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Problem statements

Theoretical problem statement

Lift the Shannon/Parry Markov chain of a strongly connected
finite graph to the timed automata settings.
(aka MME of an irreducible SFT)

Practical problem statement

Generate quickly and as uniformly as possible runs of a timed
automaton.

◮ quickly: Step by step simulation as with a finite state Markov
Chain → Stochastic Process Over Runs (SPOR)

◮ ≈ uniformly → SPOR of maximal entropy + asymptotic
equipartition property.
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Motivations

Possible applications of (quasi) uniform random simulation

◮ Proportional model checking e.g. more than 65 per cent of
the runs satisfies a formula with probability of error ≤ 0.01.

◮ Fast (quasi) uniform generation in certain classes of
permutation e.g. alternating permutations.

Other possible applications

◮ Compression of timed words in a timed regular language.
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Outline

Stochastic process over runs

The maximal entropy SPOR

Conclusion
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Timed region graph

◮ Timed region graph (TRG)= Timed automaton without labels
on transitions, initial and final set of states = entry regions.
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A run of the timed region graph

(p, (0.4, 0))
0.3,δ
−−−→ (q, (0, 0.3))

0.2,δ′
−−−→ (p, (0.2, 0))

0.6,δ
−−−→ (q, (0.6, 0))
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A run of the timed region graph

(p, (0.4, 0))
0.3,δ
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x = 0.7 < 1 and y = 0.3 < 1, the guard is satisfied.
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A run of the timed region graph
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x is reset while the transition is fire, y = 0.3 is unchanged.
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A run of the timed region graph

(p, (0.4, 0))
0.3,δ
−−−→ (q, (0, 0.3))

0.2,δ′
−−−→ (p, (0.2, 0))

0.6,δ
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A run of the timed region graph
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10/31



A run of the timed region graph

(p, (0.4, 0))
0.3,δ
−−−→ (q, (0, 0.3))

0.2,δ′
−−−→ (p, (0.2, 0))

0.6,δ
−−−→ (q, (0.6, 0))
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x = 0.8 < 1 and y = 0.6 < 1, the guard is satisfied.
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A run of the timed region graph
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x is reset while the transition is fire, y = 0.6 is unchanged.

12/31



Measuring runs

An infinite transition system

◮ Dense set of states (q, ~x) ∈ S.

◮ Dense set of timed transitions (t, δ) ∈ A.

◮ Successor action of A on S: s ′ = s ⊲ α.

◮ Runs s0
α0−→ s1 · · ·

αn−1
−−−→ sn denoted by [s0, α0, · · · , αn−1]

Integrating over states, timed transition and runs

◮ Integrating over A:
∫
A
f (α)dα =

∑
δ∈∆

∫M

0 f (t, δ)dt.

◮ Integrating over S:
∫
S
f (s)ds =

∑
q∈Q

∫
rq
f (q, x)dx.

◮ Integration over runs:∫
S×An f ([s0, α0, · · · , αn−1])ds0dα0 · · · dαn−1 where f (⊥) = 0

◮ Vol(Runsn) =
∫
S×An 1[s0,α0,··· ,αn−1] 6=⊥ds0dα0 · · · dαn−1
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Stochastic Process Over Runs (SPOR)

A SPOR (Semi Markov)

◮ Initial density on states: p0 : S → R
+ such that∫

S
p0(s)ds = 1.

◮ Conditional density on timed transition A:
∫
A
p(α|s)dα = 1.

Induced probability density function (PDF) on Runsn

◮ Chain rules:
pn([s0, α0, · · · , αn−1]) = p0(s0)p(α0|s0) · · · p(αn−1|sn−1)

◮ Probability of a set of runs R ⊆ Runsn:

P(R) =

∫
R

pn(r)dr

◮ P(Runsn) = 1.
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An initial PDF on state
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Choosing a starting state according to the PDF.

(p, (0.4, 0))
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Choosing a timed transition (transition and delay).
(p, (0.4, 0))

0.3,δ
−−−→ (q, (0, 0.3))
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Choosing a timed transition (transition and delay).
(p, (0.4, 0))

0.3,δ
−−−→ (q, (0, 0.3))

0.2,δ′
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Choosing a timed transition (transition and delay).
(p, (0.4, 0))

0.3,δ
−−−→ (q, (0, 0.3))

0.2,δ′
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Problem statement, a recap

Problem statement (Unformal)

Describe a SPOR that generates as uniformly as possible runs in a
timed region graph?

pn(r) ≈
1

Vol(Runsn)
For “almost” every run r .

Solution based on entropy

Max entropy = as uniformly as possible.
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Outline

Stochastic process over runs

The maximal entropy SPOR

Conclusion
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Entropy
◮ Entropy of runs :

H = lim
n→+∞

1

n
log2(Vol(Runsn))

◮ Entropy of a SPOR Y :

h(Y ) = lim
n→+∞

−
1

n

∫
Runsn

pn(r) log2 pn(r)dr
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Entropy
◮ Entropy of runs :

H = lim
n→+∞

1

n
log2(Vol(Runsn))

◮ Entropy of a SPOR Y :

h(Y ) = lim
n→+∞

−
1

n

∫
Runsn

pn(r) log2 pn(r)dr ≤ H

Theorem 1
There exists Y ∗ of maximal entropy h(Y ∗) = H (described later).

Asymptotic equipartition property

Y ∗ satisfies − 1
n
log2 pn(r) → h(Y ∗) almost surely.

