The state-of-the-art in hyperelliptic curve cryptography

Craig Costello

Workshop on Curves and Applications Calgary, Canada August 19, 2013

Research

Thanks for inviting/rescuing me. . .

- Thanks to Mark, Michael and Renate, I get to hear about . . .
 - Counting Abelian Surfaces
 - Divisor Computations using Global Sections
 - Isogeny-Based Cryptography
 - Splitting of Abelian Varieties
 - Explicit Isogenies

...instead of being at CRYPTO'13, and hearing about ...

- Leakage-Resilient Symmetric Cryptography Under Empirically Verifiable Assumptions
- Plain versus Randomized Cascading-Based Key-Length Extension for Block Ciphers
- On the Achievability of Simulation-Based Security for Functional Encryption
- ...etc etc ...

Outline

- Motivation/overview/preliminaries
 - fast and compact public-key crypto
 - genus 1 vs. genus 2
 - the ECDLP and scalar multiplication
- Genus 1 vs. Genus 2 (three fights)
 - CurveP-256 vs. generic1271
 - 2GLV vs. 4GLV
 - curve25519 vs. Kummer1271
- 3 Three open problems in genus 2
 - GLV on the Kummer surface?
 - Making genus 2 truly resistant
 - Waking genus 2 truly resistant
 - Faster arithmetic. . .

Private-key vs. Public-key cryptography

Caesar

Mary, Queen of Scots

German Enigma Code

must communicate before sharing secrets

1970's:

Diffie-Hellman-Merkle

Rivest-Shamir-Adleman (RSA)

Cocks

HUGE BREAKTHROUGH: no need for prior communication!!!

Diffie-Hellman (Merkle): a toy example

Public values:

q=100000000000000001 (prime), g=832022676086941 (generator of \mathbb{Z}_q).

Secret values:

Alice's secret: a=4275315603725493

Alice computes (public key):

 $g^a \mod q = 9213047582249495$

Bob can compute:

Bob's secret: b=1083333300180813

Bob computes (public key):

 $g^b \mod q = 9893308140872135$

Alice can compute:

 $9893308140872135^a = 8817060794020263 = 9213047582249495^b$

$$=g^{ab}$$

Secret keys safe as long as discrete log problem (DLP) is hard Joint secret safe as long as Diffie-Hellman problem is hard

Modulus (key) sizes: then and now

1970's:

ч — 1606938044258990275541962092341162602522202993782792835301301. (200-bit prime)

NOW:

\$809605995369958062859502533304574370686975176362895236661486152287203730997110225737336044533118407251 \$261577549805174439905295945400471216628856721870324010321116397064404988440498509890516272002447658070 4181239472968054002410482797658436938152229236120877904476989274322575173807697956881130957912551133309 5243519553784816306381580161860200247492568448150242515304449577187604136428738580990172551573934146255 8303664059150008696437320532185668325452911079037228316341385995864066903259597251874471690595408050123 1020963901175074876001709536073423494575741627299485601330861695852995830467763701918159408852834506128 5863898271763457294883546638879554311615446446330199254382340016292057090751175533888161918987295591531 5366987012922676854655174379157908231548446347802601028917180324953960750418994855138111269773074789690 74857043710716150121315922024556759241239013152919710956468406379442914941614357107914462567329693649 (3072-bit prime)

Curves are much better than \mathbb{F}_q^*

'76

$$\mathbb{F}_q^*$$
 (today $q \approx$ 3072 bits)

85

$$E/\mathbb{F}_q$$
 (today $q pprox$ 256 bits)

89

$$\operatorname{Jac}(\mathit{C}_g/\mathbb{F}_q)$$
 (today, $g=2$, $qpprox 128$ bits)

Curves are much better than \mathbb{F}_q^*

'76

 \mathbb{F}_q^* (BORING)

85

 E/\mathbb{F}_q (FUN)

89

 $\operatorname{Jac}(C_g/\mathbb{F}_q)$

(FUNNER)

Why fields of half the size?

Both curves have around q points over \mathbb{F}_q

Hasse-Weil:
$$q+1-2g\sqrt{q} \leq \#\mathcal{C}(\mathbb{F}_q) \leq q+1+2g\sqrt{q}$$
 $(g= ext{genus})$

Why fields of half the size?

