Markov diagrams for some non-Markovian systems

Kathleen Carroll and Karl Petersen

University of North Carolina at Chapel Hill

Automata Theory and Symbolic Dynamics Workshop June 5, 2013

DQC

Background

- Hofbauer (1979) used Markov diagrams to determine maximal measures of piecewise monotonic increasing transformations on the interval.
- In 1997 Buzzi extended Hofbauer's construction to arbitrary smooth interval maps, and to any subshift in 2010.

э

SOA

What do we mean by non-Markovian?

イロン イロン イヨン イヨン

= 990

What do we mean by non-Markovian?

We say a system is non-Markovian if the system has long-range order and infinite memory.

= nar

∃ ► < ∃ ►</p>

What do we mean by non-Markovian?

We say a system is non-Markovian if the system has long-range order and infinite memory.

Objective:

- 1. Describe the construction of the Buzzi Markov diagrams of Sturmian systems.
- 2. Discuss some properties of the constructed diagrams.

A 3 1

Notation

Let \mathcal{A} be a finite *alphabet*. The *full* \mathcal{A} -*shift* is the collection of all bi-infinite sequences of symbols from \mathcal{A} . If \mathcal{A} has n elements

$$\Sigma(\mathcal{A}) = \Sigma_n = \mathcal{A}^{\mathbb{Z}} = \{ x = (x_i)_{i \in \mathbb{Z}} : x_i \in \mathcal{A} \text{ for all } i \in \mathbb{Z} \}.$$

The one-sided full A-shift is the collection of all infinite sequences of symbols from A and is denoted

$$\Sigma(\mathcal{A})^+ = \Sigma_n^+ = \mathcal{A}^{\mathbb{N}} = \{ x = (x_i)_{i \in \mathbb{N}} : x_i \in \mathcal{A} \text{ for all } i \in \mathbb{N} \}.$$

The shift transformation is $\sigma: \Sigma(\mathcal{A}) \to \Sigma(\mathcal{A})$ and $\Sigma^+(\mathcal{A}) \to \Sigma^+(\mathcal{A})$ defined by

$$(\sigma x)_i = x_{i+1}$$
 for all i .

The pair (Σ_n, σ) is called the *n*-shift dynamical system.

A 3 1

A subshift is a pair (X, σ) (or (X^+, σ)), where $X \subset \Sigma_n$ (or $X^+ \subset \Sigma_n^+$) is a nonempty, closed, shift-invariant set.

Let X be a subset of a full shift, and let $\mathcal{L}_n(X)$ denote the set of all *n*-blocks that occur in points in X. The *language of* X is the collection

$$\mathcal{L}(X) = \bigcup_{n=0}^{\infty} \mathcal{L}_n(X).$$

A 3 1

Definitions

Let $\mathcal A$ be a finite alphabet with $X^+\subset \mathcal A^{\mathbb N}$ a one-sided subshift.

Natural extension

The *natural extension* of X^+ is

$$\tilde{X} = \{ x \in \mathcal{A}^{\mathbb{Z}} : \text{ for all } p \in \mathbb{Z} \ x_p x_{p+1} \dots \in X^+ \}.$$

nac

문 문

Definitions

Let $\mathcal A$ be a finite alphabet with $X^+\subset \mathcal A^{\mathbb N}$ a one-sided subshift.

Natural extension

The *natural extension* of X^+ is

$$\tilde{X} = \{ x \in \mathcal{A}^{\mathbb{Z}} : \text{ for all } p \in \mathbb{Z} \ x_p x_{p+1} \dots \in X^+ \}.$$

• Let
$$a^{(n)} = a_0^{(n)} a_1^{(n)} a_2^{(n)} a_3^{(n)} \dots$$
 be points in X^+ .

- Define $b^{(n)} = 0^{\infty} . a^{(n)}$.
- Set $x_n(a^{(n)}) = \sigma^n b^{(n)}$.
- $(x_n(a^{(n)}))$ is a sequence of two-sided sequences.

4 3 b

Definitions

Let $\mathcal A$ be a finite alphabet with $X^+\subset \mathcal A^{\mathbb N}$ a one-sided subshift.

Natural extension

The *natural extension* of X^+ is

$$\tilde{X} = \{ x \in \mathcal{A}^{\mathbb{Z}} : \text{ for all } p \in \mathbb{Z} \ x_p x_{p+1} \dots \in X^+ \}.$$

• Let
$$a^{(n)} = a_0^{(n)} a_1^{(n)} a_2^{(n)} a_3^{(n)} \dots$$
 be points in X^+ .

• Define $b^{(n)} = 0^{\infty} . a^{(n)}$.

• Set
$$x_n(a^{(n)}) = \sigma^n b^{(n)}$$

• $(x_n(a^{(n)}))$ is a sequence of two-sided sequences.

