.g. [10] or [11].)

The following notion that has a preparatory character in our presentation, is of a con-

siderable independent value. It has important applications in the computation of principal

homological characteristics of ⊗̃-algebras, in particular of their cohomology groups (see

idem and also [15], [1]).

Definition E.1 Let (K,� : K → L) be a pre-relative category (cf. Section 1). A complex

(P) over X is called a resolution of X if the complex

0←− X �(d−1)←− P0
�(d0)←− P1

�(d1)←− P2
�(d2)←− . . . (�P)

in L splits. A resolution of X is called projective if all Pn for n = 0, 1, 2, . . . are projective

(relative to �).
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Remark The construction of a projective resolution of X is, to speak informally, a way

to “express this object by means of projective objects”. In the categories of Banach and

quantum modules, considered in our notes, (and the same is true in a much wider class

of pre-relative categories) this is equivalent to the following procedure. At first we try

to represent X as a quotient module of some projective module so that the respective

quotient map is an admissible morphism. Then we represent the kernel of the latter

morphism, in its turn, as a quotient module of another projective module, again with an

admissible quotient morphism; after this we do the same with the kernel of the latter and

so on. It is not difficult to perceive that the concept of a projective resolution that we are

talking about provides a convenient “synchronous” way of writing down such a process.

It is obvious that in our principal categories of Banach and quantum modules reso-

lutions are always exact sequences in the habitual sense of linear algebra. Further, in

categories of Banach modules resolutions are those and only those complexes that are ex-

act and, in addition, all kernels (or, equivalently, images) of all participating morphisms

have, as subspaces in respective Pn, Banach complements (prove this!). However, such an

assertion is no more true for categories of quantum modules.

Exercise E.1 Let (K,� : K → L) be a (not just pre-relative but) relative category. Show

that every object in K possesses at least one projective resolution.

Let P (see above) be a resolution of an object in a pre-relative category. We say that

it has the length n, if Pn 6= 0, and Pk = 0 for all k > n. If there is no such an n, we say

that our resolution has the length ∞.

Definition E.2 For a given X, the length of its shortest projective resolution is called

the projective homological dimension of X and is denoted by dhKX. (If all projective

resolutions of X have the infinite length, we accordingly set dhKX :=∞.)

(The root of the concept of projective homological dimension is Hilbert’s famous syzygy

theorem, in which, speaking in modern terms, it was shown that every (abstract) module

over the algebra of polynomials in n variables has a projective and even a free resolution

of length at most n.)

As a matter of fact, “homological dimension” is a generic name: one can (and some-

times must) to consider the so-called injective homological dimension, the flat (or week)

homological dimension etc. (cf. [15]). But since we restrict ourselves by the projective

homological dimension, we shall omit the adjective “projective”.

In particular, we have the definition of the homological dimension of a left ⊗̃-module

over an ⊗̃-algebra. With a fixed “⊗̃” we shall write, for the case K = A-⊗̃-mod, dhAX

instead of dhKX.
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It is easy to observe that, in more traditional language, dhAX is the least n for which

X can be represented as P0/(P1 . . . /(Pn−1/Pn) . . .) where all modules are projective and

all respective quotient maps are admissible. In particular, dhAX = 0 means exactly that

X is projective.

As it is usually the case with key notions, that of homological dimension admits

important alternate approaches (see, e.g. [10, Theorem III.5.4]). We shall formulate only

one assertion of that kind. It helps considerably to compute dhAX in concrete situations.

Proposition E.1 Let (K,� : K → L) be a pre-relative category, and n ∈ N. Then the

following properties of X ∈ K are equivalent:

(i) dhAX ≤ n;

(ii) if we have a resolution P of X (see above) of the length n such that P0, . . . , Pn−1

are projective, then the last non-zero object Pn is also projective.

From this one can easily deduce:

Corollary E.1 Let A be an ⊗̃-algebra, X ∈ A-⊗̃-mod. Then dhAX ≤ n⇐⇒ in an arbi-

trary projective resolution P of X the A-⊗̃-module Im(dn−1) (coinciding with Ker(dn−2))

is ⊗̃-projective.

(In other words, the respective “shortened” resolution

0←− X ←− P0

←−

P 1←− · · · ←− Pn−1
in←−←− Im(dn−1)←− 0←− · · ·

remains projective.)

Exercise E.2 Let X be a unital ⊗̃-module over a unital ⊗̃-algebra A. Then the homo-

logical dimension of X as (i) of an object of UA-⊗̃-mod, and (ii) as an of an object in

A-⊗̃-mod is the same quantity.

Example E.1 Let Ω be a metrizable compact topological space, A := C(Ω), t ∈ Ω.

