The state-of-the-art in hyperelliptic curve

cryptography

Craig Costello

Workshop on Curves and Applications
Calgary, Canada
August 19, 2013

A
S T\

Research P1MS

The state-of-the-art in hyperelliptic curve cryptography

Thanks for inviting/rescuing me. ..

@ Thanks to Mark, Michael and Renate, | get to
hear about ...

e Counting Abelian Surfaces

Divisor Computations using Global Sections
Isogeny-Based Cryptography

Splitting of Abelian Varieties

Explicit Isogenies

...instead of being at CRYPTQ'13, and hearing
about ...

o
]
]
]

o Leakage-Resilient Symmetric Cryptography

Under Empirically Verifiable Assumptions
@ Plain versus Randomized Cascading-Based -
Key-Length Extension for Block Ciphers v~

o On the Achievability of Simulation-Based Security
for Functional Encryption
o ...etcetc...

Hyperelliptic curve cryptography

© Motivation/overview/preliminaries

o fast and compact public-key crypto
e genus 1 vs. genus 2
@ the ECDLP and scalar multiplication

@ Genus 1 vs. Genus 2 (three fights)

o CurveP-256 vs. genericl1271
e 2GLV vs. 4GLV
@ curve25519 vs. Kummer1271

© Three open problems in genus 2

o GLV on the Kummer surface?
o Making genus 2 truly resistant
o Faster arithmetic. . .

Hyperelliptic curve cryptography

1. Motivation/overview/preliminaries

Hyperelliptic curve cryptography

Private-key vs. Public-key cryptography

BC - WWII:

Caesar Mary, Queen of Scots German Enigma Code

must communicate before sharing secrets

1970’s:

Diffie-Hellman-Merkle Rivest-Shamir-Adleman (RSA) Cocks

HUGE BREAKTHROUGH: no need for prior
communication!!!

Hyperelliptic curve cryptography

Diffie-Hellman (Merkle): a toy example

Public values:

g = 10000000000000061 (prime), g = 832022676086941 (generator of Zq).
Secret values:

CREDIT CARD

Credit Card
I,

=
42753156 0372 5493

= OL%E

10633

TNAME MR NAME SURNAME

Alice’s secret: a=4275315603725493 Bob's secret: b=1083333300180813

Alice computes (public key): Bob computes (public key):
g7 mod g = 9213047582249495 gb mod g = 9893308140872135
Bob can compute: Alice can compute:

98933081408721357 = 8817060794020263 = 9213047582249495°
— gab

Secret keys safe as long as discrete log problem (DLP) is hard

Joint secret safe as long as Diffie-Hellman problem is hard

Hyperelliptic curve cryptography

1970’s:

q=
1606938044258990275541962092341162602522202993782792835301301.
(200-bit prime)

NOW:

q=
5809605995369958062859502533304574370686975176362895236661486152287203730997110225737336044533118407251
3261577549805174439905295945400471216628856721870324010321116397064404988440498509890516272002447658070
4181239472968054002410482797658436938152229236120877904476989274322575173807697956881130957912551133309
3243519553784816306381580161860200247492568448150242515304449577187604136428738580990172551573934146255
8303664059150008696437320532185668325452911079037228316341385995864066903259597251874471690595408050123
1020963901175074876001709536073423494575741627299485601330861695852995830467763701918159408852834506128
5863898271763457294883546638879554311615446446330199254382340016292057090751175533888161918987295591531
5366987012922676854655174379157908231548446347802601028917180324953960750418994855138111269773074789690
74857043710716150121315922024556759241239013152919710956468406379442914941614357107914462567329693649
(3072-bit prime)

¥

Hyperelli e cryptography

Curves are much better than]FZ

[, (today q ~ 3072 bits)

E/Fq (today g ~ 256 bits)

Jac(Cg/Fq) (today, g =2, g ~ 128 bits)

Hyperelliptic curve cryptography

Curves are much better than]FZ

(BORING)

(FUN)

(FUNNER)

Hyperelliptic curve cryptography

Why fields of half the size?

y?=xtax®taxta y2=x"+bx*+- -+ by

O DO

Both curves have around g points over I
Hasse-Weil: ¢+ 1 —2g,/g < #C(Fq) < g+ 1+2g,/q
(g = genus)

Hyperelliptic curve cryptography

Why fields of half the size?