Proposition

Let X^+ and $(x_n(a^{(n)}))$ be as described. Then \tilde{X} is the set of limit points of all $(x_n(a^{(n)}))$, $a^{(n)} \in X^+$ for all $n \ge 0$.

nan

Corollary

 $\mathcal{L}(X^+) = \mathcal{L}(\tilde{X})$ if and only if for every block B in $\mathcal{L}(X^+)$ and for all $n \ge 0$ there exists $a^{(n)} \in X^+$ such that B appears in $a^{(n)}$ starting at position n. In particular, if X^+ is minimal, then $\mathcal{L}(X^+) = \mathcal{L}(\tilde{X})$.

-∢ ≣ ▶

Corollary

 $\mathcal{L}(X^+) = \mathcal{L}(\tilde{X})$ if and only if for every block B in $\mathcal{L}(X^+)$ and for all $n \ge 0$ there exists $a^{(n)} \in X^+$ such that B appears in $a^{(n)}$ starting at position n. In particular, if X^+ is minimal, then $\mathcal{L}(X^+) = \mathcal{L}(\tilde{X})$.

Follower set

The *follower set* of a block $a_{-n}a_{-n+1}...a_0$ is

$$\{b_0b_1... \in X^+: \text{ there exists } b \in \tilde{X} \ b_{-n}...b_0 = a_{-n}...a_0\},\$$

denoted fol $(a_{-n}a_{-n+1}...a_0)$

Corollary

 $\mathcal{L}(X^+) = \mathcal{L}(\tilde{X})$ if and only if for every block B in $\mathcal{L}(X^+)$ and for all $n \ge 0$ there exists $a^{(n)} \in X^+$ such that B appears in $a^{(n)}$ starting at position n. In particular, if X^+ is minimal, then $\mathcal{L}(X^+) = \mathcal{L}(\tilde{X})$.

Follower set

The *follower set* of a block $a_{-n}a_{-n+1}...a_0$ is

$$\{b_0b_1... \in X^+ : \text{ there exists } b \in \tilde{X} \ b_{-n}...b_0 = a_{-n}...a_0\},\$$

denoted fol $(a_{-n}a_{-n+1}...a_0)$

Remark

This defines a "block-to-ray" follower set.

→ ∃ > ∃

Significant block

A significant block of \tilde{X} is $a_{-n}a_{-n+1}...a_0$ such that

$$fol(a_{-n}a_{-n+1}...a_0) \subsetneq fol(a_{-n+1}a_{-n+2}...a_0).$$

< ∃ >

-

E • 9 Q (?

Significant block

A significant block of \tilde{X} is $a_{-n}a_{-n+1}...a_0$ such that

$$\operatorname{fol}(a_{-n}a_{-n+1}...a_0) \subsetneq \operatorname{fol}(a_{-n+1}a_{-n+2}...a_0).$$

Significant form

The significant form of $a_{-n}a_{-n+1}...a_0$ is

$$\operatorname{sig}(a_{-n}...a_0) = a_{-k}...a_0$$

where $k \leq n$ is maximum such that $a_{-k}...a_0$ is significant.

→ ∃ > ∃

The Buzzi Markov diagram

Buzzi Markov diagram (1997)

The Buzzi Markov diagram \mathcal{D} of a subshift X is the oriented graph whose vertices $V_{\mathcal{D}}$ are the significant blocks of \tilde{X} and whose arrows are defined by

$$a_{-n}...a_0 \rightarrow b_{-m}...b_0 \iff b_{-m}...b_0 = \operatorname{sig}(a_{-n}...a_0b_0)$$

and $a_{-n}...a_0b_0$ is in the language of \tilde{X} .

Sturmian sequence

Complexity function

Let u be a sequence or bisequence. The *complexity function* of u, denoted p_u , maps n to the number of blocks of length n that appear in u.

Sturmian sequence

Complexity function

Let u be a sequence or bisequence. The *complexity function* of u, denoted p_u , maps n to the number of blocks of length n that appear in u.

Sturmian

A sequence u is called *Sturmian* if it satisfies the following equivalent conditions:

- 1. u has complexity $p_u(n) = n + 1$ (Coven and Hedlund, 1973).
- 2. u is an irrational rotational sequence (Hedlund and Morse, 1940).
- 3. u is balanced and aperiodic.

Sturmian systems

Sturmian system

Let u be a Sturmian sequence. Let X_u^+ be the closure of $\{\sigma^n(u):n\in\mathbb{N}\}.$ Then (X_u^+,σ) is the dynamical system associated with the Sturmian sequence u.