Consider the A-⊗̃-module Ct, defined as the complex plane with the outer multiplication

a · z := a(t)z. It is not difficult to show, with the help of Theorem 2.2, that this module

has a projective resolution

0←− Ct
d−1←− A d0←− A d1←− It ←− 0←− 0←− · · · ,

where It := {a ∈ A : a(t) = 0}, d1 is a natural embedding, and d0 : a 7→ a(t). Besides, it

is easy to verify that our module Ct is ⊗̃-projective ⇐⇒ t is an isolated point in Ω. Thus

we have that dhACt = 0, if t is an isolated point in Ω and dhACt = 1 otherwise.
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Example E.2 Let Ω be a paracompact (say, metrizable) topological space, and A be the

Banach algebra C0(Ω). Consider the Banach space Cb(Ω), consisting of all continuous

bounded functions on Ω and equipped by the uniform norm. Obviously, it is a Banach

A-module with respect to the point-wise multiplication. Then we have

dhACb(Ω) = 2.

In particular, dhc0l∞ = 2. The proof is based on some manipulations with the projective

tensor norm, and it is omitted here; see, e.g. [10, pp. 211-212].

Example E.3 Let A be C with zero multiplication. Consider the A-⊗̃-module A and its

projective resolution

0←− A π←− A+
d←− A+

d←− A+ ←− · · ·

where π, d : λe + z 7→ λz. With the help of Proposition 1, it is easy to show that

dhAA =∞.

Now, starting from modules, we introduce one of principal numerical characteristics

of the algebras themselves.

Definition E.3 Let A be an ⊗̃-algebra. The number (or ∞) sup{dhAX : X ∈
A-⊗̃-mod} is called the left global homological dimension of A, or just global dimension

of A. It is denoted by dgA.

It easily follows from Corollary 1.3 that dgA = dgA+. In other words, the global

dimension does not change after the unitization of a given algebra.

A typical problem in topological homology is to compute global dimensions of “popular”

⊗̃-algebras, serving in this or that branch of analysis. Beginning with the first results of

1972, a considerable number of various results was accumulated. However, there remains

a lot of open problems, sometimes rather old and challenging.

To begin the relevant brief discussion, we shall indicate an important class of ⊗̃-

algebras, the global dimension of which is obliged to be ≤ 2. (As it turned out, the

number 2 plays a very conspicuous role in topological homology, being the lower value of

dgA for “non-trivial”, in a sense, classes of A. This somehow resembles the role of 1 in

the pure algebraic homology.)

For this purpose, we shall the first and the last time in our presentation consider some

other modules than the left ones. These are two-sided modules, or, for short, bimodules.

Let A be an ⊗̃-algebra. As you can guess, A-⊗̃-bimodule is a ⊗̃-space X, endowed by

a structure of an A-bimodule in the algebraic sense such that both of the bioperators of

outer multiplications are ⊗̃-bounded. With the fixed A, all A-⊗̃-bimodules constitute the
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category, denoted by A-A-⊗̃-mod. Morphisms in that category are, by definition, maps

that are morphisms of bimodules in the algebraic sense and at the same time ⊗̃-bounded

operators. The category A-A-⊗̃-mod is considered as pre-relative with respect to the

obviously defined forgetful functor to the category ⊗̃-Ban. Thus we can speak about its

projective objects, accordingly called projective A-⊗̃-bimodules. (As a matter of fact, the

category A-A-⊗̃-mod is — just as A-⊗̃-mod — relative, but we do not need this now).

The first and extremely important example is the basic algebra A itself; it is an A-⊗̃-

bimodule with its inner multiplication in the role of the outer multiplications. Obviously,

the product operator π : A ⊗̃A→ A is the morphism in A-A-⊗̃-mod.

Definition E.4 An ⊗̃-algebra A is called biprojective if the A-⊗̃-bimodule A is projective.

The following assertion, taken by some recent authors as the initial definition of bipro-

jectivity [26], provides a standard method to check the property.

Proposition E.2 An ⊗̃-algebra A biprojective ⇐⇒ the product morphism π : A ⊗̃A→ A

has a right inverse in A-A-⊗̃-mod.

For the proof see, e.g. [10, Proposition IV.5.6] or [11, Theorem VII.1.69].

