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‘OIL’IGOPOLY EXPLORATION:  
WHY SMALLER PRODUCERS EXPLORE MORE 

ABSTRACT:  The ‘oil’igopoly theory of oil production with fixed reserves predicts that firms 
with larger reserves will extract a larger quantity but a smaller proportion of their reserves. While 
this theory is supported when looking at production data, it is not supported when looking at 
changes in proven reserves data. This paper develops a theory of ‘oil’igopolistic oil exploration 
to explain trends observed in the world oil industry over the past fifty years. The ‘oil’igopoly 
theory of oil exploration predicts that firms with smaller proven reserves will do more 
exploration than firms with larger proven reserves, as well as reproducing the predictions of the 
‘oil’igopoly oil production model. These predictions are consistent with international production 
and reserve data in the post-World War II era. 
 
 

1. INTRODUCTION 

The theory of ‘oil’igopoly, developed by Loury (1986) and Polasky (1992), has the simple 

yet elegant prediction that firms holding larger reserves of oil tend to produce larger quantities of 

oil but a smaller proportion of their reserves in each period. Polasky found this prediction to be 

empirically supported when looking at a cross-section of oil producing nations. An important 

implication of this theory is that smaller firms will exhaust their reserves at a faster rate than 

larger firms. However, our own analysis indicates that a very curious thing has happened in the 

post World War II era. While larger oil producers have indeed been producing both larger 

quantities and a smaller proportion of their reserves in each year, it is smaller producers who 

have tended to see the largest growth rates in proven reserves. Since smaller producers use up 

their existing proven reserves at a faster rate than larger producers, the data suggest that smaller 

producers have made more discoveries of oil over these five decades than have larger producers. 

But why would smaller producers tend to do more exploration? While the Loury-Polasky theory 

of ‘oil’igopoly can explain the pattern of production relative to proven reserves, it cannot explain 

why smaller firms would do more exploration since there is no exploration in those models. 

This paper develops an ‘oil’ogopolist theory of oil exploration to answer this question. To be 
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successful, such a theory has to reproduce the Loury-Polasky result that larger firms produce a 

smaller proportion of their proven reserves and to explain why smaller firms do more 

exploration. We differentiate between proven reserves and unproven reserves. Proven reserves 

are those reserves for which exploration has already demonstrated the existence of an 

economically viable deposit. Unproven reserves are those reserves that the geologic indicators 

suggest exist, but which have not yet been discovered, or transformed into proven reserves, 

through exploration. Since exploration costs are on the order of millions of dollars for a well 

drilled on land to tens of millions of dollars for a well drilled at sea, exploration adds an 

important element to the theory of ‘oil’ogopoly.1  

The model we develop is a discrete time dynamic game in which heterogeneous firms in each 

period choose the amount of production and exploration. The crucial strategic function played by 

exploration in this model stems from the fact that to be produced, reserves must first be 

discovered. Since discovery costs are sunk once exploration occurs, firms gain a strategic 

advantage vis-à-vis their competitors by transferring reserves from an unproven to a proven 

status. Having lowered its marginal costs of future production, a firm has a credible threat to its 

rivals that it will produce a larger quantity in the next period. Hence, this threat reduces the 

future output of one’s rivals. The strategic advantage conveyed by exploration is similar to that 

obtained from an increase in plant capacity, or R&D research to lower production costs in the 

industrial organization literature (e.g., Dixit 1980, 1986, Fudenberg and Tirole 1994, Bulow, 

Geanakopolis and Klemperer 1985). This strategic aspect of exploration leads us to model the 

game using subgame perfection as the equilibrium concept. This differs from the Loury-Polasky 

theory of ‘oil’igopoly, which solved only for the Nash equilibrium. Eswaran and Lewis (1986) 

                                                 
1 The American Petroleum Institute reports that average drilling costs in the United States to be around seven 
hundred thousand dollars for an onshore well and over twelve million dollars for an offshore well in 2002. 
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showed that when firms possess well defined property rights, as in the Loury-Polasky model, that 

the two equilibrium concepts produced similar results.2 However, as exploration belongs to the 

class of strategic investment models, subgame perfection is the appropriate equilibrium concept. 

Thus, the game is solved by backwards induction. Given that an exhaustible resource market 

exhausts the resource in the final period, this means that the game must be at least three periods 

long in order to see the strategic effects. 

Like the Loury-Polasky theory of ‘oil’igopoly, we find that firms holding larger proven 

reserves extract a larger quantity but a smaller proportion of their reserves in each period prior to 

exhaustion. We also find that this relationship holds for unproven reserves. The reason for these 

results is similar to the logic in the Loury-Polasky model. Larger firms produce a smaller 

proportion of their reserves because an increase in the output, which depresses the price, has a 

greater effect on their revenues than for a smaller producer. Here, this effect is amplified by the 

strategic advantages of holding larger reserves.  

We find smaller firms doing more exploration than larger firms for two reasons. First, larger 

firms already have a credible commitment device to signal to rivals that they will produce a 

larger quantity in subsequent periods, so they do not need to use exploration for this purpose. For 

example, the largest oil producer, Saudi Arabia, held proven reserves that would last between 

seventy and eighty years at its current production levels during this period. Second, because 

firms holding larger reserves also tend to be larger producers they bear more of the cost of 

increases in output since the price reduction affects a larger quantity for these firms.3 Thus larger 

firms not only do not need the additional reserves for a credible commitment, they also do not 

desire to hold larger levels of proven reserves. Thus, exploration is the primary instrument for 

                                                 
2 Levhari and Mirman (1980) and Reignam and Stokey (1985) show that the open loop and subgame perfect 
equilibria differ significantly when stocks of the resource are common property. 
3 This is similar to the argument that a monopolist will do less innovating (Nordhaus 1969). 
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gaining a strategic advantage of small firms, while constraints on production are the primary 

instrument for gaining a strategic advantage of larger firms. 

An important limitation of both the Loury-Polaksy model and the model we present is that 

firms face no uncertainty over their reserve holdings. Furthermore, we follow the Loury-Polasky 

assumption that firms do not face competition over their own reserves, whether proven or 

unproven. This assumption follows from evidence that most of the significant players in the 

world oil market are state-owned firms, which face little or no competition for access to the 

resource stocks within their own countries.4 An important implication of these assumptions is 

that we can abstract from informational issues associated with exploration.5 

This paper is closest in spirit to papers by Bulow and Geanakopolis (1983) and Hartwick and 

Sadorsky (1991). These papers were interested in the strategic effects from exploration from 

higher-cost stocks due to exploration’s role as a commitment device. In both papers, firms 

produced in only two periods. In Hartwick and Sadorsky, firms in the first period choose both the 

level of exploration and production, but in the second period firms only produce from their 

remaining proven reserves – they do no further exploration. Thus, in their model, first period 

exploration affects one’s rivals’ subsequent profits, but does not affect one’s rivals’ subsequent 

behaviour, since in the second period all firms simply produce what remains of proven reserves. 

In Bulow and Geanakopolis, in each period firms produced from lower cost reserves and from a 

higher cost backstop technology.6 Depletion of the lower cost reserves raised the future marginal 

costs of extraction from those reserves. However, the lower cost reserves were not exhausted in 
                                                 
4 Fourteen of the top twenty (and nine of the top ten) oil firms by reserve holdings in 2003 are state owned firms (“A 
Survey of Oil,” The Economist, April 30, 2005, p. 14). 
5 See Mason (1986), Isaac (1987), Polasky (1996), and Hendricks and Porter (1996) for models of information 
transmission in exploration. These models were developed with the U.S. system in mind, in which many firms 
compete for mineral rights. These models have focused on whether there is too little or too much exploration from 
an information gathering perspective and whether the timing of exploration has strategic information effects. 
6 A backstop technology is one that is available in large quantities at a constant marginal cost that exceeds the 
marginal cost of the exhaustible resource.  
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their model. Thus, current production affected subsequent behaviour as well as subsequent 

profits, but they did not consider the conditions under which firms would fully exhaust the 

resource. In our model, current exploration affects one’s rivals’ subsequent profits and their 

subsequent behaviour, since firms still get to choose how much to extract and explore and how 

much to leave for future extraction and exploration in each subsequent period. We also derive the 

conditions that must hold in order for a firm to rationally exhaust one or both types of its 

reserves. Like Hartwick and Sadorsky and Bulow and Geanakopolis, we find that firms behave 

strategically by over- exploring relative to an open loop benchmark. However, we also find that 

firms postpone some exploration to the final period in which they are active, since the proven 

reserves have lower marginal costs of extraction (e.g., Hartwick 1977).  

