PDE from a probability point of view

Richard F. Bass
University of Connecticut

These notes are (©2004. They may be used for personal or teaching use only.

These notes are for a course I gave while on sabbatical at UBC. It presupposes the
reader is familiar with stochastic calculus; see the notes on my web page for Stochastic
Calculus, for example. These notes for the most part are based on my book Diffusions and
Elliptic Operators, Springer-Verlag, 1997.

The topics covered are: stochastic differential equations, solving PDEs using proba-
bility, Harnack inequalities for nondivergence form elliptic operators, martingale problems,
and divergence form elliptic operators.

We use 9; and 9;; for 9/0x; and 0?/0z;0z;, resp.

1. Pathwise solutions.
Let W; be a one-dimensional Brownian motion. We will be concerned with the
stochastic differential equation (SDE)

dXt == O'(Xt) th + b(Xt) dt, XO = x. (]_1)

This is a shorthand way of writing

Xt:x—l—/o U(Xs)dWs+/O b(Xs)ds. (1.2)

Here o and b are measurable real-valued functions. We will say (1.1) or (1.2) has a
solution if there exists a continuous adapted process X; satisfying (1.2). X; is necessarily
a semimartingale. Later on we will talk about various types of solutions, so to be more
precise, we say that X; is a pathwise solution. We say that we have pathwise uniqueness
for (1.1) or (1.2) if whenever X; and X are two solutions, then there exists a set NV such
that P(N) = 0 and for all w ¢ N, we have X; = X/ for all ¢.

The definitions for the higher-dimensional analogues of (1.1) and (1.2) are the same.

Let o;; be measurable functions for ¢,7 = 1,...,d and b; measurable functions for ¢ =
1,...,d. Let W; be a d-dimensional Brownian motion. We consider the equation
dXt = O'(Xt) th + b(Xt) dt, X() =T, (13)
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or equivalently, for i = 1,.

X! =2+ /Z% dW3+/0tb(Xs)ds. (1.4)

Here X; = (X},..., X?) is a semimartingale on R,

The connection between stochastic differential equations and partial differential
equations comes about through the following theorem, which is simply an application of
Ito’s formula. Let o7 denote the transpose of the matrix o and let a be the matrix oo’ . Let
C?(R%) be the functions on R¢ whose first and second partial derivatives are continuous,
let CZ(RY) be those functions in C?(R?) that are bounded and have bounded first and
second derivatives, and let £ be the operator on C? (Rd) defined by

d
1
Lf(z) =3 > aij(2)0; f (= +Zb (1.5)
i,j=1
Proposition 1.1. Suppose X; is a solution to (1.3) with o and b bounded and measurable
and let f € CZ(R?). Then

f@ﬁzﬂ%ﬂwﬁ+éﬁﬂ&M& (1.6)

where

M, = / Zaf )oij(Xs) dW? (1.7)
4,5=1
is a martingale.

Proof. Since the components of the Brownian motion W; are independent, we have

d(W* W*), =0if k # (. Therefore

d(X", X7), = Z Z oik(Xe)oju(Xe) AW, We>t
k£

= ow(Xe)ok;(Xy) dt = aij(Xy) dt.
k
We now apply Ito’s formula:

F(Xy) = f(Xo) +Z/ Oif(Xs)dX? + %/0 Zaijf(Xs)d<Xi,Xj>s
—wm+m+2/@mmwﬂm
/Z%f Jagg(X,) ds

:f(X0)+Mt+/O LFH(X,)ds. -



We will say that a process X; and an operator L are associated if X, satisfies (1.3)
for £ given by (1.5) and a = oo, We call the functions b the drift coefficients of X; and
of L, and we call o and a the diffusion coefficients of X; and L, respectively.

2. Lipschitz coefficients.
We now proceed to show existence and uniqueness for the SDE (1.1) when the
coefficients ¢ and b are Lipschitz continuous. For notational simplicity, we first consider

the case where the dimension is one. Recall that a function f is Lipschitz if there exists a
constant ¢y such that |f(z) — f(y)| < c1|x — y| for all z,y.

Theorem 2.1. Suppose o and b are Lipschitz and bounded. Then there exists a pathwise
solution to the SDE (1.1).

Proof. We use Picard iteration. Define X°(¢) = x and define inductively

X (t) = +/0 o (X (s)) dWW, +/0 b(X(s)) ds (2.1)
fori=0,1,.... Note
X" - X'(t) = /0 [0(X(s)) — a(X'~1(s))] AW (2.2)
+ [ i) =) as.

Let gi(t) = E [sup,<, [ X" (s) — X*(s)[?].
If F} denotes the first term on the right-hand side of (2.2), then by Doob’s inequality,

s<t

E sup F2 < ¢ E /o lo(X%(s)) — a(X7(s))* ds (2.3)
§02/0 E|Xi(s) — X'~1(s)[2 ds
§02/0 gi—1(s) ds.

If G; denotes the second term on the right-hand side of (2.2), then by the Cauchy-Schwarz
inequality,

E sup G2 < (/Ot (X (s)) — b(X T (s)) ds)2 (2.4)

s<t
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<Et / BX(s)) — BT (s)) s
< 03t/0 E[X%(s) — X" (s)]* ds
< 0315/0 gi—1(s) ds.

So (2.2), (2.3), (2.4), and the inequality (z + y)? < 22% + 2y? tell us that there exists A
such that

t
gi(t) < 2E sup F2 4 2E sup G* < A(1 + t)/ gi—1(s) ds. (2.5)
0

s<t s<t

Since ¢ and b are bounded, arguments to those in the derivation of (2.3) and (2.4)
show that go(t) is bounded by B(1 + t) for some constant B. Iterating (2.5),

g1(t) < A/OtB(l +5)ds < AB(1+1)?/2

for all t, so
t
wt) < A/ (AB(1+ 5)2)/2ds < A>B(1 + 1) /3!
0
for all t. By induction,
gi(t) < A'B(1+ )"/ (i + 1)!

Hence Y 57 gi(t)1/? < oo. Fix t and define the norm

Y= (& Sgg\K\Q)I/Z- (2.6)

One can show that this norm is complete. We then have that

m—1
X" = X" <> () =0

=n

if m > n and m,n — oo. Therefore X" is a Cauchy sequence with respect to this norm.
Then there is a process X such that || X™ — X|| — 0 as n — oo. For each ¢, we can look
at a subsequence so that sup,., |X(s) — X" (s)| — 0 a.s., which implies that X(s) has
continuous paths. Letting ¢ — oo in (2.1), we see that X (s) satisfies (1.2). O

Uniqueness will be shown next. We first examine a portion of the proof that is

known as Gronwall’s lemma.



Lemma 2.3. (Gronwall’s lemma) Suppose g : [0,00) — R is bounded on each finite

interval, is measurable, and there exist A and B such that for all t

t
g(t) < A+ B/ g(s)ds.
0
Then g(t) < AeBt for all t.

Proof. Iterating the inequality for g,

g(t)§A+B/Ot [A—I—B/Osg(r)dr} ds
<A+ABt+BQ/ / A+B/Tg( )d}dsdt

—A+ABt+AB2t2/2+B3/// q) dqdrds

Since g is bounded on [0, t], say by C, then

t t
/ g(s)ds < Ct, / / r)drds < / Csds < Ct?/2!,
0 0

and so on. Hence
g(t) < AeBt + B"Ct™ /n!

for each n. Letting n — oo completes the proof.

(2.7)

O

Theorem 2.4. Suppose o and b are Lipschitz and bounded. Then the solution to the

SDE (1.1) is pathwise unique.
Proof. Suppose X; and X] are two pathwise solutions to (1.1). Let

g(t) =E sup | X, — X;|2.

s<t

Since X; and X both satisfy (1.1), their difference satisfies
Xt—X,;:Ht-i-It,

where



As in the proof of Theorem 2.1, there exist ¢; and c¢o such that

t t
E sup H? < cl/ g(s)ds, E sup I? < CQt/ g(s)ds.
0 0

s<t s<t
Hence, if ty is a positive real and ¢ < ty, there exists a constant c3 depending on %y such

that

t
g(t) <2E sup HZ + 2E sup IZ < 03/ g(s)ds.
s<t s<t 0

By Lemma 2.3, g(t) = 0 for t < ty. Since t( is arbitrary, uniqueness is proved. 0O

It is often useful to be able to remove the boundedness assumption on ¢ and b. We
still want o and b to be Lipschitz, so this can be phrased as follows.