Which ⊗̃-algebras we know and respect are biprojective and which are not? We shall

mention some of related facts, accumulated up to the present day (see [15] and/or [1] for

references):

• (cf. Theorem 2.1(ii)). Every biprojective commutative ⊗̃-algebra must have discrete

Gel’fand spectrum

• A C∗-algebra is ⊗̂-biprojective ⇐⇒ it is
o
⊗-biprojective ⇐⇒ it decomposes into the

c0-sum of a family of full matrix algebras. At the same time, a C ∗-algebra is
h
⊗-

biprojective⇐⇒ it decomposes into the c0-sum of a family of algebras K(H) (for var-

ious H). In particular, the algebra K(H); dimH =∞ is not prt- and
o
⊗-biprojective,

but it is
h
⊗-biprojective. (Pay attention to the fact that in the question of biprojec-

tivity the two different types of quantum algebras behave differently!)

• (This is a particular case of the previous assertion; compare it with Theorem 2.1).

The ⊗̃-algebra C0(Ω), where Ω is a locally compact topological space, is biprojective

⇐⇒ Ω is discrete.

• (cf. Theorem 2.6). The ⊗̃-algebra L1(G), where G is a locally compact group, is

biprojective ⇐⇒ G is compact.

• (cf. Theorem 2.7). The
o
⊗-algebra A(G), where G is a locally compact group, is

biprojective ⇐⇒ G is discrete.
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• The ⊗̂-algebra N (E), where E is a Banach space, is biprojective ⇐⇒ E has the

approximation property of Grothendieck.

From all this we can learn, in particular, the following lesson: for an ⊗̃-algebra, to be

biprojective is much more difficult than to be left projective.

Biprojective algebras have a considerable independent value; in particular, they have

an interesting structure theory [28]. However, in the present context we need them because

of their following application that served, by the way, as the initial stimulus of their

appearance.

Theorem E.1 Let A be a biprojective ⊗̃-algebra. Then dgA(= dgA+) ≤ 2.

The proof is based on a consideration of a special resolution of length 2, the so-called

entwining resolution of a given module; see idem.

Trying to estimate the global dimension from below, we encounter a phenomenon that

has no analogue for abstract algebras and at the same time for non-normed topological

algebras, even metrizable Arens–Michael algebra. To begin with the abstract algebra C[t]

and the topological algebra O(C), both classes contain a multitude of various semi-simple

infinite-dimensional commutative algebras of the global dimension 2. However:

Theorem E.2 (Global Dimension Theorem) Let A be a commutative ⊗̂- (i.e. Banach)

algebra with an infinite Gel’fand spectrum, in particular, an infinite-dimensional function

algebra. Then dgA ≥ 2.

The existing proof of this theorem is, probably, longer, than the proof of any other

theorem in topological homology. It combines various considerations, concerning the

theory of Banach algebras, homological algebra, geometry of Banach spaces and topology.

Its detailed exposition is contained in an article of S. Pott [22].

As a direct corollary of the formulated theorem, the global dimension of a function

Banach algebra is either 0, when it is isomorphic to C
n, or, otherwise, it is 2 or more. Con-

sequently, the global dimensions of Banach function algebras have at least one “forbidden”

value: 1. This provokes a natural vaguely formulated question: how much widespread is

this phenomenon among “algebras for analysis”? Certainly, it does not cover all Banach

algebras: for example, the algebra of 2 × 2 matrices with zeroes in the second row has

just 1 as its global dimension. However, this algebra and other known examples of similar

kind by no means belong to well-beloved classes of functional analysts: they are neither

semi-simple nor commutative. In this connection, the following conjecture seems to be

reasonably stated:

Conjecture 1 Let A be a semi-simple infinite-dimensional Banach algebra (not neces-

sarily commutative). Is it true that dgA ≥ 2? (and if so, 1 turns out to be a forbidden

value for global dimensions in this larger class of algebras as well).
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If we know, in addition, that A is biprojective and has, as a Banach space, the approx-

imation property, the answer is “yes” (Selivanov). The same is true for a wide class of

C∗-algebras that includes all non-unital algebras and all separable postliminal, or GCR-

algebras (Aristov). However, the important case of unital simple C ∗-algebras, like, say,

the fermion algebra, remains to be obscure.

(References for the mentioned results and for what will be said below, see, e.g. [15].)

At the present moment, we know exact values of the global dimension for quite a few

⊗̃-algebras. Sometimes we get them as a direct corollary of Theorems 1 and 2, sometimes

an additional argument is needed. Here is the relevant incomplete list:

• the Banach (=⊗̂-) algebras l1, C0(Ω) for infinite discrete Ω, L1(G) for infinite com-

pact G,C∗(G) for the same G, N (H) with dimH =∞— all of them have dgA = 2.

• for all the aforementioned Banach algebras A we have dgA ⊗̂ . . . ⊗̂A︸ ︷︷ ︸
n factors

= 2n;

• the Banach algebras lp with 1 < p <∞, L1(G) for amenable non-compact G, N (E)

for E without the approximation property, C(Ω) where Ω is a “huge” segment of the

transfinite line, have dgA =∞.