Roughly speaking: group elements are pairs of points
Pic% = Div% /Princ
Riemann-Roch: unique reduced rep. of “weight” at most g
HE(F)~q vs. #Jac(C)(F,) ~ ¢
Hasse-Weil: (q'/2 —1)% < |Pic%| < (q%/? +1)%

Hyperelliptic curve cryptography

Three fights (over prime fields)

Genus 1 - elliptic Genus 2 - hyperelliptic
CurveP-256 (NIST) Generic1271
p= 2256 o 2224 + 2192 + 296 —1 VS. p= 2127 -1
E/Fp:y?>=x>=3x+b (generic) C/Fp: y? = x> +a3x®+--+ag
#E = r (256-bit prime) #Jac = r (254-bit prime)
GLV-j=0 (Longa-Sica) BuhlerKoblitzGLV
p =22 _ 11733 VS. p =206%. (253 —27443) +1
E/Fp: y2=x342 (endos) C/Fp:y2:x5—|—17
#E = r (256-bit prime) #Jac = r (254-bit prime)
curve25519 (Bernstein) Kummer1271
p= 2255 __ 19 VS. p= ol27 _ 1
E/F,: y? = x>+ 486662x> + x (ladder) C/Fp: y? =x*+asx®+---+ap
#E = 23 . r (253-bit prime) #Jac = 2* . r (251-bit prime)

Hyperelliptic curve cryptography

The discrete logarithm problem on Jacobians

The ECDLP or (H)ECDLP
Given P, [n]P € Jac(C), find n.

o Here [n|P=P+P+---+P
~
n times

@ e.g. on CurveP-256, [P, |=

[(40479349090799629115126637582848697209588271547831167017773909685338681225599 f

22967748547577358811128749528539359233496570666630926906982292826073120749928) f

1

@ e.g. on generic1271, [P, |=

[(X2 + 75376293723959170227940456903550835710x + 135725164365695293093314509380448016967 ,

105339129574254139412560007100896944713x + 113195465952718396500669047047242028400),

)

Hyperelliptic curve cryptography

The discrete logarithm problem on Jacobians

The ECDLP or (H)ECDLP

Given P, [n]P € Jac(C), find n.

o Here [n|P=P+P+---+P

n times

@ e.g. on CurveP-256, [P, |=
[(40479349090799629115126637582848697209588271547831167017773909685338681225599 f
22967748547577358811128749528539359233496570666630926906982292826073120749928) f

)

@ e.g. on generic1271, [P, |=
[(X2 + 75376293723959170227940456903550835710x + 135725164365695293093314509380448016967 ,

105339129574254139412560007100896944713x + 113195465952718396500669047047242028400),

)

@ 1 = 0357649162479696596124742876014114220119704252085782422545605324389685386982
@ (H)ECDLP complexity depends on largest prime factor r | #Jac(C)

Hyperelliptic curve cryptography

Scalar multiplication

@ The fundamental operation in curve based public-key
cryptography

k, P — [k]P

Hyperelliptic curve cryptography

2. Genus 1 vs. Genus 2 (three fights)

Hyperelliptic curve cryptography

Fight #1

NIST's CurveP-256

VS.

Genericl1271

Generic curves

NIST’s CurveP-256
p= 2256 _ 2224 4 2192 4 296 -1
p =115792089210356248762697446949407573530086143415290314195533631308867097853951
b =41058363725152142129326129780047268409114441015993725554835256314039467401291
E:y>=x3-3x+b

#E = 115792089210356248762697446949407573529996955224135760342422259061068512044369

Genericl1271
p= 2127 -1
p =170141183460469231731687303715884105727
a3 =34744234758245218589390329770704207149, ap =132713617209345335075125059444256188021
a1 =90907655901711006083734360528442376758, ag =6667986622173728337823560857179992816
C:y?=x>+ a3x®+ axx? + a1x + ap