The remainder of the paper is organized as follows. In Section 2, we briefly present some 

stylized facts about the world oil market over the period 1952-2002. Section 3 presents the basic 

equilibrium results of the model, beginning with what happens when there are two periods left 

before oil is exhausted. Section 4 derives the main results regarding strategic exploration by 

moving back one more period and asking how firms behave at that point, given the effects on 

rivals’ subsequent behavior. It is in this section that we show why smaller firms are the ones 

most likely to be doing the most exploration. Section 5 concludes. 

2. THE POST-WORLD WAR II OIL INDUSTRY 

Figure 1 shows the world annual crude oil production and estimated proven reserves, 

measured on the left-hand-scale, and the annual real price and the reserves-to-production ratio, 

measured on the right-hand-scale, for the period 1952-2002. Both production and reserves were 

increasing rapidly during the period from the 1950s to the 1970s, doubling every dozen years or 

so. The two price shocks in the 1970s caused the increase in production to slow considerably 
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relative to the pervious couple of decades. Reserves, however, have continued to increase, 

although the doubling time has dropped to almost twenty-five years.  

 

FIGURE 1: WORLD PRODUCTION, RESERVES, AND PRICES 1952-2002 
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Notes:—The reserves data is from the Oil & Gas Journal. The Production data is from the Energy Information Agency (1960-
2002) and from World Oil for other years. The price data is from Energy Information Agency.  

 

The reserves-to-production ratio, which measures the number of years current reserves would 

last at current production levels if there were no new exploration, rose rapidly in the 1950s, then 

with slack prices in the 1960s, hovered around thirty years worth of reserves, only to rise again 

to around forty years after the two price shocks of the 1970s. Note that while production 

increased five-fold over this period, proven reserves increased ten-fold.7  

Figure 2 shows the Hirschman-Herfindahl concentration index for proven reserves and for 

annual production over the same five decades. By 2002, the concentration index for production 

dropped to less than twenty percent of its 1952 level. During this same period, the concentration 

index for reserves dropped to approximately sixty percent of its 1952 level. While this trend is 

                                                 
7 We do not plot these, but both world per capita income and the population continued to rise post-1980 at similar 
rates as in the pre-1980s period. Thus the amount of oil consumed per capita declined after 1980 and the amount of 
oil consumed per dollar of GDP declined after 1970. 
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most pronounced in the 1950s and 1960s, for production the trend has continued to decline even 

in the 1980s and 1990s. The concentration index for reserves is also much more sporadic, as one 

might expect, with a large spike in the early 1970s with the discoveries in the North Sea and 

Alaska, and another large spike in the late 1980s with discoveries in the Middle East. Thus both 

reserves and production are becoming less concentrated. While the trends in figure 1 could have 

been occurred in competitive markets, the trends in figure 2 suggest that an oligopoly 

explanation is in order. 

 
FIGURE 2: HIRSCHMAN-HERFINDAHL INDEXES OF CONCENTRATION IN CRUDE OIL 
PRODUCTION AND RESERVES, 1952-2002 
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Notes:—The reserves data is from the Oil & Gas Journal. The Production data is from the Energy Information Agency and from 
World Oil. The Hirschman-Herfindahl Index is calculated as Ht = Σi=1

n (100siτ)2, where siτ = qit/Qt is the share of world production 
by country i in period t for production, and sit = Rit/Rt is the share of world oil proven reserves held by country i in period t. 
 
 

Figure 3 shows the relationship between production and reserves using average data by 

country for the period 1952-2002. While the analysis in figure 3 is a much simpler version of the 

analysis conducted by Polasky (1992), it supports his conclusion that larger firms produce larger 

quantities, but a smaller proportion of their reserves, as predicted by the theory of ‘oil’igopoly. 
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FIGURE 3: PRODUCTION AND PROVEN RESERVES, COUNTRY AVERAGES 1952-2002 
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Notes:—Reserves data is from the Oil & Gas Journal. Production data is from the Energy Information Agency and from World 
Oil. The ordinary least squares regression line is ln(q) = −2.30 (0.27) + 0.88 (0.04) ln(R) (standard errors in parentheses). The 
regression uses country averages for 82 countries over the period 1952-2002. The adjusted R2 is 0.85.  

 

FIGURE 4: ENDING PROVEN RESERVES AND INITIAL PROVEN RESERVES, 1952-2002 
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Notes:—Reserves data is from the Oil & Gas Journal. The number of years between initial reserves and ending reserves differs 
across countries. Countries above the 45° line have ending reserves greater than or equal to beginning reserves.  

 

Figure 4 shows that countries with smaller initial reserves tended to have higher rates of 

growth in their proven reserves over the period 1952-2002. While there is greater variation in the 

countries with smaller reserves, the percentage changes in reserves is highest for countries that 

initially had smaller reserves. To our knowledge, this fact has not been observed in the literature 
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prior to this paper. The empirical observation in figure 4 is the main stylized fact that this paper 

seeks to explain. Figure 4, coupled with the results shown in figure 3 that the industry is 

becoming less concentrated and the result in figure 1 that the reserves-to-production ratio has 

been rising are all puzzles that cannot be explained by the existing theory of ‘oil’igopoly, since it 

ignores exploration. We now turn to the model. 

3. ‘Oil’igopoly Exploration and Production 

At the beginning of each period t, let nt firms hold oil reserves. Proven reserves held by the ith 

firm at the beginning of period t are denoted as Rit; unproven reserves are denoted as Sit. The 

stocks of proven and unproven reserves for all firms are common knowledge. In equilibrium, a 

subset mt ≤ nt of the firms will have exhausted their lower cost proven reserves, and only hold 

unproven reserves. In each period, rt firms exhaust their proven reserves, and st firms exhaust 

their total reserves. Thus, the number of firms holding each type of reserves evolves according to  

(1)  nt+1 = nt − st   and   mt+1 = mt − rt,  t = 1, 2,… 

We shall assume that all firms exhaust their reserves by period three (i.e., m4 = n4 = 0), since this 

is a sufficient number of periods in which to observe the effects that we describe. Thus, Σt=1
3  rt 

= m1 and Σt=1
3  st = n1. For a given allocation of reserves of each type, the number of firms 

exhausting each type is endogenous. However, rather than deriving the equilibrium number of 

firms that exhaust each type of reserves in each period, we shall fix the numbers {rt, st}t=1,2,3, and 

derive the conditions on the reserve holdings that have to be satisfied in equilibrium in order for 

this to occur. 

Each firm chooses a level of output qit and a level of reserve additions wit in each period, t = 

1,2,3. The model is deterministic, so each unit of exploration yields a fixed quantity of reserve 
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additions. Given the production and reserve additions choices made by firms in period t, the 

stocks of proven and unproven reserves held by the ith firm evolve according to 

(2)  Rit+1 = Rit + wit − qit,          i = 1,…,mt, t = 1,2,3, 

  Sit+1 = Sit − wit,       i = 1,…,nt, t = 1,2,3. 

Initial reserves held by firm i are denoted as Ri1 and Si1, respectively. Demand is assumed to be 

time invariant, although this is not crucial to the analysis. The price at time t is given by Pt = 

P(Qt), where Qt = Σnt i=1 qit. The demand function P(Q) has a finite choke price, 0 < P(0) < ∞, and 

is downward sloping, P′(Q) < 0. Extraction costs at time t are cit(qit), where ci′t > 0 and cit′′ ≥ 0. 

Thus the only grade differential in the stocks is the difference between proven and unproven 

reserves.8 Discovery costs are given by dit(wit), where dit(0) = di′t(0) = 0, di′t(w) > 0 and dit′′(w) > 0 

for wit > 0.9 We also assume that P(0) > ci′t(0) + di′t(0), so that physical exhaustion of both types 

of stocks is ensured. Below, we shall also assume that the demand and cost functions satisfy 

more stringent conditions to obtain existence, uniqueness, and comparative statics results. Profits 

and costs one period in the future are discounted at a common rate β ∈ (0,1). Both extraction and 

discovery costs are indexed by period to allow for an exogenous rate of technological change.10 

Thus, ci′t(x) ≥ ci′τ(x) and di′t(x) ≥ diτ(x), for τ > t and x ≥ 0.  

