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Problem statements

Theoretical problem statement

Lift the Shannon/Parry Markov chain of a strongly connected
finite graph to the timed automata settings.
(aka MME of an irreducible SFT)

Practical problem statement

Generate quickly and as uniformly as possible runs of a timed
automaton.

» quickly: Step by step simulation as with a finite state Markov
Chain — Stochastic Process Over Runs (SPOR)

» =2 uniformly — SPOR of maximal entropy + asymptotic
equipartition property.
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Motivations

Possible applications of (quasi) uniform random simulation

» Proportional model checking e.g. more than 65 per cent of
the runs satisfies a formula with probability of error < 0.01.

» Fast (quasi) uniform generation in certain classes of
permutation e.g. alternating permutations.

Other possible applications

» Compression of timed words in a timed regular language.
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Outline

Stochastic process over runs
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Timed region graph

» Timed region graph (TRG)= Timed automaton without labels
on transitions, initial and final set of states = entry regions.
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A run of the timed region graph

6/

227, (p,(0.2,0)) %2 (g,(0.6,0))
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A run of the timed region graph

(p, (0.4,0)) 222 (4,(0,0.3)) 22% (p, (0.2,0)) 2% (q,(0.6,0))

x=0.7<1and y =0.3 <1, the guard is satisfied.
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A run of the timed region graph

(p, (04,0)22% (4,(0,0.3)) 22% (p,(0.2,0)) 2%% (q,(0.6,0))

x is reset while the transition is fire, y = 0.3 is unchanged.
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A run of the timed region graph

(p, (0.4,0)) 222 (4,(0,0.3)) 22% (p, (0.2,0)) 2% (q,(0.6,0))

y 1 0.2 s elapsed
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x=0.2<1and y =0.5 <1, the guard is satisfied.
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A run of the timed region graph

y is reset while the transition is fired, x is unchanged.
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A run of the timed region graph

(p, (0.4,0)) 222 (4,(0,0.3)) 22% (p, (0.2,0)) 2% (q,(0.6,0))

x=0.8<1andy =0.6 <1, the guard is satisfied.
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A run of the timed region graph

0.3,6 0.6,6

(p. (04,0)) 222 (4,(0,0.3)) 22% (p, (0.2,0)%%% (g, (0.6,0))

x is reset while the transition is fire, y = 0.6 is unchanged.
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Measuring runs

An infinite transition system

» Dense set of states (g,x) € S.
» Dense set of timed transitions (t,0) € A.
» Successor action of Aon S: s’ =s>a.

« Qp—1
» Runs s) —> s1--- —— s, denoted by [sg, g, -, p_1]

Integrating over states, timed transition and runs

> Integrating over A: [, f(a)da = 256A fo (t,0)dt.
> Integrating over S: [ f(s)ds = <o frq f(q,x)dx.

> Integration over runs:
Jssnn F([50: 0, - -+ s p_1])dspdayg - - - dap—1 where f(L) =0

> Vol(Runsn) = Jg,an Lsp.ao, o il LdS0d00 - davp—1
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Stochastic Process Over Runs (SPOR)
A SPOR (Semi Markov)

» Initial density on states: pg : S — R™ such that
Js po(s)ds = 1.
» Conditional density on timed transition A: [, p(«|s)da = 1.

Induced probability density function (PDF) on Runs,

» Chain rules:
pn([s0, a0, -+ s an—1]) = po(s0)P(clso) - - - P(tn—1]Sn—1)
» Probability of a set of runs R C Runs,:

P(R):/Rp,,(r)dr

» P(Runs,) = 1.
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An initial PDF on state
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Choosing a starting state according to the PDF.
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Choosing a timed transition (transition

(p, (04,0)) 2% (q,(0,0.3))

p(t,dq, (x,0))
p(x)

i 0.3 s elapsed

0.6

and delay).
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Choosing a timed transition (transition and delay).

(p. (04,0)) 222 (4,(0,0.3)) 22% (p, (0.2,0))

0.7
p(t,0lq,(x,0))
p(x) ‘ p(y)
1 : 11 | 1 :
004 1 X 02 1t 0| 1y

|» 0.2 s elapsed
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Choosing a timed transition (transition and delay).

(p. (04,0)) 222 (4,(0,0.3)) 22% (p, (0.2,0)) 2°2 (q,(0.6,0))

p(t,319,(,0)) 7
p(x) p(y)
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Problem statement, a recap

Problem statement (Unformal)
Describe a SPOR that generates as uniformly as possible runs in a
timed region graph?

1
"~ Vol(Runs,)

pn(r)

For “almost” every run r.

Solution based on entropy
Max entropy = as uniformly as possible.
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Outline

The maximal entropy SPOR
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Entropy

» Entropy of runs :

H= lim %IogQ(Vol(Runs,,))

n—-+o0o

» Entropy of a SPOR Y:

BY) = lim / Pa(r) 1085 pa(r)dr

n—-+oo n
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Entropy

» Entropy of runs :
_ 1
H= n—llToo - log,(Vol(Runs,))

» Entropy of a SPOR Y:

BY)= lim / pu(r) logy pa(r)dr < |
Runs,

n—-+oo n
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Entropy

» Entropy of runs :
_ 1
H= n—llToo - log,(Vol(Runs,))

» Entropy of a SPOR Y:

BY)= lim / pu(r) logy pa(r)dr < |
Runs,

n—-+oo n

Theorem 1
There exists Y* of maximal entropy h(Y*) = H (described later).
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Entropy

» Entropy of runs :

H= lim %Iog2(Vol(Runs,,))

n—-+o0o

» Entropy of a SPOR Y:

BY)= lim / pu(r) logy pa(r)dr < |
Runs,

n—-+oo n

Theorem 1
There exists Y* of maximal entropy h(Y*) = H (described later).