Theorem 2.5. Suppose o and b are Lipschitz and there exists a constant ¢ such that
o (@)| + [b(z)] < er (1 4 [z]).

Then there exists a pathwise solution to (1.1) and the solution is pathwise unique.

We omit the proof.

We have considered the case of R-valued processes for simplicity, but with only
trivial changes the proofs work when the state space is R? (and even infinite dimensions if

properly formulated), so we can state

Theorem 2.6. Suppose d > 1 and suppose o and b are Lipschitz. Then the SDE (1.3)
has a pathwise solution and this solution is pathwise unique.

In the above, we required o and b to be functions of X; only. Only cosmetic changes
are required if we allow o and b to be functions of ¢t and X; and consider

dXt == O'(t7 Xt) th + b(t, Xt) dt. (28)

3. Types of uniqueness.

When the coefficients o and b fail to be Lipschitz, it is sometimes the case that (1.3)
may not have a pathwise solution at all, or it may not be unique. We define some other
notions of existence and uniqueness that are useful. We now assume that the dimension
of the state space may be larger than one.

We say a strong solution exists to the SDE (1.3) if given the Brownian motion W;
there exists a process X satisfying (1.3) such that X; is adapted to the filtration generated
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by Wi. A weak solution ezists if there exists a pair of processes (X, W;) such that W;
is a Brownian motion and the equation (1.3) holds. There is weak uniqueness holding if
whenever (X;, W) and (X[, W/) are two weak solutions, then the joint laws of the processes
(X, W) and (X', W’) are equal. When this happens, we also say that the solution to (1.3)
is unique in law.

Let us explore some of the relationships between the various definitions just given.
Pathwise existence and the existence of a strong solution are very close, differing only in
unimportant measurability concerns. If the solution to (1.3) is pathwise unique, then weak
uniqueness holds. In the case that ¢ and b are Lipschitz, the proof is much simpler.

Proposition 3.1. Suppose o and b are Lipschitz and bounded. Then the solution to (1.3)

is a strong solution. Weak uniqueness holds for (1.3).

Proof. For notational simplicity we consider the case of dimension one. The Picard
iteration in Theorem 2.1 preserves measurability, so the solution constructed in these two
theorems is adapted to the filtration generated by W;. Thus the solution is a strong
solution.

Suppose (X, We) and (X[, W/) are two solutions to (1.3). Let X/ be the process
that is constructed from W/ analogously to how X; was constructed from W;, namely, by
Picard iteration and stopping times. It follows that (X, W) and (X", W’) have the same
law. By the pathwise uniqueness, X” = X’, so the result follows. O

We now give an example to show that weak uniqueness might hold even if pathwise
uniqueness does not. Let o(x) be equal to 1 if x > 0 and —1 otherwise. We take b to be
identically 0. We consider solutions to

Xt:/o (X)) dW,. (3.1)

Weak uniqueness holds since X; must be a martingale, and the quadratic variation of X
is d(X), = o(Xt)?>dt = dt; by a theorem of Lévy, X; is a Brownian motion. Given a
Brownian motion X; and letting W, = fg o~ Y(X,)dX, where 0~! = 1/0, then again by
Lévy’s theorem, W; is a Brownian motion; thus weak solutions exist.

On the other hand, pathwise uniqueness does not hold. To see this, let Y; = —X;.
We have

t t
Y, :/ J(YS)dWS—Z/ Loy (X,) dIV.. (3.2)
0 0

The second term on the right has quadratic variation 4 fg 110} (X) ds, which is equal to 0
almost surely because X is a Brownian motion. Therefore the second term on the right of
(3.2) equals 0 almost surely, or Y is another pathwise solution to (3.1).

7



This example is not satisfying because one would like o to be positive and even
continuous if possible. Such examples exist, however.

4. One-dimensional case.

Although we have often looked at the case where the state space is R instead of R¢
for the sake of simplicity of notation, everything we have done so far has been valid in R?
for any d. We now look at some stronger results that hold only in the one-dimensional

case.

Theorem 4.1. Suppose b is bounded and Lipschitz. Suppose there exists a continuous
function p : [0,00) — [0, 00) such that p(0) = 0, f0+ p~2(u) du = oo, and o is bounded and
satisfies

|o(z) —a(y)] < p(lz —yl)

for all x and y. Then the solution to (1.3) is pathwise unique.

Proof. Let a, | 0 be selected so that faa:_l du/p*(u) = n. Let h, be continuous,
supported in (@, a,_1), 0 < h,(u) < 2/np?(u), and f;:_l hn(u)du = 1 for each n. Let g,
be such that ¢,,(0) = ¢/,(0) = 0 and g,! = h,. Note |g,(u)] <1 and g/, (u) =1if u > an_1,
hence g, (u) T u for u > 0.

Let X; and X be two solutions to (1.3). The function g, is in C? and is 0 in a
neighborhood of 0. We apply Itd’s formula to g,((¢? + | X; — X/|?)'/2) and let £ — 0 to
obtain

t
gn(1X: — XII) = martingale + / gL (X, — XIDB(X,) — b(X)] ds
0

1

5 | X = XUDIo(X) — o (X ds

We take the expectation of the right-hand side. The martingale term has 0 expectation.
The next term has expectation bounded by

t
q/m&—ﬁm.
0

The final term on the right-hand side is bounded in expectation by

1 [ 2 t
3E | (pIX, - XI|)2ds < &
o n( n

2 oIX. — X1

Letting n — oo,

t
M&—mgq/m&—&m.
0
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By Gronwall’s lemma, E|X; — X}| = 0 for each ¢. By the continuity of X; and X/, we

deduce the uniqueness. 0O
5. Examples.
Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process is the solution to the SDE
X
dX; = dW, — —t dt,  Xo=uz. (5.1)

The existence and uniqueness follow from Theorem 2.5, so (P*, X;) is a strong Markov
process.
The equation (5.1) can be solved explicitly. Rewriting it and using the product rule,

X
2 dW, = et/? dX, + €'/ 27% = d[e!/?X],
or
t
X, =e V24 et/? / /2 dw,. (5.2)

0
Since the integrand of the stochastic integral is deterministic, it follows that X; is a Gaus-

sian process and the distribution of X; is that of a normal random variable with mean

_ . 4ot _
e~t/2z and variance equal to e~? Joefds=1—e".

If we let V; = fg e*/2dW, and V; = Y(log(t + 1)), then Y; is a mean 0 con-

tinuous Gaussian process with independent increments, and hence so is V;. Since the

log(u+1)
flog(t+1)
X, =e 2z + e_t/ 2V (et — 1). This representation of an Ornstein-Uhlenbeck process in

variance of V,, — e®ds = u — t, then V; is a Brownian motion. Hence
terms of a Brownian motion is useful for, among other things, calculating the exit proba-
bilities of a square root boundary.

Bessel processes. A Bessel process of order v > 0 will be defined to be a nonnegative
solution of the SDE 1
V JR—
dXy = dWy + ——dt, Xo==x. 5.3
o= : (53)
Bessel processes have the same scaling properties as Brownian motion. That is, if
X, is a Bessel process of order v started at x, then aX,-2; is a Bessel process of order v
started at ax. In fact, from (5.3),
v—1
2CLXa72t

and the assertion follows from the uniqueness and the fact that aW(a=?t) is again a

d(aX,-2;) = adW,—2, + a® d(a™?t),

Brownian motion.

Bessel processes are useful for comparison purposes, and so the following is worth
recording.



Proposition 5.1. Suppose X, is a Bessel process of order v.
(i) If v > 2, X; never hits 0 and | X;| — oo a.s.
(ii) If v = 2, X; hits every neighborhood of 0 infinitely often, but never hits 0.
(iii) If 0 < v < 2, X; hits 0 infinitely often.
(iv) If v =0, then X, hits 0 and then remains at 0 thereafter.