Since the subgame perfect equilibrium requires the derivation of a value function for future 

returns for each firm, we begin by considering the problem faced by firm i in period two, given 

that it holds reserves Ri2 and Si2, where Ri2 + Si2 > 0, and given that at least some firms rationally 

                                                 
8 See Swierzbinskin and Mendelsohn (1989) for a model of grade differentials under competitive extraction and 
exploration. 
9 Note that these properties of the discovery cost function are satisfied when di(wit) = Awit

ζ, for A > 0 and ζ > 1. 
10 While we focus on the exploration and production patterns in figures 1-4, the increasing production in the face of 
decreasing prices in the pre-1970 and mid-1980s to late 1990s suggests that technological change played an 
important role in this market. See Smulders and de Nooji (2003) for a model of endogenous technological change in 
exhaustible resource markets.  
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exhaust in period three, and no firms exhaust beyond period three. Below, we shall derive the 

conditions on the reserves that have to hold in order for all firms to exhaust by period three. Let 

R2 and S2 denote the vectors of stocks {R12,R22,…,Rm22} and {S12,S22,…,Sn22}, respectively, at the 

beginning of period two by all firms, and let R-it and S-it denote the sum of reserves held by firms 

other than firm i at the beginning of period t. Thus, firm i’s problem in period two (P2), taking 

the choices of all other firms as fixed, is to choose extraction and production {qi2, qi3, wi2, wi3} to 

maximize 

P2      Vi2 = P(Q2)qi2 − ci2(qi2) − di2(wi2) + β[P(Q3)qi3 − ci3(qi3) − di3(wi3)], 

subject to the following constraints: 

(3)  qi3 ≥  0,        i = 1,…,n2, 

(4)  Ri2 + wi2 + wi3 − qi2 − qi3  ≥  0,     i = 1,…,n2, 

(5)  Si2 − wi2 − wi3  ≥  0,       i = 1,…,n2, 

(6)  wi2, wi3 ≥  0,        i = 1,…,n2, 

(7)  Ri2 + wi2 − qi2  ≥  0,       i = 1,…,n2. 

Constraints (3) and (4) are feasibility constraints on production due to the exhaustible nature of 

the resource. Constraints (5) and (6) are feasibility constraints on exploration. Constraint (7) 

ensures that extraction in period two is feasible. Let αi, λi, μi, θit, and φi denote the Kuhn-Tucker 

multipliers for the constraints (3)-(7), respectively.  

Since the model is only interesting if some firms produce in each period, as there can be no 

strategic effects if this is not true, we assume that n1 > s1 + s2, so that some firms produce for 

three periods. The first-order necessary conditions for maximization of P2 include (3)-(7) and  

(8)  
∂Vi2

∂qi2
  =  P(Q2) + P′(Q2)qi2 − ci′2(qi2) − λi  − φi  =  0,   i = 1,…,n2, 
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(9)  
∂Vi2

∂qi3
  =  β[P(Q3) + P′(Q3)qi3 − ci′3(qi3)] − λi + αi  =  0,  i = 1,…,n2, 

(10)  
∂Vi2

∂wi2
  =  −di′2(wi2) + λi − μi + φi + θi2 = 0,     i = 1,…,n2, 

(11)  
∂Vi2

∂wi3
  =  −βdi′3(wi3) + λi − μi  + θi3  = 0,     i = 1,…,n2. 

The marginal value of the proven reserves Ri2 to firm i at the beginning of period two is λi + φi 

and the marginal value of unproven reserves to firm i at the beginning of period two is μi. The 

conditions (8) and (9) have the usual interpretation that the marginal profit from extraction in 

each period is equal to the marginal value of the remaining resource stock. Equations (10) and 

(11) reveal that a similar dynamic is at work with unproven reserves. 

It follows immediately that λi > 0 and μi > 0. Suppose not. Suppose that either Rit > 0, Sit > 0, 

or both are positive in period 3 when production has shut down. Since P(0) > ci′t(0) + di′t(0), it is 

profitable for a firm holding positive stocks to extract the last unit of either type of stock, which 

is a contradiction. Thus λi > 0 and μi > 0, which implies that the constraints (4) and (5) hold with 

equality. Therefore, qi3 = Ri2 + Si2 − qi2 for any firm that continues to produce in period three, and 

qi2 = Ri2 + Si2 for those firms that exhaust in period two. However, the constraints (3), (6) and (7) 

may or may not be binding along the equilibrium path. As will become clear, constraint (7) is 

crucial to the story we tell about strategic behaviour. 

Using (9) to eliminate the shadow value of proved reserves, λi, from (8) yields 

(12)  π1 
i2(qi2*,Q-i2)  − βπ1 

i3(Ri2 + Si2 − qi2*,Q-i3)  = φi + αi   i = 1,…,n2, 

where π1 
it(qit*,Q-it) ≡ P(Qt) + P′(Qt)qit* − ci′t(qit*) is the equilibrium marginal profit from extraction 

in period t, given that discovery costs are sunk and holding the output of all other firms, Q-it, 

constant. When the constraints (3) and (7) do not bind, so that the multipliers φi and αi are each 
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zero, (12) shows that that marginal extraction profits are equal in present value, which is 

Hotelling’s (1931) rule for an oligopolist (e.g., Salant 1976, Loury 1986, or Polasky 1992). 

When φi > 0 but the constraint (3) is not binding, so that the extraction constraint (7) is binding 

but αi =0, this forces the Hotelling condition to reflect the increase in extraction costs due to 

having to extract only from unproven reserves in period three, so that π1 
i2(qi2*,Q-i2) > βπ1 

i3(Ri2 + Si2 

− qi2*,Q-i3). This means that the value of the marginal reserves declines in present value when (7) 

is binding. In contrast, when the firm chooses not to produce in period three (αi > 0), the 

condition (12) implies that π1 
i2(Ri2 + Si2,Q-i2) > βπ1 

i3(0,Q-i3), so the firm does better by exhausting 

in period two than by taking some reserves into period three. 

Similarly, (10) and (11) provide an intertemporal optimization condition for reserve 

additions: 

(13)  di′2(wi2*) − βdi′3(Si2 − wi2*) = φi − θi2 − θi3,    i = 1,…,n2. 

We have substituted in from constraint (5) to write this entirely in terms of period two 

exploration. When the period two production constraint (7) is not binding and exploration is 

positive in each period, (13) says that the present value of marginal exploration costs is equal 

across time. When φi > 0, so that the period two production constraint is binding, then the present 

value of marginal exploration costs is declining over time. This occurs for the same reason that 

marginal profits in (12) are rising at less than the rate of interest when (7) binds.   

Our first result, which follows the assumption that di′t(0) = 0, is that exploration is positive in 

both periods two and three, so long as production occurs in both periods: 

Proposition 1: If firm i has positive quantities of unproven reserves at the beginning of period 

two and rationally exhausts in three periods, it will explore in both periods two and three. 
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Proof: This proposition is proven in the appendix.  

Proposition 1 shows two things. First, when marginal exploration costs are increasing in the 

rate of exploration, that the firm will spread exploration across all periods. Second, because 

unproven reserves have higher marginal costs to extract than unproven reserves, each firm will 

produce from the high cost reserves in the final period in which it operates, even given the 

strategic advantages of early transformation into proven reserves. This was assumed not to occur 

in Hartwick and Sadorsky (1993), but proposition 1 shows that if the firm is given the choice of 

exploring in the last period, it will do so.  

Proposition 1 implies that (13) can be written as 

(14)  di′2(wi2*) − βdi′3(Si2 − wi2*) = φi,      i = 1,…,n2. 

Thus, marginal exploration costs are constant in present value when the constraint (7) is not 

binding, and fall in present value when the constraint (7) is binding. In what follows, we use the 

fact that when the constraint (7) is not binding, (14) implies that there exists a value of wi2* =  

wi2(Si2) such that 

(15)  di′2(wi2(Si2)) ≡ βdi′3(Si2 − wi2(Si2)). 

Note that 0 < wi′2(Si2) < 1. Thus, as Si2 increases, wi2(Si2) increases, but at a rate less than one.  

While proposition 1 eliminates all equilibria with zero exploration in either period two or 

three, there remain three possible outcomes for a firm that produces in one or both the two 

remaining periods, depending upon whether or not the constraint (7) binds if production occurs 

in period three, and on whether or not the firm produces in period three:  

Case A: firm i explores and extracts in periods 2 and 3 and the constraint (7) does not bind.  

Case B: firm i explores and extracts in periods 2 and 3 but the constraint (7) binds.  
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Case C: firm i exhausts in period 2. 