Roughly speaking: group elements are pairs of points

$$\operatorname{Pic}_C^0 = \operatorname{Div}_C^0 / \operatorname{Prin}_C$$

Riemann-Roch: unique reduced rep. of "weight" at most g

$$\#E(\mathbb{F}_q)pprox q$$
 vs. $\#\mathrm{Jac}(\mathcal{C})(\mathbb{F}_q)pprox q^2$

Hasse-Weil:
$$(q^{1/2} - 1)^{2g} \le |\operatorname{Pic}_C^0| \le (q^{1/2} + 1)^{2g}$$

Three fights (over prime fields)

Genus 1 - elliptic

Genus 2 - hyperelliptic

The discrete logarithm problem on Jacobians

The ECDLP or (H)ECDLP

Given
$$P$$
, $[n]P \in Jac(C)$, find n .

• Here
$$[n]P = P + P + \cdots + P$$

• e.g. on CurveP-256, $[P, [n]P] = [(40479349090799629115126637582848697209588271547831167017773909685338681225599, 22967748547577358811128749528539359233496570666630926906982292826073120749928), 74180245058659284846967422193612971784890177538113222391105953224411036727045, 110900663252159927273776818506962683131310742871875440526518883183068216925159)]

• e.g. on generic1271, $[P, [n]P] = [(x^2 + 75376293723959170227940456903550835710x + 135725164365695293093314509380448016967, 105339129574254139412560007100896944713x + 113195465952718396500669047047242028400), $x^2 + 119268206887311488578575035256786375387x + 158619788005039757255593506567270537230, 98156413785948877596533722507100341843x + 85481124418552453788443079432675460759)]$$$

The discrete logarithm problem on Jacobians

The ECDLP or (H)ECDLP

Given
$$P$$
, $[n]P \in Jac(C)$, find n .

• Here
$$[n]P = \underbrace{P + P + \cdots + P}_{n \text{ times}}$$
• e.g. on CurveP-256, $[P, [n]P] = [(40479349090799629115126637582848697209588271547831167017773909685338681225599, 22967748547577358811128749528539359233496570666630926906982292826073120749928), 74180245058659284846967422193612971784890177538113222391105953224411036727045, 110900663252159927273776818506962683131310742871875440526518883183068216925159)]
• e.g. on generic1271, $[P, [n]P] = [(x^2 + 75376293723959170227940456903550835710x + 135725164365695293093314509380448016967, 105339129574254139412560007100896944713x + 113195465952718396500669047047242028400), $x^2 + 119268206887311488578575035256786375387x + 158619788005039757255593506567270537230, 98156413785948877596533722507100341843x + 85481124418552453788443079432675460759)]$$$

- (H)ECDLP complexity depends on largest prime factor $r \mid \#\operatorname{Jac}(C)$

Scalar multiplication

The fundamental operation in curve based public-key cryptography

$$k, P \mapsto [k]P$$

2. Genus 1 vs. Genus 2 (three fights)

Fight #1

NIST's CurveP-256

VS.

Generic1271

Generic curves

NIST's CurveP-256

$$p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$$

p = 115792089210356248762697446949407573530086143415290314195533631308867097853951

b = 41058363725152142129326129780047268409114441015993725554835256314039467401291

$$E: y^2 = x^3 - 3x + b$$

#E = 115792089210356248762697446949407573529996955224135760342422259061068512044369

Generic1271

$$p = 2^{127} - 1$$

p = 170141183460469231731687303715884105727

$$C: y^2 = x^5 + a_3x^3 + a_2x^2 + a_1x + a_0$$

Generic scalar multiplication: double-and-add

 The most simple way to do scalar multiplication is via double-and-add (square-and-multiply for multiplicative notation)

Double-and-add In: $k = (k_{\ell-1}, \dots, k_0)_2$, POut: [k]P $T \leftarrow P$ for $i = \ell - 2$ downto 0 do $T \leftarrow \mathsf{DBL}(T)$ if $k_i = 1$ then $T \leftarrow \mathsf{ADD}(T, P)$ end if

end for return T.

```
e.g. k = 18282
k =
(1,0,0,0,1,1,1,0,1,1,0,1,0,1,0)_2
so to compute [k]P, we ...
(- , DBL, DBL, DBL,
DBL+ADD, DBL+ADD,
DBL+ADD, DBL,
DBL+ADD, DBL)
```

• Costs $\lceil \log_2(k) - 1 \rceil$ DBL's and $pprox rac{1}{2} \log_2(k)$ ADD's

Group operations: elliptic vs. hyperelliptic

Genus 2

Mumford coordinates

sextic =
$$(x - x_{P_1})(x - x_{P_2})(x - x_{Q_1})(x - x_{Q_2})(x - x_{R_1})(x - x_{R_2}) = 0$$