When we say that X; hits 0, we consider only times ¢ > 0.

Proof. When v = 2, X; has the same law as a 2-dimensional Brownian motion, and
(ii) follows from the corresponding facts about 2-dimensional Brownian motion. Suppose
v # 2; by It&’s formula, (X;)?7" is a martingale. Assertions (i) and (iii) now follow from
a standard proof. Similarly, a Bessel process of order 0 hits 0. If X} is such a process and
Y; = X7, then dY; = Y;l/z dW;. Starting from 0, Y; = 0 is evidently a solution, so by the
uniqueness any solution starting at 0 must remain at 0 forever; (iv) now follows by the
strong Markov property. O

Brownian bridge. Brownian motion conditioned to be at 0 at time 1 is called Brownian
bridge. Brownian bridge has the same law as W; — tW;. To see this, the covariance of
W, — tWy and W is 0; hence they are independent. Therefore the law of W; conditional
on Wi being 0 is the same as the law of W; —tW; 4+ tW; conditional on W7 being 0, which
is W; — tW3; by independence.
We will see shortly that Brownian bridge can be represented as the solution of a
SDE
Xt
dXy =dW; — 1—tdt, Xp=0. (5.5)

Although Theorem 2.5 does not apply because the drift term depends on s as well as the
position X, similar proofs to those given above guarantee uniqueness and existence for
the solution of (5.5) for s < ¢ for any ¢ < 1. As with the Ornstein-Uhlenbeck process, (5.5)
may be solved explicitly. We have

X, X,
AW, = dX dtzl—td[ ]
Wi t+1_t ( ) 1_¢
or .
dWs
Xt:(l—t)/ W
o 1—s

Thus X; is a continuous Gaussian process with mean 0. The variance of X; is

(1 —t)Q/Ot(l —8) 2ds =1t —t%

the same as the variance of Brownian bridge. A similar calculation shows that the covari-
ance of X; and X, is the same as the covariance of W, — tW; and W, — sW;. Hence the
law of X; and Brownian bridge are the same.
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Linear equations. The equation dX; = AX; dW; + BX; dt may be written dX; = X; dY;,
where Y; = AW, 4+ Bt, and then we can check that the solution is

X = Xoexp(Y; — (Y),/2).

6. Markov properties.

One of the more important applications of SDEs is to Markov processes. A Markov
process is one where the probability of future events depends on the past history only
through the present position. In order to be more precise, we need to introduce some
notation. Rather than having one probability measure and a collection of processes, it is
more convenient to have one process and a collection of measures.

Define Q' to be the set of all continuous functions from [0,00) to R?. We define
Zi(w) = w(t) for w € Q. We call Z; the canonical process. Suppose that for each starting
point x the SDE (1.3) has a solution that is unique in law. Let us denote the solution by
X(x,t,w). For each = define a probability measure P* on ' so that

P*(Zy, €Ay,..., 2y, € Ay)
=P(X(x,t1,w) € Ay1,..., X (2, th,w) € Ay)

whenever t1,...,t, € [0,00) and Ay,..., A, are Borel sets in R%. The measure P* is
determined on the smallest o-field containing these cylindrical sets. Let GY° be the o-
algebra generated by Zs, s < t. We complete these o-fields by considering all sets that are
in the P® completion of G° for all . (This is not quite the same as the completion with
respect to P, but it will be good enough for our purposes.) Finally, we obtain a right
continuous filtration by letting F/ = No50GyY,.. We then extend P* to F_.

One advantage of € is that it is equipped with shift operators 6; : Q' — Q' defined
by 0;(w)(s) = w(t + s). Another way of writing this is Z; o §; = Z;, 5. For stopping times
T we set O7(w) = Op()(w).

The strong Markov property is the assertion that

E*[Y o b7 | Fp] =E4T[Y],  as. (P°) (6.1)

whenever z € R%, Y is bounded and F’_ measurable, and T is a finite stopping time. The

Markov property holds if the above equality holds whenever T is a fixed (i.e., nonrandom)

time. If the strong Markov property holds, we say (P*, Z;) is a strong Markov process.
To prove the strong Markov property it suffices to show

E°[f(Zrsd) | FRl =EZTf(Z,),  as. (B7) (6.2)
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for all x € R%, f a bounded and continuous function on R%, and T a bounded stopping
time. This is (6.1) with Y = f(X}).
It turns out that if pathwise uniqueness or weak uniqueness holds for (1.3) for every
x, then (P*, Z;) form a strong Markov process.
Let T be a bounded stopping time. A regular conditional probability for E[- | Fr|
is a kernel Q7 (w,dw’) such that
(i) Qr(w,-) is a probability measure on ) for each w;
(ii) for each F. measurable set A, Qr(-, A) is a F._ measurable random variable;
(iii) for each F._ measurable set A and each F/. measurable set B,

/B Qr(w, A)P(dw) = P(AN B).

Regular conditional probabilities need not always exist, but if the probability space is
regular enough, as Q' is, then they do.

We have the equation

t t
Z, = Zy +/ o(Z,) dW, +/ b(Z,) dr, (6.3)
0 0

where W, is a Brownian motion, not necessarily the same as the one in (1.3). If we let
Zt = Zrys and Wt = Wryy — Wy, it is plausible that W is a Brownian motion with
respect to the measure Qr(w,-) for almost every w. We write (6.3) with ¢ replaced by
T +t and then write (6.3) with ¢ replaced by T'. Taking the difference and using a change
of variables, we obtain

Zy = Zo+ /0 ta(Z)WT + /0 t b(Z,.) dr. (6.4)

Theorem 6.1. Suppose the solution to (1.3) is weakly unique for each x. Then (P*, Z;)
is a strong Markov process.

Proof. Fix x and let Q7 denote the regular conditional probability for E*[- | F7].
Except for w in a null set, under Qr(w, -) we have from (6.4) and Proposition 6.3 that Z is

a solution to (1.3) with starting point Zy = Zp. So if E g, denotes the expectation with
respect to 7, the uniqueness in law tells us that

Eo,f(Z) =E?Tf(Z,),  as. (P%).
On the other hand,
Eqrf(Z) = Eqrf(Zri) = B*[f(Zrst) | ), a.s. (P%),
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which proves (6.2). O

By a slight abuse of notation, we will say (P, X;) is a strong Markov family when
(P*, Zy) is a strong Markov family.

7. Poisson’s equation.

Let
d

d
1
Lf(@) =5 D ai(2)di f(x) + D bi(x)dif (). (7.1)
ij=1 i=1
We assume the a;; and b; are bounded and at least C L. We also assume that the operator

L is uniformly strictly elliptic. An operator L is strictly elliptic if for each x there exists
A(x) such that

d d
Y ay(@)yiy; > A=) v y=(y1,-..,ya) € R (7.2)

ij=1 i=1

The operator L is uniformly strictly elliptic or uniformly elliptic if A can be chosen to be
independent of x. We also call the matrix a strictly elliptic if (7.2) holds and uniformly
elliptic if (7.2) holds with A(z) not depending on x. We also assume throughout that the
dimension d is greater than or equal to 3.

We emphasize that the uniform ellipticity of £ is used only to show that the exit
times of the domains we consider are finite a.s. For many nonuniformly elliptic operators,
it is often the case that the finiteness of the exit times is known for other reasons, and the
results then apply to equations involving these operators.

Suppose ¢ is a matrix such that « = oo and each component of ¢ is bounded and
in C'. Let X; be the solution to

t t
X, =2+ / (X)W, + / b(X,) ds. (7.3)
0 0
We will write (P*, X;) for the strong Markov process corresponding to o and b.