Define 

(16)  ψi(qi2)  ≡  π1 
i2(qi2, Q-i2)  −  di′2(qi2 − Ri2)  

− β[π1 
i3(Ri2 + Si2 − qi2, Q-i3)  − di′3(Ri2 + Si2 − qi2)], 

where wi2 = qi2 − Ri2, and qi3 = wi3 = Ri2 + Si2 − qi2 from (4) and (7). Thus, from (8)-(11), ψi(qi2*) 

= 0 when (7) is binding. Similarly, let: 

(17)  ηi(qi2)  ≡  π1 
i2(qi2, Q-i2)  −  di′2(wi2(Si2))  

− β[π1 
i3(Ri2 + Si2 − qi2, Q-i3)  − di′3(Si2 − wi2(Si2))], 

where wi2 = wi2(Si2) is given by (15), and qi3 = Ri2 + Si2 − qi2 from (4). Thus, ηi(qi2*) = 0 when (7) 

is not binding. The difference between (16) and (17) is the value of wi2. When φi = 0, wi2* = 

wi2(Si2), but when the constraint (7) is binding, φi > 0 implies that wi2* > wi2(Si2), since (14) 

implies that wi2* is increasing in φi. When qi2* = Ri2 + wi2(Si2), ψi(qi2*) is identical to ηi(qi2*). 

We proceed by first deriving and interpreting the conditions that hold for a particular firm 

that produces in periods 2 and 3 to have a unique best response to what the remaining industry is 

doing. Then we find a set of conditions on the demand and cost function that ensures that the 

best-reply mappings of all firms contracts to a unique equilibrium.  

Proposition 2: Holding constant the actions of all other firms, if firm i produces in both periods 

2 and 3, then firm i’s unique choice of extraction and exploration exists satisfying ψi(qi2*) = 0 and 

(14) when (7) binds, if and only if, 

(18)  ψi(Ri2 + Si2) < 0 and ψi(Ri2 + wi2(Si2)) > 0; 

and satisfying ηi(qi2*) = 0 and (15) when (7) does not bind, if and only if,  
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(19)  ηi(Ri2 + wi2(Si2)) < 0 and ηi(0) > 0. 

Proof: (i) Uniqueness: Since uniqueness is easiest to prove, we begin with it. When (7) binds, so 

that (16) and (14) define the equilibrium, we see from (16) that 

(20)  ψi′(qi2) =  π11
i2(qi2, Q-i2)  −  di′2′(qi2 − Ri2)  

+ β[π11
i3(Ri2 + Si2 − qi2, Q-i3)  − di′3′(Ri2 + Si2 − qi2)]  < 0, 

where π11
it (qit, Q-it) ≡ 2Pt′ + qitPt′′ − ci′t′ < 0 in order for second order conditions to hold. Similarly, 

we see that the left-hand-side of (14) is strictly increasing in qi2: 

(21)  di′2′(qi2 − Ri2) + βdi′3′(Ri2 + Si2 − qi2)  > 0. 

Thus, if ψi(qi2*) = 0 for some feasible qi2* and (14) holds, then qi2* is unique.  

The proof for (17) proceeds similarly. Differentiating (17) with respect to qi2 yields 

(22)  ηi′(qi2) =  π11
i2(qi2, Q-i2)  + βπ11

i3(Ri2 + Si2 − qi2, Q-i3) < 0. 

Thus, if ηi(qi2*) = 0 for some feasible qi2* and (15) holds, then qi2* is unique.  

(ii) Existence (sufficiency): In the case where (7) is binding, (16) and (14) describe the 

equilibrium. Feasibility requires that  

(23)  Ri2 + Si2 > qi2* = Ri2 + wi2*  >  Ri2 + wi2(Si2). 

Combining (23) with the monotonicity condition (20), we see that the two conditions in (18) are 

sufficient to prove the existence of an equilibrium when (7) binds. 

When (7) does not bind, the corresponding feasibility condition is 

(24)  0 < qi2* < Ri2 + wi2(Si2). 

Thus, by the monotonicity condition (22), we obtain (19) as the sufficient conditions to ensure a 

unique equilibrium.  
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(iii) Existence (necessity): To prove that the conditions in (18) are necessary to obtain an 

equilibrium when the constraint (7) binds, suppose one of the conditions is not binding. Suppose 

that ψi(Ri2 + Si2) > ψi(Ri2 + wi2(Si2)) > 0. Then by (20), no feasible value of qi2* exists that satisfies 

ψi(qi2*) = 0. Similarly, when (7) does not bind, if ηi(0) > ηi(Ri2 + wi2(Si2)) > 0, no feasible value of 

qi2* exists such that ηi(qi2*) = 0. This completes the proof. 

The economic interpretation of the conditions (18) and (19) are straightforward. Let us 

consider (18) first. The condition ψi(Ri2 + Si2) < 0 can be written as 

(25)  π1 
i2(Ri2 + Si2, Q-i2)  −  di′2(Si2)  <  β[π1 

i3(0, Q-i3)  − di′3(0)]. 

This means that it is profitable for firm i to carry some of its production forward to period three. 

Since this condition forms the boundary between the cases where production ends in period two 

and continues to period three, we summarize it in this proposition: 

Proposition 3: If, and only if, ψi(Ri2 + Si2) < 0, firm i will produce in period three, rather than 

ending production in period two.  

Proof: (i) Sufficiency: If the inequality in (25) holds, then firm i will hold some of its reserves 

for production in period three. (ii) Necessity: If the inequality in (25) is reversed, then firm i 

prefers to exhaust in period two, rather than holding some reserves to period three. This 

completes the proof. 

Note that the boundary created by ψi(Ri2 + Si2) = 0 intersects the boundary created by ψi(Ri2 + 

wi2(Si2)) = 0 at Si2 = 0. This occurs because when Si2 = 0, wi2(0) = 0.  

The condition ψi(Ri2 + wi2(Si2)) > 0 in (18) can be written as (using (15)) 

(26)  π1 
i2(Ri2 + wi2(Si2), Q-i2)  >  βπ1 

i3(Si2 − wi2(Si2), Q-i3), 
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which means that marginal profits in period two exceed those in period three in present value 

when production is qi2* = Ri2 + wi2(Si2). It is this condition that causes the firm to increase its 

production from unproven reserves. When the constraint (7) is not binding (φi = 0), the relevant 

conditions are (15) and (19). The condition ψi(Ri2 + wi2(Si2)) < 0 is simply the reverse of the 

inequality in (26). Since the present value of marginal profits in period two is less than the 

present value of marginal profits in period three when all reserve additions are produced, the firm 

wishes to keep some of these reserve additions for use in period three.  

Finally, the condition ηi(0) > 0 can be written as 

(27)  π1 
i2(0, Q-i2)  >  βπ1 

i3(Ri2 + Si2, Q-i3). 

This condition says that the firm wishes to have some production in period two, rather than 

holding all production until period three. 

It should be clear by now that the condition ψi(Ri2+wi2(Si2)) = ηi(Ri2+wi2(Si2)) = 0 serves to 

form a boundary separating the cases where (7) is and is not binding in Ri2 and Si2 space. Totally 

differentiating this condition and solving for the slope of this locus yields 

  
⎪
⎪
⎪∂Ri2

∂Si2

 
ψi(Ri2+wi2(Si2)) = 0  =  

wi′2π11
i2 − (1 − wi′2)βπ11

i3

−π11
i2 , 

where π11
it  < 0 by second order conditions. In general, this expression is ambiguous in sign. 

However, in the special case of linear demand, constant marginal extraction cost, and quadratic 

exploration costs, the slope of the ψi(Ri2+wi2(Si2)) = 0 locus is zero. Since ∂ψi(Ri2+wi2(Si2))/∂Ri2 = 

π11
i2 < 0, an increase in Ri2 causes the constraint (7) not to bind. This locus is shown in Figure 5 as 

the boundary where qi2* ≤ Ri2 + wi2(Si2). 
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Figure 5: Equilibrium Exploration and Exhaustion for Firm i 

 
Notes—The areas A and B correspond to the areas where the constraint (7) is not binding and is binding, respectively, and firm i 
produces in both periods 2 and 3. Firms with reserves in area C rationally exhaust in period two or earlier. A firm holding 
reserves in area D would prefer to exhaust in period 4 or later. 
 

The next result derives the boundaries for where qi4* ≥ 0. 

Proposition 4: There exist a set of values {Ri2, Si2} such that firm i optimally ends production in 

period three.  

Proof: See the Appendix. 

Propositions 1-4 establish the conditions under firm i has a unique equilibrium in which 

production and exploration are non-negative in periods 2 and possibly period three, given the 

stocks R2 and S2, and the equilibrium actions of other firms. The next proposition shows the 

conditions under which a Nash equilibrium among the set of active firms exists and is unique. 

