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Background

I Hofbauer (1979) used Markov diagrams to determine maximal
measures of piecewise monotonic increasing transformations on the
interval.

I In 1997 Buzzi extended Hofbauer’s construction to arbitrary smooth
interval maps, and to any subshift in 2010.
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What do we mean by non-Markovian?

I We say a system is non-Markovian if the system has long-range
order and infinite memory.

Objective:

1. Describe the construction of the Buzzi Markov diagrams of Sturmian
systems.

2. Discuss some properties of the constructed diagrams.
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Notation

Let A be a finite alphabet. The full A-shift is the collection of all
bi-infinite sequences of symbols from A. If A has n elements

Σ(A) = Σn = AZ = {x = (xi)i∈Z : xi ∈ A for all i ∈ Z}.

The one-sided full A-shift is the collection of all infinite sequences of
symbols from A and is denoted

Σ(A)+ = Σ+
n = AN = {x = (xi)i∈N : xi ∈ A for all i ∈ N}.

The shift transformation is σ : Σ(A)→ Σ(A) and Σ+(A)→ Σ+(A)
defined by

(σx)i = xi+1 for all i.

The pair (Σn, σ) is called the n-shift dynamical system.
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A subshift is a pair (X,σ) (or (X+, σ)), where X ⊂ Σn (or X+ ⊂ Σ+
n )

is a nonempty, closed, shift-invariant set.

Let X be a subset of a full shift, and let Ln(X) denote the set of all
n-blocks that occur in points in X. The language of X is the collection

L(X) =

∞⋃
n=0

Ln(X).
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Definitions

Let A be a finite alphabet with X+ ⊂ AN a one-sided subshift.

Natural extension

The natural extension of X+ is

X̃ = {x ∈ AZ : for all p ∈ Z xpxp+1... ∈ X+}.

I Let a(n) = a
(n)
0 a

(n)
1 a

(n)
2 a

(n)
3 ... be points in X+.

I Define b(n) = 0∞.a(n).

I Set xn(a(n)) = σnb(n).

I (xn(a(n))) is a sequence of two-sided sequences.

Proposition

Let X+ and (xn(a(n))) be as described. Then X̃ is the set of limit
points of all (xn(a(n))), a(n) ∈ X+ for all n ≥ 0.

Kathleen Carroll and Karl Petersen Markov diagrams for some non-Markovian systems



Background
Buzzi Markov diagrams

Sturmian systems
Properties

Definitions

Let A be a finite alphabet with X+ ⊂ AN a one-sided subshift.

Natural extension

The natural extension of X+ is

X̃ = {x ∈ AZ : for all p ∈ Z xpxp+1... ∈ X+}.

I Let a(n) = a
(n)
0 a

(n)
1 a

(n)
2 a

(n)
3 ... be points in X+.

I Define b(n) = 0∞.a(n).

I Set xn(a(n)) = σnb(n).

I (xn(a(n))) is a sequence of two-sided sequences.

Proposition

Let X+ and (xn(a(n))) be as described. Then X̃ is the set of limit
points of all (xn(a(n))), a(n) ∈ X+ for all n ≥ 0.

Kathleen Carroll and Karl Petersen Markov diagrams for some non-Markovian systems



Background
Buzzi Markov diagrams

Sturmian systems
Properties

Definitions

Let A be a finite alphabet with X+ ⊂ AN a one-sided subshift.

Natural extension

The natural extension of X+ is

X̃ = {x ∈ AZ : for all p ∈ Z xpxp+1... ∈ X+}.

I Let a(n) = a
(n)
0 a

(n)
1 a

(n)
2 a

(n)
3 ... be points in X+.

I Define b(n) = 0∞.a(n).

I Set xn(a(n)) = σnb(n).

I (xn(a(n))) is a sequence of two-sided sequences.

Proposition

Let X+ and (xn(a(n))) be as described. Then X̃ is the set of limit
points of all (xn(a(n))), a(n) ∈ X+ for all n ≥ 0.

Kathleen Carroll and Karl Petersen Markov diagrams for some non-Markovian systems



Background
Buzzi Markov diagrams

Sturmian systems
Properties

Corollary

L(X+) = L(X̃) if and only if for every block B in L(X+) and for all
n ≥ 0 there exists a(n) ∈ X+ such that B appears in a(n) starting at
position n. In particular, if X+ is minimal, then L(X+) = L(X̃).

Follower set

The follower set of a block a−na−n+1...a0 is

{b0b1... ∈ X+ : there exists b ∈ X̃ b−n...b0 = a−n...a0},

denoted fol(a−na−n+1...a0)

Remark

I This defines a ”block-to-ray” follower set.
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Significant block

A significant block of X̃ is a−na−n+1...a0 such that

fol(a−na−n+1...a0) ( fol(a−n+1a−n+2...a0).

Significant form

The significant form of a−na−n+1...a0 is

sig(a−n...a0) = a−k...a0

where k ≤ n is maximum such that a−k...a0 is significant.
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The Buzzi Markov diagram

Buzzi Markov diagram (1997)

The Buzzi Markov diagram D of a subshift X is the oriented graph
whose vertices VD are the significant blocks of X̃ and whose arrows are
defined by

a−n...a0 → b−m...b0 ⇐⇒ b−m...b0 = sig(a−n...a0b0)

and a−n...a0b0 is in the language of X̃.
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Sturmian sequence

Complexity function

Let u be a sequence or bisequence. The complexity function of u,
denoted pu, maps n to the number of blocks of length n that appear in u.