We consider first Poisson’s equation in R%. Suppose A > 0 and f is a C' function
with compact support. Poisson’s equation is

Lu(z) — Au(z) = —f(z), z € R (7.4)
Theorem 7.1. Suppose u is a C? solution to (7.4). Then
uw(z) =E° / =M F(X,) dt.
0
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Proof. Let u be the solution to (7.4). By It6’s formula,
t
u(Xy) —u(Xo) = My + / Lu(Xs)ds,
0
where M; is a martingale. By the product formula,

t '
e_)‘tu(Xt) —u(Xp) = / e M dM, +/ e_’\sﬁu(Xs) ds
0 0

t
—)\/ e M u(X,) ds.
0

Taking E* expectation and letting ¢t — oo,

Since Lu — A\u = — f, the result follows. O

Let us now let D be a nice bounded domain, e.g., a ball. Poisson’s equation in D
requires one to find a function w such that Lu — Au = —f in D and v = 0 on 0D, where
f € C?(D) and A > 0. Here we can allow A to be equal to 0. We will see later on that the
time to exit D, namely, Tp = inf{t : X; ¢ D}, is finite almost surely.

Theorem 7.2. Suppose u is a solution to Poisson’s equation in a bounded domain D that
is C? in D and continuous on D. Then

u(x) :Ex/o De_Asf(Xs)ds.

Proof. The proof is nearly identical to that of Theorem 7.1. 7p < oo a.s. Let S,, = inf{¢ :
dist (X¢,0D) < 1/n}. By Itd’s formula,

tAS,,
u(Xins, ) — u(Xo) = martingale +/ Lu(Xs)ds.
0

By the product formula,

E me_)‘(tAS")u(Xt/\gn) — u(z)

tASh tASh
=E* / e M Lu(X,)ds —E* / e Mu(X,) ds
0 0

tASR
= —E””/ e M f(X,)ds.
0
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Now let n — oo and then ¢t — oo and use the fact that « is 0 on 0D. O

8. Dirichlet problem.

Let D be a ball (or other nice bounded domain) and let us consider the solution to
the Dirichlet problem: given f a continuous function on 9D, find v € C(D) such that u is
C? in D and

Lu=0in D, u= f on dD. (8.1)

Theorem 8.1. The solution to (8.1) satisfies

u(@) = E*f(X,,).

Proof. We use the fact that 7p < oo a.s. Let S, = inf{t : dist (X;,0D) < 1/n}. By
1t6’s formula,

tAS,,
u(Xins, ) = u(Xo) + martingale +/ Lu(Xs)ds.
0

Since Lu = 0 inside D, taking expectations shows
u(z) = E*u(Xins,).

We let t — oo and then n — co. By dominated convergence, we obtain u(z) = E *u(X,,).
This is what we want since u = f on 0D. O

There are some further facts that can be deduced from Theorem &8.1. One is the
maximum principle: if x € D,

sup u < sup u. (8.2)
D oD

This follows from
u(z) =E*f(X;,) < sup f.
4D

If L =01in D, we say v is L-harmonic in D.

9. Cauchy problem.
The related parabolic partial differential equation 0;u = Lu is often of interest.
Here dyu denotes Ou/0t.

15



Suppose for simplicity that the function f is a continuous function with compact
support. The Cauchy problem is to find u such that u is bounded, u is in C? in z, u is C*
in ¢t for t > 0, and

Opu(z,t) = Lu(x,t), t>0,xz R,
u(z,0) = f(x), r € R, (9.1)

Theorem 9.1. The solution to (9.1) satisfies

u(z,t) = E*f(Xy).

Proof. Fix tq and let M; = u(X;,t9 —t). The solution u to (9.1) is known to be C? in
x and Ct in t for t > 0. Note dy[u(z,tg —t)] = —(Opu)(x,tg — t). By Itd’s formula on
Rd X [O,to),

t
u(Xy, to —t) = martingale +/ Lu(Xs,to—s)ds
0
t
+ / (—0su)(Xs,to — s) ds.
0
Since 0yu = Lu, M, is a martingale, and E* My = E*M;,. On the one hand,
EwMtO = E$U(Xt0, 0) = Exf(XtO),

while on the other,
EmMo = ]Emu(Xo,to) = u(.fE, to).

Since t( is arbitrary, the result follows. O

For bounded domains D, the Cauchy problem is to find u such that 9; = Lu on D,
u(z,0) = f(z) for x € D, and u(x,t) = 0 for x € dD. The solution is given by

u(z,t) = E*[f(Xe);t <7p],
where 7p is the exit time of D. The proof is very similar to the case of R%.

10. Schrodinger operators.
We next look at what happens when one adds a potential term, that is, when one
considers the operator
Lu(x) + q(z)u(x). (10.1)

16



This is known as the Schrédinger operator, and q(x) is known as the potential. Equations
involving the operator in (10.1) are considerably simpler than the quantum mechanics
Schrédinger equation because here all terms are real-valued.

If X; is the diffusion corresponding to L, then solutions to PDEs involving the
operator in (10.1) can be expressed in terms of X; by means of the Feynman-Kac formula.
To illustrate, let D be a nice bounded domain, e.g., a ball, ¢ a C? function on D, and f a
continuous function on dD; ¢* denotes the positive part of q.

Theorem 10.1. Let D, q, f be as above. Let u be a C? function on D that agrees with
f on 0D and satisfies Lu + qu =0 in D. If

E*exp (/TD q+(XS)ds) < 00,
0

then ]
u(z) =E° [f(XTD)efo Caba] (10.2)

tATD

Proof. Let B; = 0

q(Xs) ds. By Itd’s formula and the product formula,

tATD
eBUNTD)y(Xynr,) = u(Xo) + martingale —|—/ u(X,)ePr dB,
0
tATD
+/ eBr du(X)],.
0
Taking E* expectation,

tATD
EmeB(tATD)u(Xt/\TD) =u(x) + Em/ eBru(Xr)Q(XT) dr
0

tATD
+E$/ eBrLu(X,) dr.
0
Since Lu + qu = 0,
]ExeB(t/\TD)u(XtATD) = u(x).

If we let t — oo and use the exponential integrability of ¢, the result follows. O

The existence of a solution to Lu + qu = 0 in D depends on the finiteness of

T fTD qT(Xs)ds . . .
E*elo , an expression that is sometimes known as the gauge.

17



Even in one dimension with D = (0,1) and ¢ a constant function, the gauge need
not be finite. For Brownian motion it is known that P*(7p > t) > ce™™ /2 for ¢ sufficiently

™D
EmeXp</ qu) =[E%eP
0

:/ qe?"P* (1p > t) dt;
0

large. Hence

this is infinite if ¢ > 72 /2.

A very similar proof to that of Theorem 10.1 shows that under suitable assumptions
on q, g, and D, the solution to Lu 4+ qu = —g in D with boundary condition © = 0 on 9D
is given by

w(z) =E” [/TD g(X,)edo aXar ds]. (10.3)
0

There is also a parabolic version of Theorem 10.1. The equation d;u = Lu + qu
with initial condition u(z,0) = f(x) is solved by

ula,t) =B FX)edo 7650 ol (10.4)

11. Fundamental solutions and Green functions.

The function p(t, z,y) is the fundamental solution for L if the solution to
Oyu = Lu, u(z,0) = f(z) (11.1)

is given by
u(wt) = [ plt..0)f () dy
for all continuous f with compact support. We have seen that the solution is also given

by E* f(X;). So

/ p(t,2,9)f(y) dy = E£(X,) = / F)P* (X, € dy).

Thus the fundamental solution is the same as the transition density for the associated

process.

An operator £ in a nice domain D has a Green function Gp(z,y) if Gp(z,y) =0
if either x or y is in D and the solution to

Lu= fin D, u=0on dD

18



is given by
u(w) =~ [ Gole.)f () dy

when f is continuous. We have also seen that the solution is given by

u(z) = —]Em/OTD F(X.) ds.

Thus Gp(x,y) is the same as the occupation time density for X;. That is, Gp(z,y) is
the Radon-Nikodym derivative of the measure u(A) = E® [[” 14(X;)ds with respect to
Lebesgue measure.

12. Adjoints.
The adjoint operator to L is the operator

d d

Lo f(a) =Y Oy(as(@) f(x)) =Y 0i(bix) f(2)). (12.1)

ij=1 i=1

The reason for the name is that
f@)Lg(oydo = [ g@)ef(z) da,
Rd Rd

as integrations by parts show, provided f and g satisfy suitable regularity conditions. The
adjoint operator corresponds to the process that is the dual of X;. Roughly speaking, the
dual of X; is the process run backwards: X;,_;.