DQC

3

4 3 b

Sturmian systems

Sturmian system

Let u be a Sturmian sequence. Let X_u^+ be the closure of $\{\sigma^n(u): n \in \mathbb{N}\}$. Then (X_u^+, σ) is the dynamical system associated with the Sturmian sequence u.

Remark

• Sturmian systems are minimal, so $\mathcal{L}(X_u^+) = \mathcal{L}(\tilde{X}_u)$.

→ ∃ > ∃

Properties of Sturmian systems

Left special block

Let u be a Sturmian sequence u. The unique block of length n that can be extended to the left in two different ways is called a *left special block*, denoted $L_n(u)$.

4 3 b

э

Properties of Sturmian systems

Left special block

Let u be a Sturmian sequence u. The unique block of length n that can be extended to the left in two different ways is called a *left special block*, denoted $L_n(u)$.

Left special sequence

The sequence l(u) which has the $L_n(u)$'s as prefixes is called the *left special sequence* or *characteristic word* of X_u^+ .

Properties of Sturmian systems

Left special block

Let u be a Sturmian sequence u. The unique block of length n that can be extended to the left in two different ways is called a *left special block*, denoted $L_n(u)$.

Left special sequence

The sequence l(u) which has the $L_n(u)$'s as prefixes is called the *left special sequence* or *characteristic word* of X_u^+ .

Right special block

The unique block of length n that can be extended to the right in two different ways is called a *right special block*, and is denoted $R_n(u)$. The block $R_n(u)$ is precisely the reverse of $L_n(u)$

() <) <)
 () <)
 () <)
 () <)
</p>

Buzzi Markov diagram of a Sturmian system

Theorem

Let X_u^+ be a one-sided Sturmian system, with $l = l_1 l_2 l_3 \dots$ the left special sequence of X_u^+ . The Buzzi Markov Diagram of X_u^+ is the directed graph with vertices 0,1, $0L_n$, and $1L_n$, $n \ge 1$, and whose arrows are defined by

1. $0 \rightarrow 1$, $0 \rightarrow 00$, and $1 \rightarrow 10$ if $l_1 = 0$, and $1 \rightarrow 0$, $1 \rightarrow 11$, and $0 \rightarrow 01$ if $l_1 = 1$,

2.
$$0L_n \to 0L_{n+1}$$
, $1L_n \to 1L_{n+1}$,

3. If xL_n and wL_m , $n \ge m$, are consecutive right special blocks

•
$$xL_n \to wL_{m+1}$$
 if $x \neq w$

• $xL_n \to \operatorname{sig}(wL_m y)$, $y \neq l_{m+1}$, if x = w.

Buzzi Markov diagram of a Sturmian system

Example

The Fibonacci sequence, f=0100101001001001001..., is the fixed point of the Fibonacci substitution $\phi:0\mapsto 01$

 $1\mapsto 0.$

- ▶ The Fibonacci sequence is Sturmian.
- The left special sequence of X_f^+ is f.

Buzzi Markov diagram of a Sturmian system

Example

The Fibonacci sequence, f = 0100101001001001001..., is the fixed point of the Fibonacci substitution $\phi: 0 \mapsto 01$

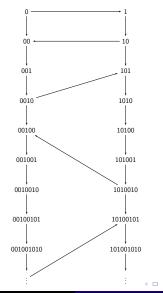
 $1\mapsto 0.$

- ▶ The Fibonacci sequence is Sturmian.
- The left special sequence of X_f^+ is f.

Significant blocks

0, 1, 00, **10**, 001, 101, **0010**, 1010, 00100, 10100, 001001, 101001, ...

The Buzzi Markov diagram of X_f^+



< ∃ >

P

2

Paths on the Buzzi Markov diagram

Markov shift

Given a Buzzi Markov diagram ${\mathcal D}$ of a subshift X the corresponding Markov shift is

$$\hat{X} = \{ \alpha \in V_{\mathcal{D}}^{\mathbb{Z}} : \text{ for all } p \in \mathbb{Z} \ \alpha_p \to \alpha_{p+1} \text{ on } \mathcal{D} \}.$$

Natural Projection

Let $\hat{\pi}$ denote the natural continuous projection defined by

$$\hat{\pi}: \alpha \in \hat{X} \mapsto a \in \tilde{X}$$

with a_n the last symbol of the block α_n for all $n \in \mathbb{Z}$.

Eventually Markov

A sequence $a\in X$ is eventually Markov at time $p\in \mathbb{Z}$ if there exists N=N(x,p) such that for all $n\geq N$

$$\operatorname{fol}(a_{p-n}...a_p) = \operatorname{fol}(a_{p-N}...a_p).$$

The eventually Markov part $\tilde{X}_M \subset \tilde{X}$ is the set of $a \in \tilde{X}$ which are eventually Markov at all times $p \in \mathbb{Z}$.