#Jac =28948022309329048848169239995659025138451177973091551374101475732892580332259

Hyperelliptic curve cryptography

Generic scalar multiplication: double-and-add

@ The most simple way to do scalar multiplication is via
double-and-add (square-and-multiply for multiplicative

notation)

Double-and-add

In: k= (kg_l, cooy ko)z, P
Out: [k]P

T—P

for i = ¢ — 2 downto 0 do
T — DBL(T)
if kK =1 then

T — ADD(T,P)

end if

end for

return T.

e.g. k=18282

k =
(1,0,0,0,1,1,1,0,1,1,0,1,0,1,0)
so to compute [k]|P, we ...

(-, DBL, DBL, DBL,
DBL+ADD, DBL+ADD,
DBL+ADD, DBL,

DBL+ADD,DBL)

o Costs [log,(k) — 1] DBL's and ~ 3 log,(k) ADD's

Hyperelliptic curve cryptography

Group operations: elliptic vs. hyperelliptic

Genus 1

Bl
oo{ g

Hyperelliptic curve cryptography

Mumford coordinates

sextic = (x —xp,)(x — xp,)(x — x0,)(x — x@,)(x — X,)(x — xg,) = 0
— quadratic = (x — xg,)(x — xg,) = 0

Computing with actual points means root finding in F

Hyperelliptic curve cryptography

Mumford coordinates

sextic = (x? + apx + Bp)(x* + agx + B0)(x? + arx + Br) =0
— quadratic = (x*> + arx + 3r) = 0

Mumford coordinates avoid root finding

Hyperelliptic curve cryptography

Results for generic curves

@ Formulas for imaginary (degree 5) genus 2 formulas
hyperelliptic curves based on C-Lauter'11l
@ Multiplications (M), squarings (S) and additions (a)

op. Divisor doubling | Divisor addition | Divisor mix add.
g=2|34M + 6S + 34a | 44M + 4S + 29a | 37TM + 5S + 29a

[, operations for common divisor operations in genus 2

@ Implementation results (we used windowing - w = 5)

implementation prime p cycles/scalar mult.
NIST CurveP-256 | 220 — 2224 4 ... 1 658,000
generic128 2128 _ 173 364,000
generic127 2127 1 248,000

Timings on Intel Core i7-3520M (lvy Bridge) at 2893.484 MHz

Hyperelliptic curve cryptography

Fight #2

GLV-3=0

VS.

BuhlerKoblitzGLV

Gallant-Lambert-Vanstone (GLV) curves

2GLV-j=0 (used by Longa-Sica)
p =22 _11733
p =115792089237316195423570985008687907853269984665640564039457584007913129628203
E:y?=x3+2

#E = 115792089237316195423570985008687907852887557187491743187825303095426045639107

Buhler-Koblitz 4GLV curve
p=20%.(20% —27443) + 1
p =170141183460469231731687303715884105727
C:y?=x>+17

#Jac =28948022309328876595115567994214488524823328209723866335483563634241778912751

Hyperelliptic curve cryptography

4-GLV: e.g. Buhler-Koblitz curves

o Let p=2%.(253 —27443) + 1, and let
C/F,:y?>=x>+17

) #JaC — 28948022309328876595115567994214488524823328209723866335483563634241778912751

@ Notice that (x,y) € C = (&x,y) € C, where & =1,

@ It induces a map on Jac(C) (Mumford coordinates):

&1 (X2 4 urx+ ug, vix +vp) > (x? +§5u1x+§§uo, §§V1X—i-)

@ For D € Jac(C), we get the scalar multiples ¢(D) = [A]D,
#*(D) = [N?]D and ¢3(D) = [A3]D “for free"

o [K]D as [K]D = [ko] D + [k1]¢(D) + [k2]¢*(D) + [ks]¢*(D)

"] eg k — 23477399837278936923599493713286470955314785798347519197199578120259089016680
(ko, ki, ko, k3) =
(76344646642321980551, —3170471730617986668, —4387949940648063094, 3721725683392112311)

@ getting k;'s very quick (CVP in L C Z%) ...