13. Black-Scholes formula.

We aren’t going to derive the Black-Scholes PDE here, but we will show as an
example how to solve it using probability.

The equation is

fi(@,t) = $0%2° fru(2,t) + rafy(x,t) — rf(z,t) (13.1)

with initial condition

f(z,0) = (x — ). (13.2)

Here f(x,t) tells you the price of a European call at time T — t if the stock price is =z,
where K is the strike price, o is the volatility, r is the interest rate, and T is the exercise
time.
Let us first look at
fi = 2022 fon + 12 fs. (13.3)
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Solve
dXt = O'Xt th + TXt dt.

We have an explicit solution of this because it is linear:

X, = xoeaWt—l—rt—%UQt.
To calculate E*g(X}), we can write

B79(X)) = [ glu)P"(X: € dy)
= /g(aze“”"’t—%“%)P(Wt € dz)

12 2
:/g<xeaz+rt—20 t) 217rte z /thz‘

The solution to (13.3) is
flz,t) =E%(X; — K)*.
Finally, to solve (13.1) we use the Feynman-Kac formula.
14. Nondivergence operators.

We consider operators in nondivergence form, that is, operators of the form

d

L@ =5 Y eyl @) + 3 ()01 ), (14.1)

1,7=1 =1

These operators are sometimes said to be of nonvariational form.

We assume throughout this chapter that the coefficients a;; and b; are bounded
and measurable. Unless stated otherwise, we also assume that the operator £ is uniformly
elliptic. The coefficients a;; are called the diffusion coefficients and the b; are called the
drift coefficients. We let N(A1, A2) denote the set of operators of the form (14.1) with
sup; [|bi|lco < A2 and

d
Ay < Z viai;(2)y; < ATHy)?, y € Rz € RY. (14.2)
ij=1
We saw that if X; is the solution to

dXt = O'(Xt> th + b(Xt) dt, X() = X, (143)
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where o is a d X d matrix, b is a vector, and W; is a Brownian motion, then X, is associated
to the operator £ with a = oo”. If f € C?, then

F(X0) — F(Xo) — /0 LF(X,)ds (14.4)

is a local martingale under P.

A very fruitful idea of Stroock and Varadhan is to phrase the association of X; to
L in terms which use (14.4) as a key element. Let Q consist of all continuous functions w
mapping [0,00) to RY. Let X;(w) = w(t) and let F; be the right continuous modification
of the o-field generated by the X, s < t. A probability measure P is a solution to the
martingale problem for L started at xq if

and

F(X0) — F(Xo) — /0 LF(X,)ds

is a local martingale under P whenever f € C2(R%). The martingale problem is well posed
if there exists a solution and this solution is unique.

Uniqueness of the martingale problem for £ is closely connected to weak uniqueness
or uniqueness in law of (14.3). Recall that the cylindrical sets are ones of the form {w :
w(ty) € Ay,...,w(t,) € A,} for n > 1 and Ay, ..., A, Borel subsets of R

Theorem 14.1. Suppose a = oo’. Weak uniqueness for (14.3) holds if and only if the
solution for the martingale problem for L started at xy is unique. Weak existence for (14.3)
holds if and only if there exists a solution to the martingale problem for L started at x.

Proof. We prove the uniqueness assertion. Let {2 be the continuous functions on [0, c0)
and Z; the coordinate process: Z;(w) = w(t). First suppose the solution to the martingale
problem is unique. If (X}, W) and (X7, W?) are two weak solutions to (14.3), define P{°
and P5° on Q by P{°(Z. € A) = P(X" € A), i = 1,2, for any cylindrical set A. Clearly
PP (Zy = x9) = P(X{ = z09) = 1. (14.4) is a local martingale under P{° for each i and
each f € C2. By the hypothesis of uniqueness for the solution of the martingale problem,
P7° = P5°. This implies that the laws of X} and X} are the same, or weak uniqueness
holds.
Now suppose weak uniqueness holds for (14.3). Let

t
Y, = 7, —/ b(Z.) ds.
0
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Let P{° and P5° be solutions to the martingale problem. If f(x) = xy, the kth coordinate
of z, then 0, f(x) = d;, and 0;;f = 0, or Lf(Zs) = bx(Zs). Therefore the kth coordinate
of Y} is a local martingale under P;°. Now let f(x) = xgz,,. Computing Lf, we see that
YEYy™ — fot arpm(Zs) ds is a local martingale. We set

t
Wt:/ o 1 (Z,)dYs.
0

The stochastic integral is finite since
t
E/o D (02 Y (07N n(Zs) (Y, YF), (14.6)
J k
t
_E / S (0 Vi Zo)ai(Ze) ds = t < oo,
0 Gk

It follows that W, is a martingale, and a calculation similar to (14.6) shows that W/}FW;™ —
dkmt is also a martingale under P7°. So by Lévy’s theorem, W; is a Brownian motion
under both P7° and P5°, and (Z;, W) is a weak solution to (14.3). By the weak uniqueness
hypothesis, the laws of Z; under P7° and P5° agree, which is what we wanted to prove.

A similar proof shows that the existence of a weak solution to (14.3) is equivalent
to the existence of a solution to the martingale problem. O

Since pathwise existence and uniqueness imply weak existence and uniqueness, if
the o;; and b; are Lipschitz, then the martingale problem for £ is well posed for every
starting point.

15. Some estimates.

Diffusions corresponding to elliptic operators in nondivergence form do not have an
exact scaling property as does Brownian motion, i.e., 7 Xy /2 does not necessarily have the
same law as X;. However, they do have a weak scaling property that is nearly as useful:
rXi/r2 is again a diffusion corresponding to another elliptic operator of the same type.

Proposition 15.1. Suppose L is an elliptic operator with zero drift coefficients. Suppose
[P is a solution to the martingale problem for L started at xo. Then the law of rZ; ;> is a
solution to the martingale problem for L, started at rxg, where

d

L.f(z)= Z a;j(z/r)0:; f(x), fecC?

i,7=1
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Proof. It is obvious that rZ,; /> starts at rxoy with P probability one. If f € C?, let
g(z) = f(rx). Setting V; =rZ;),2,

fVe) = 9(Zyyr2) (15.1)

t
= g(zo) + martingale +/ Z@ijg(Zs/ﬁ) VA ZJ’)S/TQ.
0 1)"7

By the definition of g, 9;;9(z) = r?0;;f(rz), so 0ij9(Zs)r2) = r20;;f(Vs). From the
definition of martingale problem applied to the function x;x;, we see that as in the proof
of Theorem 14.1, Zi Z} —fot ai;j(Zs) ds is a local martingale under P, and hence d(Z*, Z7) , =
a;;(Zs) ds and

d(Z°, Zj>S/T2 = r_zaij(ZS/rz) ds = r~2a;;(Vy/r) ds.

Substituting in (15.1),

f(Vi) = f(Vh) + martingale +/0 Zaij(vs/r)az’jf(vs)ds-

1,]
Thus the law of V; under P is a solution to the martingale problem for L,. O

The following elementary bounds on the time to exit a ball will be used repetitively.
Recall that 74 denotes the hitting time of A.

Proposition 15.2. Suppose £ € N (A,0), so that the drift coefficients of L are 0. Suppose
P is a solution to the martingale problem for L started at 0.
(a) There exists ¢c; depending only on A such that

P(TB(O,l) < t) < c1t.
(b) There exist co and c3 depending only on A such that

P(TB(O,l) > t) < CQ€_C3t.