 $\rightarrow quadratic = (x - x_{R_1})(x - x_{R_2}) = 0$

Computing with actual points means root finding in \mathbb{F}_q

Mumford coordinates

sextic =
$$(x^2 + \alpha_P x + \beta_P)(x^2 + \alpha_Q x + \beta_Q)(x^2 + \alpha_R x + \beta_R) = 0$$

 $\rightarrow quadratic = (x^2 + \alpha_R x + \beta_R) = 0$

Mumford coordinates avoid root finding

Results for generic curves

- Formulas for imaginary (degree 5) genus 2 formulas hyperelliptic curves based on C-Lauter'11
- Multiplications (M), squarings (S) and additions (a)

op.	Divisor doubling	Divisor addition	Divisor mix add.
g=2	34M + 6S + 34a	44M + 4S + 29a	37 M $+$ 5 S $+$ $29a$

 $\mathbb{F}_{\textit{p}}$ operations for common divisor operations in genus 2

• Implementation results (we used windowing - w = 5)

implementation	prime <i>p</i>	cycles/scalar mult.	
NIST CurveP-256	$2^{256} - 2^{224} + \dots - 1$	658,000	
generic128	$2^{128} - 173$	364,000	
generic127	$2^{127}-1$	248,000	

Timings on Intel Core i7-3520M (Ivy Bridge) at 2893.484 MHz

Fight #2

$$GLV-j=0$$

VS.

BuhlerKoblitzGLV

Gallant-Lambert-Vanstone (GLV) curves

2GLV-j=0 (used by Longa-Sica)

$$p = 2^{256} - 11733$$

p = 115792089237316195423570985008687907853269984665640564039457584007913129628203

$$E: y^2 = x^3 + 2$$

#E = 115792089237316195423570985008687907852887557187491743187825303095426045639107

Buhler-Koblitz 4GLV curve

$$p = 2^{64} \cdot (2^{63} - 27443) + 1$$

p = 170141183460469231731687303715884105727

$$C: y^2 = x^5 + 17$$

#Jac =28948022309328876595115567994214488524823328209723866335483563634241778912751

4-GLV: e.g. Buhler-Koblitz curves

- Let $p = 2^{64} \cdot (2^{63} 27443) + 1$, and let $C/\mathbb{F}_p : y^2 = x^5 + 17$
- $\bullet \ \# \mathrm{Jac} = 28948022309328876595115567994214488524823328209723866335483563634241778912751$
- Notice that $(x,y) \in C \implies (\xi_5 x, y) \in C$, where $\xi_5^5 = 1$,
- It induces a map on Jac(C) (Mumford coordinates):

$$\phi: (x^2 + u_1x + u_0, v_1x + v_0) \mapsto (x^2 + \xi_5 u_1x + \xi_5^2 u_0, \xi_5^4 v_1x + v_0)$$

- For $D \in \operatorname{Jac}(C)$, we get the scalar multiples $\phi(D) = [\lambda]D$, $\phi^2(D) = [\lambda^2]D$ and $\phi^3(D) = [\lambda^3]D$ "for free"
- [k]D as $[k]D = [k_0]D + [k_1]\phi(D) + [k_2]\phi^2(D) + [k_3]\phi^3(D)$
- eg. k = 23477399837278936923599493713286470955314785798347519197199578120259089016680 $(k_0, k_1, k_2, k_3) = (-6344646642321980551, -3170471730617986668, -4387949940648063094, 3721725683392112311)$
- getting k_i 's very quick (CVP in $\mathcal{L} \subset \mathbb{Z}^4$) ...

The GLV lattice

- \bullet r = 28948022309328876595115567994214488524823328209723866335483563634241778912751
- ullet GLV lattice $\mathcal{L}\subset\mathbb{Z}^4$ generated by

$$\begin{pmatrix} r & 0 & 0 & 0 \\ -\lambda & 1 & 0 & 0 \\ -\lambda^2 & 0 & 1 & 0 \\ -\lambda^3 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \phi \\ \phi^2 \\ \phi^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \bmod r$$