The GLV lattice

@ I — 28948022309328876595115567994214488524823328209723866335483563634241778912751

*])\ — 7831546867685512705297615980651794586753229241310765320406147783708756285646

@ GLV lattice £ C Z* generated by

r 0
-2 1
~-A2 0
-2 0

@ Precompute shortest vector o € L, «

0

0
1
0

0 1
0 o}
0 »?
1 @3

mod r

o O O o

(1842396791834961166, 1575206383572171873, —11974991605838508030, 396408673806782533)

@ Use a to find vector (po, p1, p2,p3) € L close to
(k,0,0,0) ¢ L, and take

(k07 kla k2> k3) = (k,0,0,0) - (pO>Plap2,PB)>

where ||(ko, k1, k2, k3)||oo < ||c||oo in Z*

@ Scalars could be up to r — 1 = 254 bits, but ||a||o, = 64 bits

4-GLV: e.g. Buhler-Koblitz curves

@ k was 254 bits, but instead we multiexponentiate by

D k =[1,0,1,1,0,0,0,0,0,0,0,1,...] (63 bits)
#(D) k =10,1,0,1,0,1,1,1,1,1,1,1,...] (63 bits)
(D) ky=1[0,1,1,1,1,0,0,1,1,1,0,0,...] (63 bits)
(D) k3y=1[0,1,1,0,0,1,1,1,0,1,0,0,...] (63 bits)

@ Straus-Shamir multiexponentiation: 254DBL + 127ADD —
— 63DBL + 80ADD

implementation prime p cycles/scalar mult.
2GLV-LongaSica 220 _ 11733 145,000
4GLV-BK 2128 24935 164,000
4GLV-BK 204 . (203 —27443) + 1 156,000

Timings on Intel Core i7-3520M (lvy Bridge) at 2893.484 MHz

Hyperelliptic curve cryptography

Fight #3

curve25519

VS.

Kummerl271

Montgomery ladder for elliptic curves . ..

@ Can compute P+ Q from {P, Q, P — Q} without y-coords
o Key: to compute [k]P, have [n+ 1]P and [n]P at each stage

Q
P
12
) / /
Vs. \G‘\ /@/,
same difference — same result different difference — different result

Hyperelliptic curve cryptography

Genus 2 analogue: the Kummer surface

@ Montgomery identified P = (Py, P,) and —P = (P, —P,)
@ Smart-Siksek'99: g = 2 analogue. .. Jac(C) — K is 2-to-1

@ Embedding of Jac(C) usually into P15
Flynn: 72 quadratic forms in 16 variables!!!!

@ BUT, Jac(C)/{—} embeds into P3
1 equation in 4 variables!!!!

@ Gaudry'07: much faster Kummer surface from classical

Riemann theta function

“The” Kummer surface K (Cosset'10)
Exyzt = ((x%® + y? + 22 + t2) — F(xt + yz) — G(xz + yt) — H(xy + zt))?

e E,F,G,H - functions of 91(0)?,92(0)2,93(0)2,94(0)?
@ projective point (x: y: z: t) = (91(2)?,92(2)?, ¥3(2)?, ¥4(2)?)

Hyperelliptic curve cryptography

Fast “pseudo-group” operations on K

doubling on K differential addition on
(X:Y:Z:T)=[2](x:y:z: t) (XeY:oZ:T)=(x:y: 2z t)+(x: yr 20 8)
with difference (X: y: Z: t)

2
xtytztt) S(xtytztt) (xtytzty)
2
Xty—z=9 o =(x4+y—z—t)-(x+y—z—1)
X—y+z—t)2~c

z =(x—yt+tz—t)-(x—y+tz—1)

=(x—y—z+t)-(x—y—z+1)

X,+y,+z,+tl) (, , , ,
(
(
(

x +y +z +t)2/7
’ ’ ’ ’ ’
X +y —z —t)-¢c x’+ylfz/7t/)2/7
X~y 42—tz

’

X 7y/+z/7t/)»cz,

’