. . . and nobody knows a semi-simple Banach algebra A with dgA = 3.

As to quantum algebras, we still know very little. It is easy to show that dgl2 = 2 for

l2 in the capacity of an
h
⊗-, as well as of

o
⊗-algebra. Most probably (although it is still not

done accurately), the equality dhK(H)B(H) = 2 that is known many years for the Banach

algebra K(H) with dimH = ∞, is also valid for the both “quantum guises” of the same

algebra. This, by virtue of Theorem 1, would immediately imply dhK(H)B(H) = 2 for

the
h
⊗-case. However, for the ⊗̂- and

o
⊗-cases it gives only the estimate dhK(H)B(H) ≥ 2,

and the exact value of the global dimension of K(H) in these two cases remains to be

unknown.

Until recently, all known examples of A with dgA = 2 were constructed from biprojec-

tive algebras by means of unitizations and direct sums. Tabaldyev has found an algebra

of somewhat another kind: he proved that dgC(Ω) = 2, if Ω is a countable compact space

with Ω(n) = ∅ for some n ∈ N.

Shamefully, for many years we have not known, what are the global dimensions of such

immensely popular Banach algebras as C[0, 1], l∞, the Volterra algebra L1[0, 1], B(H) and

(as it was already discussed) K(H).

And, of course, it would be very interesting to know, whether the global dimension the-

orem is valid, if we shall replace in its formulation Banach algebras by quantum algebras.

We conclude our notes with the formulation of of problem that is also, at least in the

context of Banach algebras, rather old.
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Problem Let A be an ⊗̃-algebra such that all left A-⊗̃-modules are projective (in other

words, dgA = 0). Does it imply that A is classically simple (that is, the direct sum of a

finite family of full matrix algebras?

(The converse is well known to be true, and it is not difficult to prove.)

The affirmative answer is obtained under some additional condition on A, for example,

if it is a commutative algebra, C∗-algebra or a semi-simple algebra with the approximation

property. We want emphasize, however, in the zoo of non-normed topological algebras,

the animals with dgA = 0 abound: already such an algebra as C
M , where M is a set of

an arbitrary cardinality, has this property.

Remark As it is mentioned in [17, Remark 6.15], R. Smith has obtained a result that

seems to be very near to answer the problem under discussion in the class of
h
⊗-algebra.

The thing is that there is another important numerical characteristic of ⊗̃-algebras, the

so-called bidimension or cohomological dimension dbA. This is defined as the homological

dimension of the unitization A+ as of an A-⊗̃-bimodule (and also, equivalently, in terms

of cohomology groups of A; cf. [15]). We have always dbA ≥ dgA (and, by contrast with

pure algebra, we do not know whether there exist examples of the strict inequality). What

happens, if we replace, in the problem that was just discussed, dgA by dbA? The resulting

problem, in the context of Banach algebras, is also well known. What Smith has proved

(in equivalent terms) is as follows: any
h
⊗-algebra A of the cohomological dimension 0 is

classically semi-simple.

References

[1] O. Yu. Aristov. Biprojective algebras and operator spaces. Journal of Math. Sciences, 111,
No. 2, 3339–3386 (2002).

[2] D. P. Blecher. A completely bounded characterization of operator algebras, Math. Annalen,
303, 227–239 (1995).

[3] D. P. Blecher, C. le Merdy. On quotients of function algebras, and operator algebra structures
on lp, J. Operator Theory, 34, 315–3468 (1995).

[4] D. P. Blecher, V. I. Paulsen. Tensor products of operator algebras, J. of Funct. Analysis, 99,
No. 2, 262–292 (1991).

[5] H. G. Dales, M. E. Polyakov. Homological properties of modules over group algebras, Proc.
London Math. Soc., 52 pages (submitted).

[6] E. G. Effros, Z.-J. Ruan. Operator Spaces. Oxford: Clarendon Press, 2000.

[7] R. Engelking. General Topology. PWN — Polish Scientific Publishers, Warszawa, 1977.

[8] M. Enock, J.-M. Schwartz. Kac Algebras and Duality of Locally Compact Groups, Springer-
Verlag, Berlin, 1992.

72



[9] Yu. O. Golovin. A criterion for the spatial projectivity of an indecomposable CSL-algebra of
operators, Russian Math. Surveys, 49 (4), 161–162 (1994).
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[14] A. Ya. Helemskĭı. Description of spatially projective operator C∗-algebras, and around it. In:
“Banach Algebras ’97, E. Albrecht, M. Mathieu, eds. Walter de Gruyter, Berlin, 1998”, pp.
261–272.
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