Proposition 5: The Nash equilibrium exists and is unique so long as the following conditions 

hold: 

(28)  P′(Qt) + qitP′′(Qt)  <  0,       i = 1,…,n2,and  t = 2, 3, 

(29)  cit′′(qit) − P′(Qt)  >  0,     i = 1,…,n2, and t = 2,3. 

Si2 

Ri2 

A 

B 

 

qi3* = 0

qi4* ≥ 0 

 

C 

D 

qi4* = 0 
qi3* ≥ 0

ψi(Ri2 + Si2) = 0 

ψi(Ri2 + wi2(Si2)) = 0
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Proof: Existence (Vives 1999, theorem 2.7). To prove existence, it is necessary to prove that the 

best-reply functions are strongly decreasing in the output of the other firms. Conditions (28) and 

(29) ensure that the slope of the best-reply functions ρi2(Q-i2) are strongly decreasing: 

  ρi′2(Q-i2)  =  −
⎝
⎜
⎛

⎠
⎟
⎞P2′ + qi2P2′′ + β(P3′ + qi3P3′′)

 P2′ + qi2P2′′ + β(P3′ + qi3P3′′) − (ci2′′ − P2′) − β(ci3′′ − P3′)
. 

Both the numerator and the denominator of the term in brackets are negative, so the whole 

expression is negative. Therefore, under assumptions (28) and (29), the best-response functions 

are strictly decreasing. Given this, Vives (1999, theorem 2.7) implies that an equilibrium exists. 

Uniqueness. To prove uniqueness, it is necessary to also show that the best-response map ρ(⋅) ≡ 

{ρ12(Q−1),…,ρn22(Q−n2)} is a contraction. Vives (1999, theorem 2.8) proves that if the slopes of 

the best-reply functions are strongly decreasing in the output of the other firms and greater than 

−1 in value, then a unique equilibrium exists. Note that (28) and (29) imply that 

0 > P2′ + qi2P2′′ + β(P3′ + qi3P3′′)  >  P2′ + qi2P2′′ + β(P3′ + qi3P3′′) − (ci2′′ − P2′) − β(ci3′′ − P3′) 

Dividing through by −1 times the right-hand-side reveals that ρi′2(Q-i2) > −1. Thus, the condition 

on the best-response functions is met. This completes the proof. 

The conditions (28) and (29) are often called the Hahn conditions, after Hahn (1962). These 

conditions also imply that the Nash equilibrium in the period two game is stable in the sense of 

Cournot.  

4. STRATEGIC EXPLORATION AND EXTRACTION 

Let Vi2*(R2,S2) denote the maximized value of problem P2. To obtain strategic effects in 

exploration, it is necessary for the equilibrium values qi2*, qi3*, wi2*, and wi3* to depend upon the 
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initial reserves of the other firms. That is, if qit* = qit*(Ri2, Si2) and wit* = wit*(Ri2, Si2) only (i.e., the 

solutions to the maximization problem P2 depend only own reserves), then there is no strategic 

effect from production and exploration in period one, since qit* and wit* are not affected by the 

resource stocks of the other firm (Eswaran and Lewis 1986).  

We begin by showing the effect on firm i’s second period profits of an increase in Ri2 and Si2. 

Second period profits for a firm producing in both periods 2 and 3 may be written as 

(30)         Vi2*(R2,S2)  =  P(Q2)qi2* − ci2(qi2*) − di2(wi2*) + β[P(Q3)qi3* − ci3(qi3*) − di3(wi3*)]. 

Note that qi3* = Ri2 + Si2 − qi2* for all firms that produce in period three, but for firms for whom (7) 

does not bind, wi2* = wi2(Si2), while for firms for whom (7) binds, wi2* = qi2* − Ri2 > wi2(Si2). 

Differentiating second period profits with respect to Ri2 yields 

(31)  
∂Vi2*
∂Ri2

  =  β(P3 + P′3qi3* − ci′3) + (P′2qi2* − βP′3qi3*)∑
j≠i

 
∂qj2*
∂Ri2

,            (case A) 

if (7) does not bind, and 

(32)    
∂Vi2*
∂Ri2

  =  di′2 + β(P3 + P′3qi3* − ci′3 − di′3) + (P′2qi2* − βP′3qi3*)∑
j≠i

 
∂qj2*
∂Ri2

            (case B) 

if (7) does bind. Differentiating the second period profit function with respect to Si2 yields 

(33)  
∂Vi2*
∂Si2

  =  β(P3 + P′3qi3* − ci′3 − di′3) + (P′2qi2* − βP′3qi3*)∑
j≠i

 
∂qj2*
∂Si2

,     (case A & B) 

for both the case where (7) binds and where it does not bind. The first set of terms on the right-

hand-side of (31)-(33) are the direct effects to the firm of having more of that type of stock in 

period two. By the definitions of the Nash equilibrium given by (18) and (19), these terms are 

each positive in sign in equilibrium. The term (P′2qi2* − βP′3qi3*) is negative in sign, since this term 

corresponds to the derivative of firm i’s profits with respect to output by firm j, and the firms’ 
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goods are substitutes (cf. Bulow et al. 1985).  

Similarly, the value function for a firm that ends production in period two is 

(34)         Vi2*(R2,S2)  =  P(Q2)(Ri2 + Si2) − ci2(Ri2 + Si2) − di2(Si2).  

Differentiating (34) with respect to Ri2 and Si2 yields: 

(35)  
∂Vi2*
∂Ri2

 = P2 + P′2qi2* − ci2′  + P′2qi2*∑
j≠i

 
∂qj2*
∂Ri2

,     (case C) 

(36)  
∂Vi2*
∂Si2

 = P2 + P′2qi2* − ci2′  − di2′   + P′2qi2*∑
j≠i

 
∂qj2*
∂Si2

    (case C). 

By the chain rule, the sign of the effects of Ri2 and Si2 on qj2* in (31)-(33) and (35)-(36) can be 

written as 

(37)  ∑
j≠i

 
∂qj2*
∂Ri2

  =  
⎝
⎜
⎛

⎠
⎟
⎞∂qi2*

∂Ri2
∑
j≠i

 
∂qj2*
∂qi2

 and ∑
j≠i

 
∂qj2*
∂Si2

  =  
⎝
⎜
⎛

⎠
⎟
⎞∂qi2*

∂Si2
∑
j≠i

 
∂qj2*
∂qi2

. 

The sign of these expressions depend on the slopes of the best-response functions of all other 

firms to firm i’s output level. Given equations (28) and (29), the goods are strategic substitutes in 

the sense of Bulow et al. (1985). However, we need these to be negative in net given the 

interactions among the set of all other firms.11 Proposition 6 shows that this is so.  

Proposition 6: The sum of the ∂qj2*/∂qi2 are negative for firms that produce in period two and 

three, and zero for firms that end production in period two. 

Proof: Write the total differential of the jth firm’s first order condition on the choice of qj2* as 

                                                 
11 The best response functions qi2* = ρi(Q-i2) describe how firm i responds to changes in the output of all other firms. 
To see how all other firms simultaneously respond to a change in firm i’s output, we need to solve the system of 
equations H-idq-i2 = bdqi2 to obtain dq-i2 = H−1

-i bdqi2, where dq-i2 = {dq12,…,dqi-12,dqi+12,…,dqn2} is the vector of dqj2 
for j≠i, H-i is the Jacobian matrix for the first-order conditions for all firms other than firm i with diagonal elements 
aj equal to the second order conditions on qj2 and off diagonal elements bj in row j (where these are defined in the 
text below), and b = {b1,…,bi−1,bi+1,…,bn2} is the vector of the cross-effects on marginal profits.  



 23

(38)  ajdqj2* + bjΣk≠i,j dqk2*  =  −bjdqi2, j ≠ i, 

where aj ≡ 2P2′ + P2′′qj2* − c′j2′ + β(2P3′ + P3′′qj3* − c′j3′) < 0 for a firm for whom (7) is not binding and 

aj ≡ 2P2′ + P2′′qj2* − c′j2′ − d′j2′ + β(2P3′ + P3′′qj3* − c′j3′ − d′j3′) < 0 for a firm for whom (7) is binding, 

and bj = P2′ + P2′′qj2* + β(P3′ + P3′′qj3*) < 0 for all firms that continue to produce in period three. 

These expressions are each negative by the Hahn conditions. We can rewrite (38) as 

  dqj2* + 
⎝⎜
⎛

⎠⎟
⎞bj

aj − bj  dQ-i2  =  −
⎝⎜
⎛

⎠⎟
⎞bj

aj − bj 
dqi2. 

