Entropy of tree automata, joint spectral radii and zero-error coding

Cătălin Dima

LACL, Univ. Paris-Est

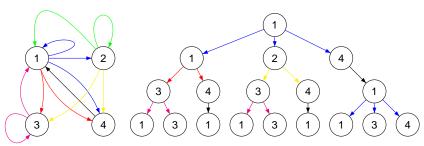
Automata Theory and Symbolic Dynamics Workshop, 3-7 June, 2013

Outline of the talk

- Entropy of trees & tree automata.
- Entropy of tree automata = joint spectral radius.
- The zero-error coding problem with states.
- Approximating zero-error capacities of codes.
- Open problems, etc.

Tree automata

- Tree automaton : $\mathcal{A} = (Q, \delta, q_0)$:
 - ▶ $\delta \subseteq Q \times 2^Q$.
 - ► Labels = states.
 - No accepting condition.
- (Infinite) Q-trees : $t : \mathbb{N}^* \to \mathbb{Q}$ with prefix-closed domain.



• $L(A, Acc) \neq \emptyset$ iff A accepts a regular tree.

Entropy of tree automata

Entropy of a Q-tree :

$$\mathcal{H}(t) = \limsup_{n} \frac{1}{n} \log card(t|_{n})$$

- $t \Big|_{n}$ = the set of nodes on level n.
- Trees regarded as sets of runs sharing common prefixes.
- Entropy of a tree automaton :

$$\mathcal{H}(\mathcal{A}) = \sup \big\{ \mathcal{H}(t) \mid t \in \mathcal{L}(\mathcal{A}) \big\}$$

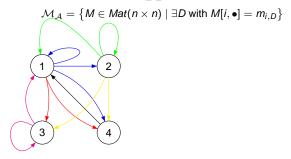
The size of the largest set of runs generated by A.

The set of adjacency matrices of a tree automaton

- Consider $Q = \{1, ..., n\}$.
- For each $i \le n$ and $D \in \delta(i)$, put $m_{i,D} \in \{0,1\}^n$ the vector with :

$$m_{i,D}[j] = egin{cases} 1 & ext{if } j \in D \ 0 & ext{otherwise} \end{cases}$$

• The set of adjacency matrices over $(\delta(i))_{1 \le i \le n}$ is

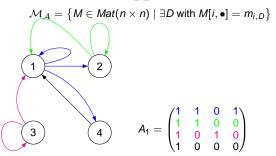


The set of adjacency matrices of a tree automaton

- Consider $Q = \{1, ..., n\}$.
- For each $i \le n$ and $D \in \delta(i)$, put $m_{i,D} \in \{0,1\}^n$ the vector with :

$$m_{i,D}[j] = egin{cases} 1 & ext{if } j \in D \ 0 & ext{otherwise} \end{cases}$$

• The set of adjacency matrices over $(\delta(i))_{1 \le i \le n}$ is



A property of the joint spectral radius

ullet The joint spectral radius of a set of matrices ${\mathcal N}$:

$$\rho(\mathcal{N}) = \sup_{n} \left\{ \|M_1 \cdot \ldots \cdot M_n\|^{1/n} \mid M_i \in \mathcal{N} \forall i \le n \right\}$$
 (1)

• Set with independent row uncertainties (IRU): for each i there exists $R_i \subseteq \mathbb{R}_{>0}^n$ s.t.:

$$\mathcal{N} = \big\{ (v_1^T, \dots, v_n^T)^T \mid v_i \in R_i \big\}.$$

Theorem (Blondel & Nesterov '09)

If the IRU set ${\mathcal N}$ is composed of nonnegative matrices, then

$$\rho(\mathcal{N}) = \max\{\rho(A) \mid A \in \mathcal{N}\}.$$

6/14

Entropy of tree automata (2)

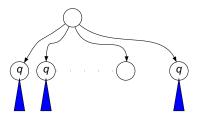
Proposition

For any tree automaton A, $\mathcal{H}(A) = \log \rho(\mathcal{M}_A) = \max\{\rho(A) \mid A \in \mathcal{M}(A)\}.$

- Remark: there exist trees t for which different transitions might be used at distinct nodes labeled with the same state.
- Hence, $card(t|_n)$ might not belong to the set $\{\|M_1 \cdot \ldots \cdot M_n\|^{1/n} \mid M_i \in \mathcal{N} \forall i \leq n\}$.

Entropy of tree automata (3)

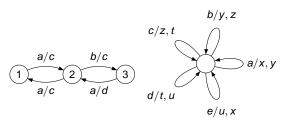
• A Q-tree is isolevel if for all $x_1, x_2 \in \text{supp}(t)$, with $|x_1| = |x_2| = k$ and $t(x_1) = t(x_2)$ we have that $\forall k \in \mathbb{N}, (t(x_1), t(x_11), \dots, t(x_1k)) = (t(x_2), t(x_21), \dots, t(x_2k))$.