Asymptotic equipartition property

Y* satisfies —2 logy pn(r) — h(Y*) almost surely.

n
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Entropy

» Entropy of runs :

H= lim %Iog2(Vol(Runs,,))

n—-+o0o

» Entropy of a SPOR Y:

BY)= lim / pu(r) logy pa(r)dr < |
Runs,

n—-+oo n

Theorem 1
There exists Y* of maximal entropy h(Y*) = H (described later).

Asymptotic equipartition property

Y* satisfies —2 logy pn(r) — h(Y*) almost surely.

Solution of the problem

Most of the runs have a quasi uniform probability to occur:
pn(r) = 27 "h(Y*) = 2=rM ~ 1 /Vo1(Runs,).
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The operator W of Asarin and Degorre (FORMATS 2009)

The operator W (new notation)
For f:S— R, scS:

W(s) = /  flspa)da with F(1) =0

New functional space for W: L%(S)

Square summable functlons f e L(S)if [4f?(s)ds < +oc.
Scalar product: ( = Jsf(s)g(s)ds
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Spectral radius, and corresponding eigenvectors

Theorem (Adapted from (Asarin, Degorre, FORMATS 2009) .)
H = logy(p)-

Theorem (Perron-Frobenius like theorem)

1. There exists a unique v positive a.e. such that Vv = pv
(unicity up to a scalar constant).

2. There exists a unique w positive a.e. such that V*w = pw,
(unicity up to a scalar constant).

Normalizing condition: (w,v) = f[q w( 1.
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The maximal entropy SPOR

Main Theorem
The following PDFs defines an ergodic SPOR Y* with maximal
entropy h(Y*) = H:

po(s) = w(s)v(s) (Vv =pv, V'w = pw, /Sw(s)v(s)ds =1)

p*(als) =
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Analogy between timed and untimed case

‘ untimed case

‘ timed case

Graph G Timed region graph G
Paths Runs
Markov chain on G SPOR on G

Adjacency matrix M

Operator W on L2(S)

Transposed matrix M7

Adjoint operator W*

Spectral radius p(M)

Spectral radius p(W¥)

h(G) = logy(p(M))

H(G) = log,(p(V))

Mv = pv Vv = pv
wM = pw (& MTw’T = pwT) \U*W—pw
(viw) =>viw; =1 = [ w(s)v(s)ds =1
PS(') = Vi Po(S) = W(S) (s)
* _ v(spa)
pr(i —>J) v p(als) = (5
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Hypotheses and proof details
The D-Weak progress condition (D-WPC)

On each path of length > D all the clocks are reset at least once.

Lemme: kernel for ", (HSIO)

If the D-WPC is satisfied then for n > D, there exists
ko € L2(S x S) s.t.

v = |

s'eS

kn(s,s")f(s')ds', (W*)"(f)(s) :/S kn(s,s')f(s)ds.

€S

Thickness/forgetfulness and irreducibility of W.

For strongly connected timed graph satisfying the D-WPC.
> H > —o0
» for all 5,5’ €S, there exists n such that s —" 5’

» for q,q' € Q, there exists n € N such that k,((q,x),(¢’,x'))
is positive almost everywhere (= irreducibility of V). 27/31



Example S,x<1/x:=0

(x,0) 2% (0,t) if x + t < 1
0,y) 2% (£,0)if y +t <1

8,y <lly:=0

V,(v1) = pwy Vi (wy) = pwy
Vp(v2) = pva  Vi(w2) = pwo
Same kernel operator for both transitions :

V(v;)(x) = [ k(x, t)vi(t)dt where k(x,t) = Lo<xtt<1.
V* has kernel k*(x t) =der k(t,x) = k(x,t).

Solutions p = 2, vy : x = cos(Z) (= vo = Cwy = Cwp).
PS[B,(X, 0)] = Cos (%X) (_ pO[R? (O?y)])

prIt alB, (x,0)] = g lecix (= p7[t, BIR,(0,y)])

v

Eigenvector equations:

v

v

v

v
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Outline

Conclusion
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What we have seen

» SPOR for timed region graph.
Entropy for SPOR and TRG.
Operator W of Asarin and Degorre adapted to L2(S).

v

v

v

Maximal entropy SPOR defined with p, v and w.

v

Asymptotic equipartition property.

What we have not spoken about

» Stochastic operator ¢ for Y*: similar to the transition
probability matrix of a finite state Markov Chain.

» Stationarity and ergodicity of Y*.
» Generation of timed word with a SPOR.

» Symbolic dynamics interpretation /vocabulary (bi-infinite runs,
maximal entropy shift invariant measure...).
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Future work

To do:

» Compute p, v, w numerically (Iterative methods) and
symbolically (Solve integral equations).

» Remove the D-WPC.
» Describe the steady state analysis for other SPOR than Y*.

» Correct the non uniformity of Y*.

Possible applications:

> Proportional model checking.
» Fast (quasi) uniform generation of permutations.

» Compression and coding.
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