Summing over all j≠i and solving for how the aggregate output by other firms changes as qi2 

increases yields 

  
dQ-i2

dqi2
  =  −

⎝
⎜
⎛

⎠
⎟
⎞1 + ∑

j≠i
 

bj

aj − bj 

-1
 
 
∑
j≠i

 
bj

aj − bj 
. 

Thus  

(39)  
∂qj2*
∂qi2

  =  −
⎝⎜
⎛

⎠⎟
⎞bj

aj − bj 
⎝
⎜
⎛

⎠
⎟
⎞1 + ∑

k≠i
 

bk

ak − bk 

-1
 
 
  <  0, 

since bj/(aj − bj) > 0 for all j. This completes the proof for those firms that produce into period 

three. For firms that end production in period two, qj2* = Rj2 + Sj2. Thus, these firms do not 

respond at all to changes in qi2. This completes the proof. 

Next, for each firm that produces in periods 2 or 3, we show that its own second period 

output is increasing in its own second period proven reserves.  

Proposition 7: Second period output is increasing in second period proven reserves for firms 

that produce in periods 2 and 3. 

Proof: Write the total differential of a firm that produces in both periods 2 and 3 first-order 
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condition in its own output qi2* as 

(40)  aidqi2* + biΣj≠i dqj2*  =  −cidRi2 − eidSi2, 

where ai and bi are defined as above, and where ci = ei ≡ −β(2P3′ + P3′′qi3* − c′i3′) > 0 for firms for 

whom (7) is not binding, and ci = d′i2′ − β(2P3′ + P3′′qi3* − c′i3′ − d′i3′) > 0 and ei = −β(2P3′ + P3′′qi3* − 

c′i3′ − d′i3′) > 0 for a firm for whom (7) is binding. For the case where Ri2 changes, (40) implies 

(41)  
∂qi2*
∂Ri2

  =  
−ci

 
⎝⎜
⎜⎛

⎠⎟
⎟⎞ai + bi∑

j≠i
 
∂qj2*
∂qi2

  = 
⎝⎜
⎛

⎠⎟
⎞ci

−(ai − bi)
 

⎝
⎜
⎛

⎠
⎟
⎞1 + ∑

j≠i
 

bj

aj − bj

ai

ai − bi
 + ∑

j≠i
 

bj

aj − bj

 ≡ ciΓi > 0, 

where Γi is −(ai − bi)−1 times the second expression in brackets in the second equality. Γi is 

positive since ai − bi < 0 and both ai/(ai − bi) > 0 and bi/(ai − bi) > 0 for all i. Thus, ∂qi2*/∂Ri2 = ciΓi 

> 0 and by an equivalent process, it can be shown that ∂qi2*/∂Si2 = eiΓi > 0. This completes the 

proof for firms that produce in both periods 2 and 3.  

For firms that produce in only period two, qi2* = Ri2 + Si2, so that ∂qi2*/∂Ri2 = ∂qi2*/∂Si2 = 1.  This 

completes the proof. 

Note that when (7) is not binding, ∂qi2*/∂Ri2 = ∂qi2*/∂Si2, and when (7) is binding, ∂qi2*/∂Ri2 − 

∂qi2*/∂Si2 = (ci − ei)Γi = d′i2′Γi > 0. These results affect whether or not exploration gives the firm a 

strategic advantage, since an increase in first period exploration, wi1, increases Ri2 and decreases 

Si2.  

Next, we state a sufficient condition for ∂qi2*/∂Ri2 < 1 and ∂qi2*/∂Si2 < 1 for firms that produce 

in periods 2 and 3: 

Corollary to Proposition 7: For firms that produce in both periods 2 and 3, a sufficient 

condition for ∂qi2*/∂Ri2 < 1 is that ai − bi + ci < 0, and a sufficient condition for  ∂qi2*/∂Si2 < 1 is 
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that ai − bi + ei < 0. 

Proof: We shall show that ai − bi + ci < 0 is sufficient for ∂qi2*/∂Ri2 < 1. Observe that 

  ai + ci + (ai − bi + ci) ∑
j≠i

  
bj

aj − bj
  <  0 

if ai − bi + ci < 0, since ai + ci < 0 and Σj≠ibj/(aj − bj) > 0. This expression can be rearranged to 

show that the right-hand-side of (41) is less than 1. This completes the proof. 

The condition that ai − bi + ci < 0 can be rewritten as  

  P2′ − c′i2′ − d′i2′  <  β(P3′ + P3′′qj3*). 

The left-hand-side of this inequality is the Hahn condition that demand intersect the marginal 

cost from above. The right-hand-side is the effect other firms impose upon the firm by increasing 

output. Observe that with linear demand and exponential cost functions, this condition is 

satisfied, although in general it may not be satisfied. However, this condition is apparently 

satisfied in the world oil market, since the data in figure 3 supports the Loury-Polasky 

hypothesis, which in the strategic model, requires the conditions of the Corollary to hold. 

The terms in (31)-(33) and (35)-(36) involving the summations from (37) are the strategic 

effects of holding higher level of reserves. In an open loop equilibrium, where the other firms 

observe Ri1 and Si1, but not Ri2 and Si2, we see that the effect of holding stocks in the second 

period is positive. Since the terms involving the summations from (37) are together positive in 

sign, we see that in the subgame perfect equilibrium, firms have an incentive to hold greater 

levels of both types of reserves than in the open loop equilibrium. 

Now we are ready to consider the problem faced by firm i in period one. The objective of a 

firm in period one is to choose output qi1 and exploration wi1 to maximize 
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P1  
 

max
{qi1 wi1}

 Vi1 = P(Q1)qi1 − ci1(qi1) − di1(wi1) + βVi2*(R2,S2),  i = 1,…,n1, 

where the value function Vi2*(R2,S2) is given by (30) or (34), depending on whether or not the 

firm produces in period three. Firm i’s choices are subject to the constraints  

(42)  wi1 ≤ Si1, 

(43)  wi1 ≥ 0,  

(44)  qi1  ≤  Ri1 + wi1,  

which are analogous to the constraints (5)-(7), respectively. 

Let γi, δi and κi denote the value of Lagrange multiplier on the constraints (42)-(44), 

respectively. By the envelope theorem, the solution to P1 for a firm that produces in periods 2 

and 3 when (7) is not binding must satisfy (42)-(44) and: 

(45)  
∂Vi1

∂qi1
  =  P(Q1) + P′(Q1)qi1* − ci′1(qi1*) − κi  − β2[P(Q3) + P′(Q3)qi3* − ci′3(qi3*)] 

− β[ ]P′(Q2)qi2* − βP′(Q3)qi3*
⎝⎜
⎜⎛

⎠⎟
⎟⎞∑

j≠i
 
∂qj2*
∂qi2 ⎝

⎜
⎛

⎠
⎟
⎞∂qi2*

∂Ri2
 =  0,       i = 1,…,m1, (case A) 

(46) 
∂Vi1

∂wi1
 =  −di′1(wi1*) + κi + δi − γi  − βdi′2(wi2*) 

+ β[ ]P′(Q2)qi2* − βP′(Q3)qi3*
⎝⎜
⎜⎛

⎠⎟
⎟⎞∑

j≠i
 
∂qj2*
∂qi2 ⎝

⎜
⎛

⎠
⎟
⎞∂qi2*

∂Ri2
 − 

∂qi2*
∂Si2

  =  0,   i = 1,…,n1 (case A).  

The strategic effects appear in the terms of the second lines in (45) and (46), which have been 

written using (31)-(33). These are strategic effects because firm i chooses the stocks it takes into 

period two, knowing the effect this has upon the exploration and output choices of other firms in 

subsequent periods. Absent these effects, the equilibrium is identical to the open loop 

equilibrium (Eswaran and Lewis 1986), which solves the expressions on the first lines of (45) 

and (46) set equal to zero.  
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An immediate result, which follows from Proposition 6, is the following: 

Proposition 8: Firms that hold reserves in sufficient quantities that they will produce in both 

periods 2 and 3 and for whom the constraint (7) is not binding (class A firms) have a strategic 

reason to restrict output, but do not have a strategic reason to increase exploration. 

Proof: When (7) is not binding, (41) implies that ∂qi2*/∂Ri2 = ∂qi2*/∂Si2, so the strategic effect 

vanishes. Thus, there is no strategic effect from exploration. To see that the strategic effect 

decreases first period production, rewrite (45) as 

(45′)  P(Q1) + P′(Q1)qi1* − ci′1(qi1*) − κi  = β[P(Q2) + P′(Q2)qi2* − ci′2(qi2*)] 

      + β[ ]P′(Q2)qi2* − βP′(Q3)qi3*
⎝⎜
⎜⎛

⎠⎟
⎟⎞∑

j≠i
 
∂qj2*
∂qi2 ⎝

⎜
⎛

⎠
⎟
⎞∂qi2*

∂Ri2
. 