- ► An isolevel tree is not a regular tree!
- Proof technique : show that, for each tree t, there exists an isolevel tree t' s.t. $\mathcal{H}(t) \leq \mathcal{H}(t')$.
 - ▶ Suppose some t'_n is built upto level n (approximating t' upto level n).
 - For each state q occurring in $(t'_n)\Big|_{n+1}$, choose, among all trees with root q, the tree $t'_n[q]$ which contributes the most to $\mathcal{H}(t)$.
 - ▶ Build t'_{n+1} by using only $t'_n[q]$.

Generalized zero-error coding

- Synchronous transducer $\mathcal{T} = (Q, \Sigma, \Delta, \theta, q_0), \delta \subseteq Q \times \Sigma \times \Delta \times Q$.
- L ⊆ Σⁿ is distinguishable if ∀w₁, w₂ ∈ L, θ(q₀, w₁) ∩ θ(q₀, w₂) = ∅.
 Similar definition for L ⊂ Σ^ω.
- Examples:



• The capacity of T is

$$\mathcal{C}(\mathcal{T}) = \limsup_n \big\{ \mathcal{H}(\mathit{L}) \mid \mathit{L} \subseteq \Sigma^n, \mathit{L} \text{ distinguishable} \big\}$$

• The ω -capacity of $\mathcal T$ is :

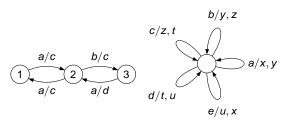
$$\mathcal{C}^{\omega}(\mathcal{T}) = \sup \left\{ \mathcal{H}(L) \mid L \subseteq \Sigma^{\omega}, L \text{ is distinguishable} \right\}$$

• The ω -regular capacity of $\mathcal T$ is :

$$\mathcal{C}^{\omega}_r(\mathcal{T}) = \sup \big\{ \mathcal{H}(L) \mid L \subseteq \Sigma^{\omega}, L \text{ is distinguishable and } \omega\text{-regular} \big\}$$

Generalized zero-error coding

- Synchronous transducer $\mathcal{T} = (Q, \Sigma, \Delta, \theta, q_0), \delta \subseteq Q \times \Sigma \times \Delta \times Q$.
- L ⊆ Σⁿ is distinguishable if ∀w₁, w₂ ∈ L, θ(q₀, w₁) ∩ θ(q₀, w₂) = ∅.
 Similar definition for L ⊂ Σ^ω.
- Examples:



• The capacity of \mathcal{T} is

$$\mathcal{C}(\mathcal{T}) = \limsup_n \big\{ \mathcal{H}(L) \mid L \subseteq \Sigma^n, L \text{ distinguishable} \big\}$$

• The ω -capacity of $\mathcal T$ is :

$$C^{\omega}(\mathcal{T}) = \sup \{\mathcal{H}(L) \mid L \subseteq \Sigma^{\omega}, L \text{ is distinguishable}\}$$

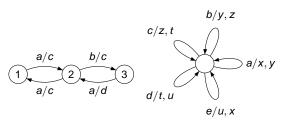
• The ω -regular capacity of $\mathcal T$ is :

$$\mathcal{C}^\omega_r(\mathcal{T}) = \sup \big\{ \mathcal{H}(L) \mid L \subseteq \Sigma^\omega, L \text{ is distinguishable and } \omega\text{-regular} \big\}$$

 Cătâlin Dima (LACL, UPEC)
 Entropy, JSR & coding
 ATSD2013
 9/14

Generalized zero-error coding

- Synchronous transducer $\mathcal{T} = (Q, \Sigma, \Delta, \theta, q_0)$, $\delta \subseteq Q \times \Sigma \times \Delta \times Q$.
- L ⊆ Σⁿ is distinguishable if ∀w₁, w₂ ∈ L, θ(q₀, w₁) ∩ θ(q₀, w₂) = ∅.
 Similar definition for L ⊂ Σ^ω.
- Examples:



• The capacity of T is

$$\mathcal{C}(\mathcal{T}) = \limsup_{n} \left\{ \mathcal{H}(L) \mid L \subseteq \Sigma^{n}, L \text{ distinguishable} \right\}$$

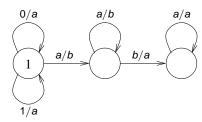
• The ω -capacity of \mathcal{T} is :

$$\mathcal{C}^{\omega}(\mathcal{T}) = \sup \{\mathcal{H}(L) \mid L \subseteq \Sigma^{\omega}, L \text{ is distinguishable}\}$$

• The ω -regular capacity of $\mathcal T$ is :

$$C_r^{\omega}(\mathcal{T}) = \sup \{\mathcal{H}(L) \mid L \subseteq \Sigma^{\omega}, L \text{ is distinguishable and } \omega\text{-regular}\}$$

\mathcal{C}^{ω} is "unnatural"