Proof. Write B for B(0,1). Let f be a C? function that is zero at 0, one on 9B, with
0;; f bounded by a constant c4. Since [P is a solution to the martingale problem,

tATB
E f(Xinry) =E / Lf(Xs)ds < est,
0

where c5 depends on ¢4 and A. Since f(Xiargz) > 1(75<4), this proves (a).
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To prove (b), look at X!. Since P is a solution to the martingale problem taking
f(z) = acl in (14 4) shows that X} is a local martingale. Taking f(x) = 2% in (14.4) shows
that ( fo a11(Xs) ds is also a local martingale. So d(X1'), = a11(X:)dt, and X}
is a nondegenerate tlme change of a one-dimensional Brownian motion. X! stays in the
interval [—1,1] up until time ¢ only if a Brownian motion stays in the interval [—1,1] up
until time cgt, and this is known to be bounded by cre~ ¢!, If X, has not exited B by
time ¢, then X! has not exited [—1,1], and (b) follows. O

An important property of X; is that it satisfies a support theorem. Suppose X,
satisfies (15.1). We suppose that 0,071, and b are bounded, but we impose no other

smoothness conditions. Let a = oo T

Lemma 15.3. Suppose Y; = M; + A; is a continuous semimartingale with dA;/dt and

d(M),/dt bounded above by c; and d(M),/dt bounded below by c; > 0. If ¢ > 0 and
to > 0, then

P(Sup |Y9| < 8) > C3,
SStO

where c3 > 0 depends only on cq, cs, €, and t.

Proof. Let B; = inf{u : (M), > t}. Then W; = Mp, is a continuous martingale with
quadratic variation equal to ¢; hence by Lévy’s theorem, W; is a Brownian motion. If
Zy =Yp, = Wi+ Ey, then E;, = fot es ds for some ez bounded by ¢4, where ¢4 depends only

on ¢; and cg. Our assertion will follow if we can show

P( sup |Zs] <€) > cs.

Sgclto

We now use Girsanov’s theorem. Define a probability measure Q by

to 1 to
d@/szexp(—/ es AW, — 5/ e?ds)
0 0

on F;,. Under P, W; is a martingale, so under Q we have that

. t
Wt—</0 (—es)dW,W>t:Wt+/O ey ds

is a martingale with the same quadratic variation as W has under P, namely, ¢. Then

under QQ, Z; is a Brownian motion. By a well known property of Brownian motion

Q( sup |Zs| <e) > cs,

SSClto
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for c; depending only on ¢ and c1tg. So if C is the event {sup ., |Zs| <€},

1/2

s < Q(C) = /C (dQ/dP) dP < (IE (d@/dP)2)1/2 (IP(C))

by the Cauchy-Schwarz inequality. The proof is concluded by noting that dQ/dP has a

second moment depending only on ¢4 and ¢p. O

We use this lemma to obtain an analogous result for Xj;.

Theorem 15.4. Let ¢ € (0,1), to > 0. There exists ¢; depending only on the upper
bounds of o, b, and o~ such that

P(sup | Xy — Xo| <€) > c;.
SStQ

Proof. For notational simplicity assume Xy = 0. Let y = (¢/4,0,...,0). Applying It6’s
formula with f(z) = |z — y|? and setting V; = | X; — y|?, then V; = (¢/4)? and

AV =2 (X} —y)dXi+ Y d(X7),.

If we set Y; equal to V; for ¢t < inf{u: |V,| > (¢/2)?} and equal to some Brownian motion
for ¢ larger than this stopping time, then Lemma 15.3 applies and

P(sup [V, — Vol < (¢/8)?) = P(sup |Y; — Yol < (£/8)?) = ez,
s<to s<to
By the definition of y and V4, this implies with probability at least co that X; stays inside
B(0,¢). O

We can now prove the support theorem for X;.

Theorem 15.5. Suppose ¢ and b are bounded, o~ is bounded, = € R?% and X, satisfies
(15.1) with Xo = x. Suppose ¥ : [0,t] — R? is continuous with 1(0) = z and & > 0. There
exists c1, depending only on €,t, the modulus of continuity of 1, and the bounds on b and
o such that

P(sup | Xs —¥(s)| <€) > 1.

s<t

This can be phrased as saying the graph of X stays inside an e-tube about . By
this we mean, if G, = {(s,y) : |y —(s)| <e,s <}, then {(s, X;) : s <t} is contained in
G, with positive probability.
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Proof. We can find a differentiable function ¢ such that 12)\(0) = z and the £/2 tube
about (which is G%ﬂ in the above notation) is contained in Gf,, the e-tube about 1. So
without loss of generality, we may assume v is differentiable with a derivative bounded by
a constant, say cs.

Define a new probability measure Q by

d(@/dIP’:eXp(/otw'(s) s) AW, — —/ o (s )|2d8)

on F;. We see that

/w )dWS,X>
/w’<s> dWs,/
/ W(s) ds = (1) — v

So by the Girsanov theorem, under Q each component of X; is a semimartingale and
fo s)ds — 1;(t) is a martingale for each i. Furthermore, if

W, = /t o (Xy) [dXy — b(X) dt — ¢/ (t) dt],

each component of W is a continuous martingale, and a calculation shows that d(Wi, Wi )
= 0;; dt under Q. Therefore W is a d-dimensional Brownian motion under Q. Since

d(X; — (1)) = o(X;) dW, + b(X,) dt,

then by Theorem 15.4,
Q(sup [ Xs —9(s)| <€) = c3.

s<t

Very similarly to the last paragraph of the proof of Lemma 15.3, we conclude

P(sup | X5 — ¥(s)| <€) > ¢4. 0
s<t

16. Convexity.

In this section we will let the a;; be smooth (C?, say) and strictly elliptic, and
assume that the drift coefficients are identically 0. Let D be either B(0, 1) or a unit cube
centered at 0.
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Suppose u is continuous. The upper contact set of u is the set

U, ={y € D : there exists p € R? such that
u(z) <wu(y) +p- (z—y) for all x € D}.

Here p - (x — y) denotes the inner product. In this definition p will depend on y. A point
y is in U, if there is a hyperplane, namely, u(x) = u(y) + p - (z — y), that lies above the
graph of u but touches the graph at (y,u(y)). With this interpretation we see that when u
is concave (i.e., —u is convex), then U, = D, and conversely, if U, = D, then u is concave.

When u € C!, for y € U, there is only one p such that u(z) < u(y) +p- (z —v),
namely, p = Vu(y). For u € C? let H, denote the Hessian matrix:

(Hu)ij(x) = Ojju(x).
Proposition 16.1. Ifu € C? and y € U,, then H,(y) is nonpositive definite.

Proof. Let h be a unit vector. y € U, implies there exists p such that u(y + eh) <
u(y) + ep-h and u(y — eh) < u(y) — ep - h. Combining,

u(y + eh) + u(y — eh) — 2u(y) < 0.
Dividing by €2 and letting € — 0 gives hT H,(y)h < 0. O
Let S, (y) be the set of slopes of supporting hyperplanes to u at y. That is,
Su(y) = {p € R? : u(x) <u(y) +p- (x —y) for all z € D}.

As we noted above, S,(y) # 0 if and only if y € U,, and if u € C! and y € U,, then
Su(y) ={Vu(y)}. Let
Su(A) = U Su(y).

yeA

Let |A| denote the Lebesgue measure of A and det H the determinant of H. Recall
that if V is a neighborhood in D, v : D — R% is in C*, and v(V) is the image of V under
v, then

o(V)] < /V [det |, (16.1)

where J, is the Jacobian of v. (We have inequality instead of equality because we are not

assuming v is one-to-one.)
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Proposition 16.2. Suppose u is continuous on D and C? in D. There exists ¢; not
depending on u such that

1/d
supu < supu+cl</ |detHu|>
D oD U

Proof. Replacing u by u — supyp u, we may assume supyp u = 0. We first show

1S,(D)] =[S (Un)] < / | det H,|. (16.2)

u

Since S, (y) = {Vu(y)}, the Jacobian matrix of the mapping S, is H,.

Next suppose u takes a positive maximum at y € D. Let v be the function such
that the region below the graph of v is the cone with base D and vertex (y,u(y)). More
precisely, let G; be the smallest convex set in D X [0,00) containing 9D x {0} and the
point (y,u(y)); let v(x) = sup{z > 0: (x,2) € G1} for x € D.

Suppose p € S,(D). We look at the family of hyperplanes o + p - (x — y). If we
start with « large and let o decrease to —oo, there is a first hyperplane that touches the
graph of u (not necessarily at (y,u(y))). Consequently p € S, (D). We have thus shown
that S,(D) C S,(D).