Solution of the problem

Most of the runs have a quasi uniform probability to occur:
pn(r) ≈ 2−nh(Y ∗) = 2−nH ≈ 1/Vol(Runsn).
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The operator Ψ of Asarin and Degorre (FORMATS 2009)

The operator Ψ (new notation)

For f : S → R, s ∈ S:

Ψf (s) =

∫
α∈A

f (s ⊲ α)dα with f (⊥) = 0

New functional space for Ψ: L2(S)

Square summable functions: f ∈ L2(S) if
∫
S
f 2(s)ds < +∞.

Scalar product: 〈f , g〉 =
∫
S
f (s)g(s)ds
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Spectral radius, and corresponding eigenvectors

Theorem (Adapted from (Asarin, Degorre, FORMATS 2009) .)

H = log2(ρ).

Theorem (Perron-Frobenius like theorem)

1. There exists a unique v positive a.e. such that Ψv = ρv
(unicity up to a scalar constant).

2. There exists a unique w positive a.e. such that Ψ∗w = ρw,
(unicity up to a scalar constant).

Normalizing condition: 〈w , v〉 =
∫
S
w(s)v(s)ds = 1.
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The maximal entropy SPOR

Main Theorem
The following PDFs defines an ergodic SPOR Y ∗ with maximal
entropy h(Y ∗) = H:

p∗0(s) = w(s)v(s) (Ψv = ρv , Ψ∗w = ρw ,

∫
S

w(s)v(s)ds = 1)

p∗(α|s) =
v(s ⊲ α)

ρv(s)
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Analogy between timed and untimed case

untimed case timed case

Graph G Timed region graph G

Paths Runs

Markov chain on G SPOR on G

Adjacency matrix M Operator Ψ on L2(S)

Transposed matrix MT Adjoint operator Ψ∗

Spectral radius ρ(M) Spectral radius ρ(Ψ)

h(G ) = log2(ρ(M)) H(G) = log2(ρ(Ψ))

Mv = ρv Ψv = ρv

wM = ρw (⇔ MTwT = ρwT ) Ψ∗w = ρw

〈v ,w〉 =
∑

viwi = 1 〈v ,w〉 =
∫
S
w(s)v(s)ds = 1

p∗0(i) = viwi p∗0(s) = w(s)v(s)

p∗(i
δ
−→ j) =

vj
ρvi

p∗(α|s) = v(s⊲α)
ρv(s)
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Hypotheses and proof details

The D-Weak progress condition (D-WPC)

On each path of length ≥ D all the clocks are reset at least once.

Lemme: kernel for Ψn, (HSIO)

If the D-WPC is satisfied then for n ≥ D, there exists
kn ∈ L2(S× S) s.t.

Ψn(f )(s) =

∫
s′∈S

kn(s, s
′)f (s ′)ds ′, (Ψ∗)n(f )(s ′) =

∫
s∈S

kn(s, s
′)f (s)ds.

Thickness/forgetfulness and irreducibility of Ψ.

For strongly connected timed graph satisfying the D-WPC.

◮ H > −∞

◮ for all s, s ′ ∈ S, there exists n such that s →n s ′.

◮ for q, q′ ∈ Q, there exists n ∈ N such that kn((q, x), (q
′, x′))

is positive almost everywhere (⇒ irreducibility of Ψ). 27/31



Example δ, x < 1/x := 0

δ′, y < 1/y := 0

(x , 0)
t,δ
−→ (0, t) if x + t < 1

(0, y)
t,δ′

−−→ (t, 0) if y + t < 1

◮ Eigenvector equations:
Ψa(v1) = ρv1
Ψb(v2) = ρv2

Ψ∗
b(w1) = ρw1

Ψ∗
a(w2) = ρw2

◮ Same kernel operator for both transitions :
Ψ(vi )(x) =

∫
k(x , t)vi (t)dt where k(x , t) = 10≤x+t<1.

◮ Ψ∗ has kernel k∗(x , t) =def k(t, x) = k(x , t).

◮ Solutions ρ = 2
π
, v1 : x 7→ cos(πx2 ) (= v2 = Cw1 = Cw2).

◮ p∗0[B, (x , 0)] = cos2(πx2 ) (= p∗0[R, (0, y)]).

p∗[t, a|B, (x , 0)] = π
2

cos(π
2
t)

cos(π
2
x)1t≤1−x (= p∗[t, b|R, (0, y)])
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Outline
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What we have seen

◮ SPOR for timed region graph.

◮ Entropy for SPOR and TRG.

◮ Operator Ψ of Asarin and Degorre adapted to L2(S).

◮ Maximal entropy SPOR defined with ρ, v and w .

◮ Asymptotic equipartition property.

What we have not spoken about

◮ Stochastic operator ϕ for Y ∗: similar to the transition
probability matrix of a finite state Markov Chain.

◮ Stationarity and ergodicity of Y ∗.

◮ Generation of timed word with a SPOR.

◮ Symbolic dynamics interpretation/vocabulary (bi-infinite runs,
maximal entropy shift invariant measure...).
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Future work

To do:

◮ Compute ρ, v , w numerically (Iterative methods) and
symbolically (Solve integral equations).

◮ Remove the D-WPC.

◮ Describe the steady state analysis for other SPOR than Y ∗.

◮ Correct the non uniformity of Y ∗.

Possible applications:

◮ Proportional model checking.

◮ Fast (quasi) uniform generation of permutations.

◮ Compression and coding.
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