• Consider the non- ω -regular language :

$$L_{\omega}=\big\{za^{\overline{z}_2+1}b^{\omega}\mid z\in(0+1)^*\big\},$$

- ▶ Here \overline{z}_2 is the value of z as an integer written in base 2.
- L_{ω} is \mathcal{T} -distinguishable :
 - $\forall w \in L \exists ! z \in \mathbb{N} \text{ with } \mathcal{T}(w) = a^{\lfloor \log_2 z + 1 \rfloor} b^z a^{\omega}.$
- Hence

$$\mathcal{C}^{\omega}(\mathcal{T}) \geq \mathcal{H}(\mathsf{L}_{\omega}) = 1$$

But

$$\mathcal{H}(\mathcal{L}_{out}(TTT)) = \mathcal{H}(a^*bb^*aa^{\omega}) = 0!$$

Relating $\mathcal{C}(\mathcal{T})$ and $\mathcal{C}_r^{\omega}(\mathcal{T})$

Proposition

 $C_r^{\omega}(\mathcal{T}) \leq C(\mathcal{T}).$

• Given $R \subseteq \Sigma^{\omega}$ distinguishable, any prefix $R[1 \dots n]$ can be "extended" to a distinguishable $R'_n \subseteq \Sigma^{n+N_R}$ for some N_R depending on R.

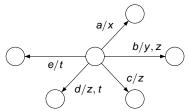
Proposition

If \mathcal{T} is connected and has a synchronizing word then $\mathcal{C}_r^{\omega}(\mathcal{T}) = \mathcal{C}(\mathcal{T})$.

- Given $L \subseteq \Sigma^n$ with $card(L) \ge C(T) \epsilon$, create a regular tree from L by piling copies of L.
- The extra paths needed to connect two copies of L is bounded by the length of the synchronizing word + the diameter of the automaton.
- The hypothesis on the synchronizing word can be weakened to requesting that, for any set of states S ⊆ Q in the determinization of T_{in}, there exists a state q and a word w such that r ^w/₋ q for any r ∈ S.
 - ▶ Property which trivially holds when T_{in} is deterministic.

Tree automata from (special) channels

- Assume $\mathcal{T}_{in} = (Q, \Sigma, \delta_{in}, q_0)$ is deterministic.
- Construct a tree automaton A_T :
 - At each state choose distinguishable sets of outgoing transitions :

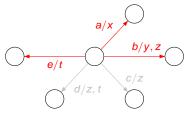


- $(q, S) \in \theta$ if for each $r_1, r_2 \in S$, if $q \xrightarrow{a/x} r_1 \ q \xrightarrow{b/y} r_2$ for $a \neq b$ and $x \neq y$ then $r_1 = r_2$.
- Then

$$\rho(\mathcal{A}) \leq \mathcal{C}(\mathcal{T})$$

Tree automata from (special) channels

- Assume $\mathcal{T}_{in} = (Q, \Sigma, \delta_{in}, q_0)$ is deterministic.
- Construct a tree automaton A_T :
 - At each state choose distinguishable sets of outgoing transitions :

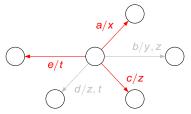


- $(q, S) \in \theta$ if for each $r_1, r_2 \in S$, if $q \xrightarrow{a/x} r_1 \ q \xrightarrow{b/y} r_2$ for $a \neq b$ and $x \neq y$ then $r_1 = r_2$.
- Then

$$\rho(\mathcal{A}) \leq \mathcal{C}(\mathcal{T})$$

Tree automata from (special) channels

- Assume $\mathcal{T}_{in} = (Q, \Sigma, \delta_{in}, q_0)$ is deterministic.
- Construct a tree automaton A_T :
 - At each state choose distinguishable sets of outgoing transitions :



- $(q, S) \in \theta$ if for each $r_1, r_2 \in S$, if $q \xrightarrow{a/x} r_1 \ q \xrightarrow{b/y} r_2$ for $a \neq b$ and $x \neq y$ then $r_1 = r_2$.
- Then

$$\rho(\mathcal{A}) \leq \mathcal{C}(\mathcal{T})$$

Tree automata from channels (2)

- Assume $\mathcal{T}_{in} = (Q, \Sigma, \delta_{in}, q_0)$ is deterministic.
- For each n, construct the tree automaton $\mathcal{A}^n_{\mathcal{T}}$:
 - At each state choose distinguishable sets of runs of length n.
 - $(q, S) \in \theta$ if for each $r_1, r_2 \in S$, if $q \xrightarrow{w_1/x_1} r_1$ and $q \xrightarrow{w_2/x_2} r_2$ for $w_1 \neq w_2$, $w_1, w_2 \in \Sigma^n$, and $x \neq y$ then $r_1 = r_2$.

Proposition

 $\lim_{n\to\infty}\frac{1}{n}\log_2\rho(\mathcal{A}^n_{\mathcal{T}})=\mathcal{C}(\mathcal{T}) \text{ when } \mathcal{T}_{in} \text{ is deterministic.}$

Open problems

- Does always $C_r^{\omega}(\mathcal{T}) = \mathcal{C}(\mathcal{T})$?
- $\bullet \ \, \text{Characterize transducers for which} \lim_{n \to \infty} \frac{1}{n} \log_2 \rho(\mathcal{A}^n_{\mathcal{T}}) = \mathcal{C}(\mathcal{T}).$
- Explore the possibility to express $\mathcal{H}(t) \geq \mathcal{H}(t')$ using some enrichment of MSO with special predicates.