We see that

S/D)] < 1Su(D) < [ |det . (16.3)

Uy

We now compute |S, ({y})|. If each coordinate of p is between —u(y)/d and +u(y)/d,
then p € S,(y). So

1Su(D)| 2 1Su({y})| = c2(u(y)/d)".
Combining with (16.2),

u(y)? < c;'d4S,(D)| < 03/ | det H,|. O

u

We will use the inequality
1 d
1/d .
EZ)\J-EH)\J-/, A >0, j=1,....d (16.4)
j= =1

One way to prove (16.4) is to let Q = {1,2,...,d}, let IP assign mass 1/d to each point of
(2, let X be the random variable defined by X (j) = A;, and apply Jensen’s inequality to
the convex function —logz. We then have

d 1 1

—log (Z)\J8> < EZ —log \j)
=1 =1

which implies (16.4).

We now prove a key estimate due to Alexandroff-Bakelman-Pucci.
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Theorem 16.3. Suppose L € N'(A,0), the coefficients of L are in C?, u € C?, and Lu = f
in D. There exists ¢; independent of u such that

1/d
supuﬁsupu-i—q( |f(1‘)|dd:r> :
D oD D

Proof. Fix y € Uy, let B=—H,(y), and let A be the matrix a(y). Let A1,..., A\ be the
eigenvalues of B. Since H,, is nonpositive definite, A\; > 0. Let P be an orthogonal matrix

and C a diagonal matrix such that B = PTCP. Note |det H,| = det B = \; --- \q and
d

= Z A’LJB]Z = Z a,” 8Zju
j=1
Then
Za” )0iju(y) = trace (AB) (16.5)

d
= trace (APTCP) = trace (CPAPT) = Z Nj(PAPT);;
j=1
Since A is uniformly positive definite, there exists ¢z such that (PAPT);; > ca, so by

(16.4),
Y) =Y el =cad Y (N;/d)
J J
> cpd(J[ M)V = cod| det H, |4,
J

Taking dth powers, integrating over U,, and using Proposition 16.2 completes the proof.
]

17. Green functions.

Let P be a solution to the martingale problem for £ started at x (assuming one
exists) and let E be the corresponding expectation. If D is a domain, a function Gp(z,y)
is called a Green function for the operator £ in the domain D if

B [ ey ds = [ G s dy (17.1)

for all nonnegative Borel measurable functions f on D. The function G*(z,y) is called the
A-resolvent density if

A L (172)

for all nonnegative Borel measurable f on R,
An immediate consequence of the Alexandroff-Bakelman-Pucci estimate is the fol-
lowing.
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Theorem 17.1. Suppose £ € N(A,0) and the diffusion coefficients are in C?. Then there
exists ¢; depending only on A such that

‘E /OTB(O,I> f(Xs) dS‘ SCl(/B(O,l) |f(y)|ddy>1/d'

Proof. We prove this inequality for f that are C? in B(0,1); a limit argument then
yields the inequality for arbitrary f. Let u(y) = EY [[°®" f(X)ds. uis C? in B(0,1),
continuous on the closure of B(0,1), and Lu = —f. In fact, u is 0 on the boundary of
B(0,1). Now apply Theorem 4.3. O

Corollary 17.2.
Gp(z, ) € LYE4=D(B).

Proof. By Theorem 17.1 and (17.1),
[ Gt i) dn| < all flu
B

for all f € L4(B). The result follows by the duality of L¢ and L%/ (4=1), O

We also have

Theorem 17.3. Suppose L € N(A,0) and the diffusion coefficients are in C%. There
exists ¢; not depending on f such that if f € L%, then

B [Tersceyal<al [ 1rwla)”

Proof. By the smoothness of the diffusion coefficients, there is a unique solution to the
martingale problem for £ starting at each & € R?; we denote it P*. Moreover, (P*, X;)
forms a strong Markov family.

Let Sp = 0 and S;11 = inf{t > S; : | Xy — Xg,| > 1}, i = 0,1,... Then S;41 =
S; + 51 06g,. By Proposition 2.3, there exists ¢y such that sup, P*(S; < tp) < 1/2. Then

E%e 1 < P¥(S] < to) 4+ e MOP*(S) > tg)
= (1— e M0)P7(S) < tg) + e Mo,
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So if p = sup, E”e*%1, then p < 1. By the strong Markov property,
[ Ze—ASit1 :Ex(efxsiEm(eﬂ\sloesi |]_-S')> < pETeASi,

and by induction E *e~*% < pi.
We now write

Y — [ At
E‘"”/O e f(Xt)dt:iz:;/Si e M f(Xy) dt. (17.3)

By the strong Markov property at time S; and Theorem 17.1,

Sit1 S1
‘]Ew / e M f(Xy) dt‘ = ‘Em (e*’\SiEXSi / e Mf(Xy) dt) ‘
S 0

< B e | flla < cop'|| fla-

Substituting in (17.3) proves the theorem. O

This implies G (z, -) € L#/(d=1),

One disadvantage of Theorems 17.1 and 17.3 is that we required the diffusion coeffi-
cients to be smooth. We will remove this restriction in the next section by an approximation
procedure due to Krylov. Earlier Krylov had also proved, however, that Theorems 17.1
and 17.3 hold whenever X; = x + fg os dWs, where o4(w) is an adapted, matrix-valued
process that is bounded and is uniformly positive definite (that is, there exists ¢; such that
yTos(w)y > c1]y|? for all y € RY, where ¢; is independent of s and ¥).

18. Resolvents.

In this section we present a theorem of Krylov on approximating resolvents and then
apply it to extend Theorem 17.3 to arbitrary solutions of the martingale problem for an
elliptic operator £. We suppose that £ € N (A,0) for some A > 0, but make no smoothness
assumptions on the coefficients. Let P be any solution to the martingale problem for £
started at zg.

Recall that fxg(z) = [ f(y)g9(z —y) dy. Let ¢ be a nonnegative radially symmetric
C*° function with compact support such that fRd ¢ =1and ¢ >0 on B(0,r) for some r.

Let pc(x) = e %p(z/e).

Theorem 18.1. Let A > 0. There exist a;; in C>° with the following properties:
(i) if £¢ is defined by

l\DIH

Z )9y, f (), (18.1)
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then L5 € N'(A,0), and

(ii) if P¥ is the solution to the martingale problem for L¢ started at x and

CMh(z) = E* / e Mh(X,) dt (18.2)
0
for h bounded, then
(GXf * 9.)(w0) — E / e F(X,) dt (18.3)
0

whenever f is continuous.

It turns out that G2 f is equicontinuous in ¢, so that in fact G2 f(x¢) converges to
the right-hand side of (18.3).

The a;; depend on P, and different solutions to the martingale problem could con-
ceivably give us different sequences ag;.

Proof. Define a measure p by
#«7)=:Et/m e Mlo(X,)dt. (18.4)
0

By the support theorem, for each y € R? and s > 0, there is positive probability under P
that X; enters the ball B(y, s) and stays there a positive length of time. So u(B(y,s)) >0
for all y and s. Define

¢ (z) = f pe(r — y)aij (y) p(dy) '
Y J el —y) p(dy)

By our assumptions on ¢, the denominator is not zero. It is clear that (i) holds.

(18.5)

Suppose u is in C? and bounded. By the product formula and Ito’s formula,
t t
e Mu(Xy) = u(Xo) — / u(Xs)he ™ ds +/ e du(X)]s
0 0
t
= u(Xo) — / u(X)Ae™* ds + martingale
0
t
+ / e M Lu(X,) ds.
0
Taking expectations and letting t — oo,
u(zo) = E / e (v — Lu)(X,) ds = / (M — Lu)(z) pu(d). (18.6)
0
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We next apply (18.6) to u = v x ., where v is a bounded and C? function. On the
left-hand side we have [v(zo — y)p:(y)dy. Note that

L(v*p)( Z a;j(2)0i; (v * @:)(2) (18.7)
:—XMW ((Dij0) * e)(2)

= — Z/a” 2)0;;v(x) e (x — 2) dx.
However, by (18.5),

/QM@MAx—@ u(dz) = U()/wdw—wuww~ (18.8)

Combining (18.6), (18.7), and (18.8),

/v(xo —y)pe(y) dy = /[A(v *pe) — L(v* )] (z) p(dz) (18.9)

— [ o= ia)enta - ) utdy) da.