The expression on the left-hand-side is the marginal profit from period one production. The 

expression on the right hand side is the marginal profit from second period production plus (the 

term on the second line) the strategic effect of holding higher reserves in period three. As the 

strategic effect is in net positive in sign, the firm has a greater incentive to withhold production 

in the first period relative to the open loop equilibrium. This completes the proof.  

Next, consider the equivalent conditions for a firm for whom the constraint (7) is binding 

along the equilibrium path. The equivalent first-order conditions to (45) and (46) are 

(47)  P(Q1) + P′(Q1)qi1* − ci′1(qi1*) − κi  =  βd′i2 + β[P2 + P2′qi2* − ci′2 − di′2] 

+ β[ ]P′(Q2)qi2* − βP′(Q3)qi3*
⎝⎜
⎜⎛

⎠⎟
⎟⎞∑

j≠i
 
∂qj2*
∂qi2 ⎝

⎜
⎛

⎠
⎟
⎞∂qi2*

∂Ri2
,       i = 1,…,m1 (case B), 

(48) di′1(wi1*) − κi − δi + γi   =  βdi′2  

+ β[ ]P′(Q2)qi2* − βP′(Q3)qi3*
⎝⎜
⎜⎛

⎠⎟
⎟⎞∑

j≠i
 
∂qj2*
∂qi2 ⎝

⎜
⎛

⎠
⎟
⎞∂qi2*

∂Ri2
 − 

∂qi2*
∂Si2

,   i = 1,…,n1 (case B).  
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The next proposition summarizes the strategic effects for this type of firm: 

Proposition 9: Firms that hold reserves in sufficient quantities that they will produce in both 

periods 2 and 3, but for whom the constraint (7) is binding (class B firms) have both a strategic 

reason to restrict output and a strategic reason to increase exploration. 

Proof: The strategic interaction terms appear on the second lines of (47) and (48). Both are 

positive in sign by Propositions 6 and 7. This completes the proof. 

Thus, firms whose holdings of reserves are sufficient to get to period three but with positive 

quantities of proven reserves are able to exert strategic pressure on those firms with large enough 

reserves that they still have proven reserves at the end of period three. 

Next, consider a firm that exhausts its resource stock in period two. For this type of firm, the 

equivalent conditions for maximizing P1 are 

(49)  P(Q1) + P′(Q1)qi1* − ci′1(qi1*) − κi  =  β[P2 + P2′qi2* − ci′2] + βP′(Q2)qi2*
⎝⎜
⎜⎛

⎠⎟
⎟⎞∑

j≠i
 
∂qj2*
∂qi2 ⎝

⎜
⎛

⎠
⎟
⎞∂qi2*

∂Ri2
,  

(50)  di′1(wi1*) − κi − δi + γi  =  βdi′2 + βP′(Q2)qi2*
⎝⎜
⎜⎛

⎠⎟
⎟⎞∑

j≠i
 
∂qj2*
∂qi2 ⎝

⎜
⎛

⎠
⎟
⎞∂qi2*

∂Ri2
 − 

∂qi2*
∂Si2

,           (case C).  

Proposition 10: For a firm with sufficient reserves to produce in period two, but insufficient 

reserves to produce in period three, there will be a strategic effect from withholding production, 

but not one from increasing exploration.  

Proof: Recall that ∂qi2*/∂Ri2 = ∂qi2*/∂Si2 = 1 for firm that exhausts in period two, since qi2* = Ri2 + 

Si2. Thus, the strategic effect vanishes in the exploration equation, but remains in the production 

equation. This completes the proof.  

Propositions 8-10 suggest that only firms that exhaust their proven reserves in period two 

have a strategic incentive to explore for oil. Firms with sufficient reserves to have proven 
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reserves at the beginning of period three already have sufficient reserves to have a credible 

commitment that they will produce a large quantity in period three. Thus, they do not gain 

anything by exploring beyond the level that would occur in the open loop equilibrium.  

Now that we have seen the strategic effects, there remains but one task. That is to 

characterize the equilibrium in period one. We begin our analysis of the equilibrium in period 

one by ignoring the strategic effects and assuming that none of the constraints (42)-(44) binds. 

Then the choice of production given by (45), (47) or (49) says that marginal profits from 

extraction in period one are equated with the discounted value of additional proven reserves in 

period three. Thus, this is again a simple Hotelling result which implies that discounted marginal 

profits are equated across periods. Equations (46), (48) and (50) give a similar Hotelling result 

that discounted marginal costs of exploration are equal across periods. Obviously, the strategic 

effects alter the interpretation of these results, as will having any of the constraints (42)-(44) 

bind. 

Next, we characterize the equilibrium in period one by showing which constraints can be 

binding and which cannot. 

COROLLARY TO PROPOSITION 1: If Si1 > 0 and firm i produces for two or more periods, it will 

explore in every period.  

Proof: The proof appears in the appendix. 

Next, we show that if the constraint (44) is binding, so that firm i’s proven reserves in period 

two are zero, then firm i will not have positive proven reserves at the end of any subsequent 

period. 

PROPOSITION 11:  If a firm extracts all of its proven reserves in period one, it will not 

subsequently hold positive quantities of proven reserves. 
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Proof: By assumption, Ri2 = 0. Now, suppose that the conclusion does not follow. Then it must 

be that qi2* < wi2*, if the firm continues to produce to period three. (If the firm does not continue to 

produce in period three, then all reserves are exhausted in period two, which proves the 

proposition.) Thus  φi = 0, since (7) is not binding. Since the feasibility constraint (4) must bind, 

it requires that qi3* > wi3*. However, φi = 0 implies that wi2* solves (15), so that wi3* > wi2*. Therefore 

qi2* < wi2* < wi3* < qi3*. However φi = 0 also implies that qi2* solves (17), so that qi2* > qi3*. This is a 

contradiction, which completes the proof. 

These propositions eliminate all but three possible combinations of exploration activities for 

the n1 − s1 − s2 firms that produce in all three periods.12 We can conclude that so long as initial 

unproven reserves are positive, the firm explores in every subsequent period. Furthermore, for 

each period in which firm i takes some proven reserves into the next period, it extracts only from 

the lower cost proven reserves. Lastly, if proven reserves are exhausted prior to unproven 

reserves, then the firm will not rebuild these proven reserves in any subsequent period.  

5. Convergence in Reserves? 

This paper has shown that in an oligopolistic industry, exploration is likely to be higher than 

suggested by simple Cournot-Nash models. The reason for this is that an oligopolistic firm takes 

into account the strategic effect sinking exploration costs has on its rivals. Because of the 

homogeneous good being produced by the oligopolists, the goods are strategic substitutes, which 

means that an increase in exploration today lowers future production by rivals. 

Perhaps the most interesting conclusion from this study is that smaller firms – or at least 
                                                 
12 There are also s2 firms which only hold sufficient reserves to produce in period two (those who take reserves 
equivalent to the area C in Figure 3), and there are s1 firms whose reserve holdings are insufficient to even produce 
in period two. We show below that these firms’ choices cannot be influenced by the actions of the remaining firms, 
but those who take reserves into period two can affect the behavior of firms who continue to produce into period 
three. 
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those with smaller proven reserves – are those that will do more exploration, all else equal. As 

we argued above, the intuition behind this result is that firms with large proven reserves already 

have a credible commitment to produce large quantities. Also, because these firms are large 

producers they gain less from a reduction in costs because a large producer faces a larger 

reduction in price when it expands its output (e.g., Nordhaus 1969). Thus, smaller firms are those 

who do the most exploration. Furthermore, a firm with large proven reserves already has 

sufficient low cost reserves on hand to credibly increase its output.  

The data in figure 4 suggested that smaller firms tended to do more exploration. A simple test 

of this hypothesis is to regress the percentage change in reserves for each country against its 

initial reserves. The resulting “convergence” equation is: 

ln(RT,i) – ln(R0,i)
Ti

  = 
 

4.08
(0.51)

  − 
 

1.11
(0.24)

ln(R0,i)  i=1,…,99,   Adj.-R2 = 0.18. 

The standard errors are in parentheses. Ti is the number of years each country is observed in the 

data, and ln(RT,i) and ln(R0,i) are the log of ending and beginning reserves, respectively. This 

regression, coupled with the results reported in figures 2 and 4, supports the hypothesis that 

smaller countries do indeed explore more relative to the larger countries. 