- Precompute shortest vector $\alpha \in \mathcal{L}$, $\alpha = (1842396791834961166, 1575206383572171873, -11974991605838508030, 396408673806782533)$
- Use α to find vector $(\rho_0, \rho_1, \rho_2, \rho_3) \in \mathcal{L}$ close to $(k, 0, 0, 0) \notin \mathcal{L}$, and take

$$(k_0, k_1, k_2, k_3) = (k, 0, 0, 0) - (\rho_0, \rho_1, \rho_2, \rho_3),$$

where $||(k_0, k_1, k_2, k_3)||_{\infty} \leq ||\alpha||_{\infty}$ in \mathbb{Z}^4

ullet Scalars could be up to r-1=254 bits, but $||lpha||_\infty=64$ bits

4-GLV: e.g. Buhler-Koblitz curves

k was 254 bits, but instead we multiexponentiate by

$$D k_0 = [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, \dots] (63 bits)$$

$$\phi(D) \qquad k_1 = [0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, \dots] \qquad (63 bits)$$

$$\phi^2(D)$$
 $k_2 = [0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, \dots]$ (63 bits)

$$\phi^3(D)$$
 $k_3 = [0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, \dots]$ (63 bits)

• Straus-Shamir multiexponentiation: $254DBL + 127ADD \rightarrow 63DBL + 80ADD$

implementation	prime <i>p</i>	cycles/scalar mult.	
2GLV-LongaSica	$2^{256} - 11733$	145,000	
4GLV-BK	$2^{128} - 24935$	164,000	
4GLV-BK	$2^{64} \cdot (2^{63} - 27443) + 1$	156,000	

Timings on Intel Core i7-3520M (Ivy Bridge) at 2893.484 MHz

Fight #3

curve25519

VS.

Kummer1271

Montgomery ladder for elliptic curves . . .

- Can compute P+Q from $\{P,Q,P-Q\}$ without y-coords
- **Key:** to compute [k]P, have [n+1]P and [n]P at each stage

Hyperelliptic curve cryptography

Genus 2 analogue: the Kummer surface ${\cal K}$

- Montgomery identified $P = (P_x, P_y)$ and $-P = (P_x, -P_y)$
- ullet Smart-Siksek'99: g=2 analogue... $\operatorname{Jac}(\mathcal{C}) o \mathcal{K}$ is 2-to-1
- Embedding of $\mathrm{Jac}(C)$ usually into \mathbb{P}^{15} Flynn: **72 quadratic forms in 16 variables!!!!**
- BUT, $Jac(C)/\{-\}$ embeds into \mathbb{P}^3 1 equation in 4 variables!!!!
- Gaudry'07: much faster Kummer surface from classical Riemann theta function

"The" Kummer surface \mathcal{K} (Cosset'10)

$$Exyzt = ((x^2 + y^2 + z^2 + t^2) - F(xt + yz) - G(xz + yt) - H(xy + zt))^2$$

- E, F, G, H functions of $\vartheta_1(0)^2, \vartheta_2(0)^2, \vartheta_3(0)^2, \vartheta_4(0)^2$
- projective point $(x: y: z: t) = (\vartheta_1(\mathbf{z})^2, \vartheta_2(\mathbf{z})^2, \vartheta_3(\mathbf{z})^2, \vartheta_4(\mathbf{z})^2)$

Fast "pseudo-group" operations on ${\mathcal K}$

doubling on $\mathcal K$

$$(X: Y: Z: T) = [2](x: y: z: t)$$

$$x' = (x + y + z + t)^{2}$$

$$y' = (x + y - z - t)^{2} \cdot c_{y}$$

$$z' = (x - y + z - t)^{2} \cdot c_{z}$$

$$t' = (x - y - z + t)^{2} \cdot c_{t}$$

$$X = (x' + y' + z' + t')$$

$$Y = (x' + y' - z' - t') \cdot c'_{y}$$

$$Z = (x' - y' + z' - t') \cdot c'_{z}$$

$$T = (x' - y' - z' + t') \cdot c'_{z}$$

differential addition on ${\cal K}$

$$(X \colon Y \colon Z \colon T) = (x \colon y \colon z \colon t) + (\underline{x} \colon \underline{y} \colon \underline{z} \colon \underline{t})$$
 with difference $(\overline{x} \colon \overline{y} \colon \overline{z} \colon \overline{t})$

$$x' = (x + y + z + t) \cdot (\underline{x} + \underline{y} + \underline{z} + \underline{t})$$

$$y' = (x + y - z - t) \cdot (\underline{x} + \underline{y} - \underline{z} - \underline{t})$$

$$z' = (x - y + z - t) \cdot (\underline{x} - \underline{y} + \underline{z} - \underline{t})$$