Sturmian

A sequence u is called Sturmian if it satisfies the following equivalent
conditions:

1. u has complexity pu(n) = n+ 1 (Coven and Hedlund, 1973).

2. u is an irrational rotational sequence (Hedlund and Morse, 1940).

3. u is balanced and aperiodic.
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Sturmian systems

Sturmian system

Let u be a Sturmian sequence. Let X+
u be the closure of

{σn(u) : n ∈ N}. Then (X+
u , σ) is the dynamical system associated with

the Sturmian sequence u.

Remark

I Sturmian systems are minimal, so L(X+
u ) = L(X̃u).
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Properties of Sturmian systems

Left special block

Let u be a Sturmian sequence u. The unique block of length n that can
be extended to the left in two different ways is called a left special block,
denoted Ln(u).

Left special sequence

The sequence l(u) which has the Ln(u)’s as prefixes is called the left
special sequence or characteristic word of X+

u .

Right special block

The unique block of length n that can be extended to the right in two
different ways is called a right special block, and is denoted Rn(u). The
block Rn(u) is precisely the reverse of Ln(u)
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Buzzi Markov diagram of a Sturmian system

Theorem

Let X+
u be a one-sided Sturmian system, with l = l1l2l3... the left special

sequence of X+
u . The Buzzi Markov Diagram of X+

u is the directed graph
with vertices 0,1, 0Ln, and 1Ln, n ≥ 1, and whose arrows are defined by

1. 0→ 1, 0→ 00, and 1→ 10 if l1 = 0, and
1→ 0, 1→ 11, and 0→ 01 if l1 = 1,

2. 0Ln → 0Ln+1, 1Ln → 1Ln+1,

3. If xLn and wLm, n ≥ m, are consecutive right special blocks
I xLn → wLm+1 if x 6= w
I xLn → sig(wLmy), y 6= lm+1, if x = w.
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Buzzi Markov diagram of a Sturmian system

Example

The Fibonacci sequence, f = 010010100100101001..., is the fixed point
of the Fibonacci substitution

φ : 0 7→ 01

1 7→ 0.

I The Fibonacci sequence is Sturmian.

I The left special sequence of X+
f is f .

Significant blocks

0, 1, 00, 10, 001, 101, 0010, 1010, 00100, 10100, 001001, 101001, ...
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The Buzzi Markov diagram of X+
f

0

00

001

0010

00100

001001

0010010

00100101

001001010

...

1

10

101

1010

10100

101001

1010010

10100101

101001010

...
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Paths on the Buzzi Markov diagram

Markov shift

Given a Buzzi Markov diagram D of a subshift X the corresponding
Markov shift is

X̂ = {α ∈ V Z
D : for all p ∈ Z αp → αp+1 on D}.

Natural Projection

Let π̂ denote the natural continuous projection defined by

π̂ : α ∈ X̂ 7→ a ∈ X̃

with an the last symbol of the block αn for all n ∈ Z.
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Eventually Markov

A sequence a ∈ X̃ is eventually Markov at time p ∈ Z if there exists
N = N(x, p) such that for all n ≥ N

fol(ap−n...ap) = fol(ap−N ...ap).

The eventually Markov part X̃M ⊂ X̃ is the set of a ∈ X̃ which are
eventually Markov at all times p ∈ Z.

Theorem (Hofbauer, 1979; Buzzi, 2010)

The natural projection π̂ from X̂ to the subshift X̃ defined by

π̂ : α ∈ X̂ 7→ a ∈ X̃

with an the last symbol of the block αn for all n ∈ Z, is well defined and
is a Borel isomorphism from X̂ to X̃M .
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Observe: X̂f is the empty set!

Proposition

Let X̃ be the natural extension of a one-sided subshift X+. If there
exists a point x ∈ X̃ that is eventually Markov at any time p ∈ Z, then
there exists a periodic point in X+.

Corollary

If X+ is an infinite minimal subshift, then the eventually Markov part of
X̃ is empty.

Consequence

I If X+ is infinite minimal then the isomorphism π̂ : X̂ → X̃M is a
map from the empty set to the empty set.
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Paths starting with a block of length one

One-sided Markov shift

Given a Markov diagram D of a subshift X the corresponding one-sided
Markov shift is

X̂+ = {α ∈ V N
D : for all p ∈ N αp → αp+1 on D and |α0| = 1}.

Projection

Let π̂+ denote the continuous projection defined by

π̂+ : α ∈ X̂+ 7→ a ∈ X+

with an the last symbol of the block αn for all n ∈ N.
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Another isomorphism

Theorem

Let X+ be a one-sided subshift such that L(X+) = L(X̃). Then the
map

π̂+ : X̂+ → X+

is a bi-continuous isomorphism.

Remarks

I If L(X+) = L(X̃), then given a block B ∈ L(X+) there exists a
finite path on D starting with a block of length one that projects to
B.

I All paths leading into the same vertex have the same ”futures.”
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Questions

I What else can these diagrams can tell us about the structures of
such systems?

I Can invariant measures be represented?

I Can we detect unique ergodicity or minimality?

I Are the vertex labelings on a Buzzi Markov diagram unique up to a
permutation of symbols?

I How does the Buzzi Markov diagram of a β-shift relate to the Buzzi
Markov diagram of one of its factors.

I Given a factor of a β-shift that is not a β-shift, can we construct its
Buzzi Markov diagram and use it to find its unique measure of
maximal entropy?
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Thank you!
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