Two final comments are in order. First, the correlations depicted in figures 3 and 4 show 

vastly different levels of precision. The standard error was around four percent of the magnitude 

of the slope coefficient for the production to reserves correlation while the standard error was 

nearer to twenty percent of the magnitude of the slope coefficient in the growth of reserves to 

initial reserves regression. We have not attempted to explain this variation. However, recent 

papers by Bohn and Deacon (2000) and by Sachs and Warner (2001) suggest that these 

differences may be attributable to institutional quality differences across countries. This would 
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show up more in exploration data than in production data simply because firms considering 

exploration have much longer planning horizons than firms making production decisions.  

Finally, we appear to be entering another cycle where there is much concern that the world is 

running out of oil. The so-called Hubbert date, named after the geologist who correctly predicted 

that oil production in the United States would begin to decline in the early 1970s, when world oil 

production is expected to begin to decline has been placed by some as to be occurring in the next 

year or two.13 Our model is both consistent and inconsistent with this view. If firms are over-

exploring relative to what they would do if they ignored the strategic effects they have upon their 

rivals’ output, then the current level of proved reserves may be higher relative to unproved 

reserves than would occur if firms ignored the strategic effects of exploration. However, this 

incentive only occurs with smaller firms. Larger producers do not have this incentive. Thus, 

there may still be large discoveries to be found in exactly the same countries as where large 

proven reserves currently exist. Those producers simply do not have an incentive to explore at 

this time. 

 

MATHEMATICAL APPENDIX 

Proof of Proposition 1 

This proposition is proven by the following three lemmas. In each case, it is assumed that the firm 

produces in period 3, which implies that αi = 0. 

LEMMA 1: With positive quantities of the unproven reserves, if there is zero exploration in some period, it 

will be in period two, not period three. 

Proof: Suppose not. Suppose that wi2 > 0 and θi3 > 0. Then, θi2 = 0 and wi3 = 0. From (10) and (11), we 

                                                 
13 See Campbell and Laherrere (1998) for a recent example of this view. 
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obtain that 

(A.1)  di′2(Si2) − φi = λi − μi < βdi′3(0). 

Since the firm is assumed to extract in the third period, it is not possible that wi2 = Si2 > 0 and φi > 0 both 

occur. Thus, let φi = 0. Then this equation implies that di′2(Si2)  = −θi3  < 0, which is a contradiction, since 

di′2(wi2) > 0 for wi2 > 0. 

Next, we prove that it is not possible for φi > 0 and θi2 > 0 simultaneously. 

LEMMA 2: If firm i extracts all of its proven reserves in period two, then it must also explore in period 

two. 

Proof: Suppose not. Suppose that φi > 0 and that θi2 > 0. Then θi2 > 0 implies that wi2 = 0, so that wi3 = Si2. 

Thus, (10) and (11) imply βdi′3(Si2) + φi + θi2 = 0, since di′2(0) = 0. This is contradiction since all three 

terms on the left side of this equation are positive. 

LEMMA 3: It is not possible for exploration to be zero in period two when the period two extraction 

constraint (6) is not binding. 

Proof: Suppose not. Suppose that θi2 > 0 and qi2 < Ri2 + wi2. These imply that wi2 = φi = 0. Thus wi3 = Si2 

by (5), and (11) implies that λi − μi = βdi′3(Si2), which is positive in sign. Thus, (10) implies that θi2 = 

−βdi′3(Si2) < 0, which contradicts θi2 > 0. 

Lemma 3 completes the proof of Proposition 1.  

Proof of Proposition 4 

Firm i rationally ends production in period three only if  

(A2)  τi(Ri2, Si2)  =   π1 
i3(qi3*, Q-i2) − di′3(wi3*) − β π1 

i4(0, 0)  ≥  0.   

(i) Suppose that qi2* < Ri2 + wi2*. Then qi3* = Ri2 + Si2 − qi2*, and wi3* = Si2 − wi2*. Thus, let 

(A.3)  τi1(Ri2, Si2)  ≡  π1 
i3(Ri2 + Si2 − qi2*,Q-i2) − di′3(Si2 − wi2*) − βπ1 

i4(0, 0). 
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When Si2 = 0, the value of Ri2 = R
^
 such that τi1(R

^
, 0) = 0 must satisfy π1 

i3(R
^
 − qi3*, Q-i3) = βπ1 

i4(0, 0). It can 

be shown (cf. (41)) that 0 < ∂qi2*/∂Ri2 < 1. Thus, R
^

 − qi2* lies between zero and R
^
. Let R

−
 solve π1 

i2(R
−
, Q-i2) ≡ 

βπ1 
i3(0,Q-i3), which is the boundary given in Proposition 3 for ending production in period 2. Since R

^
 − qi2* 

is strictly positive, it follows that R
^
 > R

−
. Thus, in the region where Si2 = 0, there exists a set of values of 

Ri2 such that firm i wishes to exhaust in period three and follow the strategy outlined in proposition 2. It 

can also be shown that along the locus of points where τi1(Ri2, Si2) = 0, that 

(A.4)  ⎪⎪
⎪dRi2

dSi2

 
τi1(Ri2,Si2) = 0 =  − 

(1 − ∂qi2*/∂Si2)π1 
i3 − (1 − ∂wi2*/∂Si2)di3′′

(1 − ∂qi2*/∂Ri2)π1 
i3  < 0, 

Since 0 < ∂wi2*/∂Si2 < 1, and 0 < ∂qi2*/∂Si2 = ∂i2*/∂Ri2 < 1. 

(ii) Next, consider the case where qi2* = Ri2 + wi2*. Then wi3* = qi3* = Ri2 + Si2 − qi2*. In this case, let 

(A.5)  τi2(Ri2, Si2)  ≡  π1 
i3(Ri2 + Si2 − qi2*, Q-i3) − di′3(Ri2 + Si2 − qi2*) − βπ1 

i4(0, 0), 

where qi2* solves ψi(qi2*) = 0. In this case, the τi2(Ri2, Si2) loci is again downward sloping: 

(A.6)  ⎪⎪
⎪dRi2

dSi2

 
τi2(Ri2,Si2) = 0 =  − 

1 − ∂qi2*/∂Si2

1 − ∂qi2*/∂Ri2
  <  0, 

since 0 <  ∂qi2*/∂Si2 < ∂qi2*/∂Ri2 < 1.  

This implies that there exist values {Ri2, Si2} such that firm i wishes to produce in period three but not in 

period 4. When Ri2 = 0, the corresponding value of Si2 = S
^
 such that τi2(0, S

^
) = 0 must satisfy 

(A.7)  π1 
i3(S

^
 − qi2*, Q-i3) − di′3(S

^
  − qi2*)  =  βπ1 

i4(0, 0). 

Let S
−
 solve π1 

i2(S
−
, Q-i2) ≡ βπ1 

i3(0,Q-i3), which is the boundary given in Proposition 3 for ending production 

in period 2, Since 0 <  ∂qi2*/∂Si2 < 1, S
^
 − qi2* is strictly positive. This implies that in the region where Ri2 = 

0, that S
^
 > S

−
, which completes the proof. 

Proof of the Corollary to Proposition 1 



 35

The proof follows from lemmas 4 and 5: 

LEMMA 4: Zero exploration activity in the first period cannot be an equilibrium, unless Si1 = 0. 

Proof: Assume not. Suppose wi1 = 0 which implies that δi > 0. Then Si1 > 0 by assumption of positive 

initial unproven reserves and so γi = 0. Equation (46) and (48) become 

(A.8)  κi + δi + β
∂Vi2*
∂wi1

  = 0,  i = 1, 2. 

In this case, when wi1 = 0 the partial derivatives with respect to wi1 equal zero and we have κi + δi = 0. 

This is the contradiction since the sum of positive values of Lagrange multipliers cannot result in zero. 

This lemma is independent of whether or not the constraints (7) or (44) bind. 

LEMMA 5: If each firm lasts three periods, no firm exhausts all unproven reserves in the first period.  

Proof: Suppose not. Suppose wi1 = Si1 > 0, δi = 0, and γi > 0. It must follow that κi = 0 and φi = 0, 

otherwise firm i has no extraction from proven reserves in later periods. Using Proposition 8, (46) 

becomes 

(A.9)  −di′(Si1) + β(λi  − μi) − γi  = 0. 

From (10) and (11), we see that λi − μi = −θi2 = −θi3. Thus, −(βθi + γi) = di′1(Si1) > 0, which is a 

contradiction.  
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