$$t' = (x - y - z + t) \cdot (\underline{x} - \underline{y} - \underline{z} + \underline{t})$$

$$X = (x' + y' + z' + t')^2 / \overline{x}$$

$$Y = (x' + y' - z' - t')^2 / \overline{y}$$

$$Z = (x' - y' + z' - t')^2 / \overline{z}$$

$$T = (x' - y' - z' + t')^2 / \overline{t}$$

- Come from Riemann relations (hence "beautiful symmetry")
- No longer a group, but enough to do secure crypto (e.g. DH)
- Each ladder step needs $DBL_K + "ADD"_K$ only 25 \mathbb{F}_p muls !!!
- ullet Compare to Mumford DBL pprox 40 and ADD pprox 50

Laddering curves

Bernstein's curve25519

$$p = 2^{255} - 19$$

$$E: y^2 = x^3 + 486662x^2 + x$$

 $\#E = 2^3 \cdot 237005577332262213973186563042994240857116359379907606001950938285454250989$ $\#E' = 2^2 \cdot 14474011154664524427946373126085988481603263447650325797860494125407373907997$

Kummer1271 (Gaudry-Schost'12)

$$p = 2^{127} - 1$$

p = 170141183460469231731687303715884105727

E = 37299146226279590906389874065895056737. F = 145242473685766417331928186098925456110

 $G = 81667768061025231231209905783624370749, \ H = 54058235547640725801037772083642107170$

$$Exyzt = ((x^2+y^2+z^2+t^2)-F(xt+yz)-G(xz+yt)-H(xy+zt))^2$$

 $\# \mathrm{Jac}(C) = 2^4 \cdot 1809251394333065553571917326471206521441306174399683558571672623546356726339$

 $\#\text{Jac}(C') = 2^4 \cdot 1809251394333065553414675955050290598923508843635941313077767297801179626051$

Performance of Kummer1271

implementation	prime p	cycles/scalar mult.
curve25519	$2^{255}-19$	182,000
Kummer1271	$2^{127}-1$	117,000

Timings on Intel Core i7-3520M (Ivy Bridge) at 2893.484 MHz

 Kummer1271 fastest implementation (in genus 1 or 2) over prime field targeting 128-bit security level

Twist-security

- Recall from two slides ago . . .
 - curve25519 had $\#E = 2^3 \cdot r$ and $\#E' = 2^2 \cdot r'$
 - kummer1271 had $\#\operatorname{Jac}(C) = 2^4 \cdot r$ and $\#\operatorname{Jac}(C') = 2^4 \cdot r'$
- Why do we need the twist to have strong order too?
- **curve25519:** for x-coordinate only (i.e. without y), how do we know/check that we're on $E: y^2 = x^3 + Ax^2 + x$?
- Here we have [k]x = f(x, k, A)
- Choose any quadratic non-residue γ , then $E': \gamma y^2 = x^3 + Ax^2 + x$ is (\cong to) "the" quadratic twist E'
- BUT $f(x, \cdot, A)$ works same for E' too! Could attack ECDLP on E' by sending x s.t. $(x, \pm y) \in E'$
- Same for Kummer in genus 2- could choose $(x: y: z: t) \in \mathcal{K}$ such that pullback goes to Jac(C'), not Jac(C)
- BUT ... safe if curve and twist have good group orders

Summary: genus 1 vs. genus 2 over prime fields

Performance Summary

g	implementation	prime <i>p</i>	cycles	CT	protocols
	CurveP-256	$2^{256} - 2^{224} + \cdots - 1$	658,000	×	all
1	2GLV	$2^{256} - 11733$	145,000	×	all
	curve25519	$2^{255}-19$	182,000	√	some
	generic1271	$2^{127}-1$	248,000	×	all
2	4GLV-BK	$2^{64} \cdot (2^{63} - 27443) + 1$	156,000	×	all
	Kummer1271	$2^{127}-1$	117,000	√	some

Timings on Intel Core i7-3520M (Ivy Bridge) at 2893.484 MHz

- See eBACS for more numbers: http://bench.cr.yp.to
- CT = "constant time" resistant to simple power analysis (SPA) attacks, i.e. input independent
- laddering algorithms can't perform additions, so only suitable for some protocols (e.g. DH, ElGamal, but not signatures)

Summary: genus 1 vs. genus 2

Informal Summary

For all the hard work that it takes to understand/**find!!!**/implement genus 2 cryptography, there are ample rewards, e.g.:

- larger endomorphism ring (4-GLV possible in genus 2, only 2-GLV in genus 1)
- relative benefit from the Kummer surface (laddering) much greater in genus 2
- over prime fields, g=2 gets the Mersenne prime $p=2^{127}-1$
- above timings were for 64-bit platforms only...over
 32-bit/8-bit architectures, genus 2 would perform even better

BUT ... genus 2 still has its (comparative) drawbacks as well ...