э

Eventually Markov

A sequence $a\in X$ is eventually Markov at time $p\in \mathbb{Z}$ if there exists N=N(x,p) such that for all $n\geq N$

$$\operatorname{fol}(a_{p-n}...a_p) = \operatorname{fol}(a_{p-N}...a_p).$$

The eventually Markov part $\tilde{X}_M \subset \tilde{X}$ is the set of $a \in \tilde{X}$ which are eventually Markov at all times $p \in \mathbb{Z}$.

Theorem (Hofbauer, 1979; Buzzi, 2010)

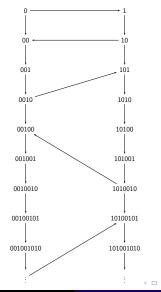
The natural projection $\hat{\pi}$ from \hat{X} to the subshift \tilde{X} defined by

$$\hat{\pi}: \alpha \in \hat{X} \mapsto a \in \tilde{X}$$

with a_n the last symbol of the block α_n for all $n \in \mathbb{Z}$, is well defined and is a Borel isomorphism from \hat{X} to \tilde{X}_M .

DQC

Buzzi Markov diagram of X_f^+



< ∃ >

=

2

Observe: $\hat{X_f}$ is the empty set!

< 🗇 🕨

문어 귀 문어

9 Q (?

Ξ.

Observe: \hat{X}_f is the empty set!

Proposition

Let \tilde{X} be the natural extension of a one-sided subshift X^+ . If there exists a point $x \in \tilde{X}$ that is eventually Markov at any time $p \in \mathbb{Z}$, then there exists a periodic point in X^+ .

э

Observe: \hat{X}_f is the empty set!

Proposition

Let \tilde{X} be the natural extension of a one-sided subshift X^+ . If there exists a point $x \in \tilde{X}$ that is eventually Markov at any time $p \in \mathbb{Z}$, then there exists a periodic point in X^+ .

Corollary

If X^+ is an infinite minimal subshift, then the eventually Markov part of \tilde{X} is empty.

Observe: \hat{X}_f is the empty set!

Proposition

Let \tilde{X} be the natural extension of a one-sided subshift X^+ . If there exists a point $x \in \tilde{X}$ that is eventually Markov at any time $p \in \mathbb{Z}$, then there exists a periodic point in X^+ .

Corollary

If X^+ is an infinite minimal subshift, then the eventually Markov part of \tilde{X} is empty.

Consequence

• If X^+ is infinite minimal then the isomorphism $\hat{\pi} : \hat{X} \to \tilde{X}_M$ is a map from the empty set to the empty set.

Paths starting with a block of length one

One-sided Markov shift

Given a Markov diagram ${\mathcal D}$ of a subshift X the corresponding one-sided Markov shift is

$$\hat{X}^+ = \{ \alpha \in V_{\mathcal{D}}^{\mathbb{N}} : \text{ for all } p \in \mathbb{N} \ \alpha_p \to \alpha_{p+1} \text{ on } \mathcal{D} \text{ and } |\alpha_0| = 1 \}.$$

Projection

Let $\hat{\pi}^+$ denote the continuous projection defined by

$$\hat{\pi}^+: \alpha \in \hat{X}^+ \mapsto a \in X^+$$

with a_n the last symbol of the block α_n for all $n \in \mathbb{N}$.

Another isomorphism

Theorem

Let X^+ be a one-sided subshift such that $\mathcal{L}(X^+)=\mathcal{L}(\tilde{X}).$ Then the map

$$\hat{\pi}^+: \hat{X}^+ \to X^+$$

is a bi-continuous isomorphism.

문어 문

Another isomorphism

Theorem

Let X^+ be a one-sided subshift such that $\mathcal{L}(X^+)=\mathcal{L}(\tilde{X}).$ Then the map

$$\hat{\tau}^+: \hat{X}^+ \to X^+$$

is a bi-continuous isomorphism.

Remarks

- If L(X⁺) = L(X̃), then given a block B ∈ L(X⁺) there exists a finite path on D starting with a block of length one that projects to B.
- ► All paths leading into the same vertex have the same "futures."

Questions

- What else can these diagrams can tell us about the structures of such systems?
 - Can invariant measures be represented?
 - Can we detect unique ergodicity or minimality?
- Are the vertex labelings on a Buzzi Markov diagram unique up to a permutation of symbols?
- How does the Buzzi Markov diagram of a β-shift relate to the Buzzi Markov diagram of one of its factors.
 - Given a factor of a β-shift that is not a β-shift, can we construct its Buzzi Markov diagram and use it to find its unique measure of maximal entropy?

Thank you!

≡ ∽ へ (~

<ロ> <同> <同> < 回> < 回>