=(
=(
=(
=(x—y—z+1t)? ¢
(
(
(
=(x' =y =2+t

\cr\:<><"
I

’

X =
Y =
V4
T=(-y -2 +¢)t

@ Come from Riemann relations (hence “beautiful symmetry”)
@ No longer a group, but enough to do secure crypto (e.g. DH)
@ Each ladder step needs DBLx + “ADD" k. — only 25 [, muls !!!
@ Compare to Mumford — DBL = 40 and ADD =~ 50

Hyperelliptic curve cryptography

Laddering curves

Bernstein’s curve25519
p= 2255 __ 19
p =57896044618658097711785492504343953926634992332820282019728792003956564819949
E : y? = x3 + 486662x° + x
#E = 23 . 237005577332262213973186563042994240857116359379907606001950938285454250989

#E' = 22 . 14474011154664524427946373126085988481603263447650325797860494125407373907997

Kummerl271 (Gaudry-Schost’12)
p= 2127 _ 1
p =170141183460469231731687303715884105727
E =37299146226279590906389874065895056737, F =145242473685766417331928186098925456110
G =81667768061025231231209905783624370749, H =54058235547640725801037772083642107170
Exyzt = ((x®+y?+2°+t2)— F(xt+yz)— G(xz+yt) — H(xy +zt))?
#Jac(C) = 2% . 1809251304333065553571917326471206521441306174399683558571672623546356726339

#Jac(C') = 2* . 1809251394333065553414675955050290598923508843635941313077767297801179626051

Hyperelliptic curve cryptography

Performance of Kummer1271

implementation | prime p | cycles/scalar mult.
curve25519 2255 _ 19 182,000
Kummer1271 2127 1 117,000

Timings on Intel Core i7-3520M (lvy Bridge) at 2893.484 MHz

@ Kummerl271 fastest implementation (in genus 1 or 2) over
prime field targeting 128-bit security level

Hyperelliptic curve cryptography

Twist-security

)

Recall from two slides ago . ..
o curve25519 had #E =23 .rand #E' =22.r
o kummer1271 had #Jac(C) = 2* - r and #Jac(C’) =2*-r/

Why do we need the twist to have strong order too?

curve25519: for x-coordinate only (i.e. without y), how do
we know/check that we're on E : y? = x3 + Ax? + x?

Here we have [k|x = f(x, k, A)

Choose any quadratic non-residue +y, then
E': yy? = x3 + Ax? + x is (& to) “the” quadratic twist E’

BUT f(x,-, A) works same for E’ too! Could attack ECDLP
on E’ by sending x s.t. (x,ty) € E/

Same for Kummer in genus 2- could choose (x: y: z: t) € K
such that pullback goes to Jac(C’), not Jac(C)

BUT ...safe if curve and twist have good group orders

Hyperelliptic curve cryptography

Summary: genus 1 vs. genus 2 over prime fields

Performance Summary

g | implementation prime p cycles | CT | protocols
CurveP-256 2256 _ 9224 4 .. _ 1 658,000 | x all

1 2GLV 22% _ 11733 145,000 | x all
curve25519 225 _ 19 182,000 | vV some
generic1271 2127 1 248,000 | x all

2 4GLV-BK 20%.(2%3 —27443) +1 | 156,000 | x all
Kummer1271 2127 1 117,000 | v some

Timings on Intel Core i7-3520M (lvy Bridge) at 2893.484 MHz

@ See eBACS for more numbers: http://bench.cr.yp.to

o CT = “constant time " - resistant to simple power analysis
(SPA) attacks, i.e. input independent

@ laddering algorithms can’t perform additions, so only suitable
for some protocols (e.g. DH, ElGamal, but not signatures)

Hyperelliptic curve cryptography

http://bench.cr.yp.to

Summary: genus 1 vs. genus 2

Informal Summary

For all the hard work that it takes to
understand /find!!! /implement genus 2 cryptography, there are
ample rewards, e.g.:

@ larger endomorphism ring (4-GLV possible in genus 2, only
2-GLV in genus 1)

@ relative benefit from the Kummer surface (laddering) much
greater in genus 2

@ over prime fields, g = 2 gets the Mersenne prime p = 2127 — 1
@ above timings were for 64-bit platforms only.. . over

32-bit/8-bit architectures, genus 2 would perform even better

BUT ...genus 2 still has its (comparative) drawbacks as well ...