3. Three worthwhile problems in genus 2

Open question #1 - GLV on the Kummer

- Using endomorphisms gives big speedups: $364,000 \rightarrow 156,000$
- Using Kummer surface gives big speedups: $248,000 \rightarrow 117,000$
- Question: can we use endomorphisms on the Kummer surface?
- ullet Gaudry also noticed that certain Kummers can have an endomorphism ϕ ... recall the formulas for Kummer doubling

$$\begin{aligned} x' &= (x + y + z + t)^2 & X &= (x' + y' + z' + t') \\ y' &= (x + y - z - t)^2 \cdot c_y & Y &= (x' + y' - z' - t') \cdot c_y' \\ z' &= (x - y + z - t)^2 \cdot c_z & Z &= (x' - y' + z' - t') \cdot c_z' \\ t' &= (x - y - z + t)^2 \cdot c_t & T &= (x' - y' - z' + t') \cdot c_t' \end{aligned}$$

- If $c_y = c_y'$, $c_z = c_z'$, $c_t = c_t'$, then $[2] = \phi \circ \phi$ on \mathcal{K} , so $\phi = [\sqrt{2}]$ on \mathcal{K}
- Computing $\phi(P) = [\sqrt{2}]P$ on \mathcal{K} is very fast, so can we now do GLV?

Open question #1 - cont

- Problem: since we can't add, we can't combine P and Q to emulate multiexponentiation
- We need Q P or Q + P (quickly!) to kickstart differential addition chain
- i.e. We need efficient way of computing $\phi-1$ or $\phi+1$ on ${\mathcal K}$

Open question #2 - true resistance

- Suppose genus 2 curves were to be deployed tomorrow
- One serious drawback/problem is how to make genus 2 code truly side-channel resistant
- Cantor's algorithm works for any input, but is very "branchy"
 simple timing or power attacks can be used
- Implementing full-degree formulas (for weight 2 divisors) is enough for all honest parties will never run into special cases (prob $\approx 1/p$)
- **BUT**: attackers can recover secret keys quite easily by making us run into special cases

Open question #2 - true resistance

- Suppose Bob's secret key is $k=(k_{\ell-1},\ldots,k_0)_2$
- Alice chooses a degenerate divisor $D=(x-x_P,y_P)$, computes and sends Bob $\tilde{D}=\left[\frac{1}{3}\right]D=(x^2+\alpha x+\beta,\gamma x+\nu)$.
- if something goes wrong then $k_{\ell-2}=1$ else $k_{\ell-2}=0$
- w.l.o.g. $k_{\ell-2}=1$, then Alice now sends $D'=(x-x_{P'},y_{P'})$, computes and sends $\tilde{D}'=\left[\frac{1}{7}\right]D'=(x^2+\alpha'x+\beta',\gamma'x+\nu')$.
- Alice can easily reconstruct the key if Bob's code doesn't handle degenerate divisors properly (or in constant time)!!!

Open question #2 - cont.

- For genus 2 to be a viable off-the-shelf alternative (or preference) ... we really need code that ...
 - Ocovers (or at the very least can detect) all cases
 - runs in constant time / constant power / input independent
 - 3 is still fast ©
- Kummer surface code seems to (or does it?)
- But what about the more versatile, more general implementations?
- Whether this solution comes mathematically/programatically/pragmatically, it would most certainly be welcome for genus 2 crypto.

Open question #3 - cont.

One thing that elliptic curves have that genus 2 doesn't is a plethora of non-Weierstrass models, e.g:

- Edwards: $x^2 + y^2 = 1 + dx^2y^2$
- Hessian: $x^3 + y^3 + 1 = dxy$
- Jacobi-quartic: $y^2 = dx^4 + ax^2 + 1$
- ...etc etc ...

Question:

Are there alternative models of genus 2 curves/Jacobians that offer faster arithmetic than Jac(C) of $C: y^2 = x^5 + \cdots + a_1x + a_0$ in standard Mumford coordinates?

THANKS!!!

see Bos-C-Hisil-Lauter: "Fast Cryptography in Genus 2"

http://eprint.iacr.org/2012/670