Hyperelliptic curve cryptography

3. Three worthwhile problems in
genus 2

Hyperelliptic curve cryptography

question #1 - GLV on the Kummer

@ Using endomorphisms gives big speedups: 364,000 — 156,000
@ Using Kummer surface gives big speedups: 248,000 — 117,000

@ Question: can we use endomorphisms on the Kummer
surface?

@ Gaudry also noticed that certain Kummers can have an
endomorphism ¢. . . recall the formulas for Kummer doubling

= (x+y+z+1t)?

X

:X+y_z_t)2ACy Y=Kx'4y -2 —t)-c
:xfy+zft)2<cz V4
T

(
(
(
:(x—y—z+t)2~ct
o lfc,=c,, c;=c, ¢t =c[then[2] = ¢po ¢ on K, so
=[v2]on K
o Computing ¢(P) = [V/2]P on K is very fast, so can we now
do GLV?

Hyperelliptic curve cryptography

Open question #1 - cont

@ Problem: since we can't add, we can't
combine P and @ to emulate
multiexponentiation

@ We need Q@ — P or Q + P (quickly!) to
kickstart differential addition chain

@ i.e. We need efficient way of computing
p—lorp+1lonkK

Hyperelliptic curve cryptography

Open question #2 - true resistance

@ Suppose genus 2 curves were to be deployed tomorrow

@ One serious drawback/problem is how to make genus 2 code
truly side-channel resistant

@ Cantor's algorithm works for any input, but is very “branchy”
— simple timing or power attacks can be used

@ Implementing full-degree formulas (for weight 2 divisors) is
enough for all honest parties — will never run into special cases

(prob ~ 1/p)

@ BUT: attackers can recover secret keys quite easily by making
us run into special cases

Hyperelliptic curve cryptography

Open question #2 - true resistance

@ Suppose Bob's secret key is k = (kp_1,...,ko)2

@ Alice chooses a degenerate divisor D = (x — xp, yp),
computes and sends Bob D = [§]D = (x* + ax + 3, yx + v).

o if something goes wrong then
ke o =1
else
ke_o»=0

o wlog ki_o=1, theNn Alice now sends D' = (x — xpr, ypr),
computes and sends D' = [3]D" = (x* + o/x + 3/, 9/x + /).

@ Alice can easily reconstruct the key if Bob’s code
doesn’t handle degenerate divisors properly (or in
constant time)!!!

Hyperelliptic curve cryptography

Open question #2 - cont.

@ For genus 2 to be a viable off-the-shelf alternative (or
preference) . ..we really need code that ...

@ covers (or at the very least can detect) all cases
@ runs in constant time / constant power / input independent

© s still fast ©

@ Kummer surface code seems to (or does it?)

@ But what about the more versatile, more general
implementations?

@ Whether this solution comes
mathematically /programatically /pragmatically, it would most
certainly be welcome for genus 2 crypto.

Hyperelliptic curve cryptography

Open question #3 - cont.

One thing that elliptic curves have that genus 2 doesn't is a
plethora of non-Weierstrass models, e.g:

o Edwards: x% + y? =1 + dx2y?

@ Hessian: x3 +y3 +1 = dxy

@ Jacobi-quartic: y? = dx* 4+ ax? + 1

@ ...etcetc...

Are there alternative models of genus 2 curves/Jacobians that offer
faster arithmetic than Jac(C) of C: y? = x% 4+ --- + a1x + ag in
standard Mumford coordinates?

Hyperelliptic curve cryptography

THANKS!!

see Bos-C-Hisil-Lauter: “Fast Cryptography in Genus 2"

http://eprint.iacr.org/2012/670

Hyperelliptic curve cryptography

http://eprint.iacr.org/2012/670