Suppose f is smooth, and let v(x) = G2f(x). v is in C? and bounded and (\ —
Lf)v = f. Substituting in (18.9),

[ G210 - yyectdy = [ [ H@yputo— v uldy) do (18.10)

= /f*soe(y) p(dy).

By a limit argument, we have (18.10) when f is continuous. Since f is continuous, f * @,
is bounded and converges to f uniformly. Hence

/f*soe p(dy) —>/f /OOO e Mf(Xy)dt. 0

It is easy to see that if the a;; are continuous, then af; converges to a;; pointwise.

J
Defining b by the analogue of (18.5), there is no difficulty extending this theorem
to the case L € N (A1, As), Ay > 0.
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Theorem 18.2. Let P be as above. There exists ¢; not depending on f such that
[o.@]
0

‘E/ e MF(X,) dt| < e fla-

Proof. By Theorem 18.1, the left-hand side is the limit of |G5 f * e (x0)| if f is continuous
and bounded. The coefficients in £° are smooth, so by Theorem 17.3 ||G2 f|lco < 1| f]l4;

c1 independent of €. This proves the proposition for f smooth, and the case of general f
follows by a limit argument. O

Corollary 18.3. Under the assumptions of Theorem 18.1,

(Gg*%meeE/ e f(X,) dt,
0

if f is bounded.

Proof. We start with (18.10). By a limit argument, we have (18.10) holding for f bounded.
So we need to show that the right-hand side of (18.10) converges to [ f(y) u(dy). Since
f is bounded, f * . converges to f almost everywhere and boundedly. By Theorem 18.2
and (18.4), u is absolutely continuous with respect to Lebesgue measure. Then

/&*%@mwwzjf*%@mmmw@
— / f(y)(du/dy) dy = / f(y) n(dy)

by dominated convergence. O

19. Harnack inequality.

In this section we prove some theorems of Krylov and Safonov concerning positive
L-harmonic functions. Recall that a function h is £-harmonic in a domain D if h € C?
and Lh = 0 in D. These results were first proved probabilistically by Krylov and Safonov
and are a good example of the power of the probabilistic point of view.

In this section we assume that £ € N(A,0) so that the drift coefficients are 0. We
assume that for each € R? we have a solution to the martingale problem for £ started
at = and that (P?, X;) forms a strong Markov family.

Let Q(z,r) denote the cube of side length r centered at x. Our main goal is to show
that X, started at z must hit a set A before exiting a cube with positive probability if A
has positive Lebesgue measure and x is not too near the boundary. The first proposition
starts things off by handling the case when A nearly fills the cube. Recall that we are
using |A| to denote the Lebesgue measure of A.
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Proposition 19.1. There exist € and ¢; = ¢1(¢) such that if x € Q(0,1/2), A C Q(0,1),
and |Q(0,1) — A| < ¢, then P*(T4 < 7g(0,1)) > 1.

Proof. Let us write 7 for 7g(g,1). Recall there exist ¢y and c3 not depending on z such
that E®7 > ¢y and E?72 < ¢3.
Note that E® [ 14¢(Xs)ds =E [ 1(0(0,1)—4)(Xs) ds. Since

E*(r — (1t Atg)) <E*(1;7 > tp) < Em7'2/t0,

we can choose tg large enough so that E*(7 — (7 A tg)) < c2/4. Then

Em/ 1(@(071)_A)(X5)d8 (19.1)
0
to
S 02/4+6t0Em/ 6_51(Q(071)_A)(X5) ds
0

< ca/d+ etO]Ew/ e "1(Q0,1)-4)(Xs) ds
0
< co/d+ 5| 1go.1)-alld

< 02/4 + C56t0€1/d.

If € is chosen small enough, then E [ 14¢(X,) ds < ¢2/2.
On the other hand,

o <E*r=E*(1;Ta <) —|—IE$/ 14e(X5)ds
0

< (E*T)Y2PT(Ta < 7)Y2 + c2/2
< &2 (P*(Ta < )2 + /2,

and the result follows with ¢; = ¢3/4cs. O

We used Theorem 18.2 because it applies to arbitrary solutions to the martingale
problem, whereas Theorem 17.1 requires the a;; to be smooth. As noted at the end of
Section 5, Theorem 17.1 actually holds for arbitrary solutions to the martingale problem:;
if we used that fact, we then could have obtained the estimate in (19.1) more directly.

Next we decompose (0, 1) into smaller subcubes such that a set A fills up a certain
percentage of each of the smaller subcubes. If () is a cube, let () denote the cube with the
same center as () but side length three times as long.
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Proposition 19.2. Let ¢ € (0,1). If A C Q(0,1) and |A| < g, then there exists D such
that (i) D is the union of cubes R; such that the interiors of the R; are pairwise disjoint,
(ii) |A] < q|D N Q(0,1)|, and (iii) for each i, |AN R;| > q|R;|.

Proof. We will do the case d = 2; the higher-dimensional case differs only in the notation.
We form a collection of subsquares R = {R;} as follows. Divide Q(0,1) into four equal
squares 1, Q2, Q3, and Q4 with disjoint interiors. For j =1,2,3,4, if |[AN Q;| > ¢|Q;],
we let (); be one of the squares in R. If not, we split @); into four equal subsquares
Qj1,Qj2,Qj3, Qja and repeat; @, will be one of the R; if [ANQ x| > ¢q|Q k|, and otherwise
we divide @);;. To be more precise, let Q,, be the collection of squares of side lengths 27"
with vertices of the form [j/2",k/2"] for integers j and k. An element Q' of Q,, will be
in Rif [ANQ'| > ¢|Q’'| and Q' is not contained in any Q" € Qo U QU ---U Q,,_; with
ANQ"| > qlQ"]

We let D = U;R; where the union is over R; € R. Assertions (i) and (iii) are clear
and it remains to prove (ii). Recall that almost every point z € A is a point of density of
A, that is, |B(z,7) N A|/|B(z,7)| — 1 a.e. for z € A; this follows by the Lebesgue density
theorem. If z is a point of density of A and T,, denotes the element of 9, containing z,
then |1, N A|/|T,,| — 1. If z is a point of density of A and z is not on the boundary of
some square in Q,, for some n, it follows that z must be in some R; € R. We conclude
that |A — D| =0.

We form a new collection of squares S. We divide Q(0, 1) into four equal subsquares
Q1,Q2,Q3,Q4. If Q; C D, it will be in §; otherwise split @); into four subsquares and
continue. More exactly, Q' € Q,, will be in S if Q" C D but Q' is not contained in any
Q" € QyU---Q,_1 for which Q" C D.

Since D is the union of cubes R;, then |[DNQ(0,1)| = >, |Si| where the sum is over
S; € §. Since almost every point of A is contained in D and almost every point of D is in
one of the S;’s that are in S, we conclude |A| =), [S; N A|. It thus suffices to show that

AN S| < qlS) (19.2)

for each S; € S. We then sum over i and (ii) will be proved.

Consider S; € §. If S; = Q(0, 1), we are done by the hypotheses on A. Otherwise S;
is in Q,, for some n > 1 and is contained in a square Q' € Q,,_1. Let C1, Cy, C3 denote the
other three squares of Q,, that are contained in )’. Since S; € S, then Q' = S;UC;UC>UC3
is not in §. Since S; C D, at least one of the squares C7,C5, C3 cannot be contained in
D. We have S; UC; UCy U (C3 C §Z §Z is not contained in D, which implies that S; ¢ R.
We thus have S; UCy UCy U Cs is not contained in D but S; ¢ R; this could only happen
if |S; N A| < ¢|S;|, which is (19.2). O
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Lemma 19.3. Let r € (0,1). Let y € Q(0,1) with dist (y,0Q(0,1)) > r, L € N(A,0),
and P be a solution to the martingale problem for L' started at y. If Q(z,7) C Q(0,1),
then P(Tq (., < Tg(0,1)) = ¢(r) where ((r) > 0 depends only on r and A.

Proof. This follows easily from the support theorem. O

We now prove the key result, that sets of positive Lebesgue measure are hit with
positive probability.

Theorem 19.4. There exists a nondecreasing function ¢ : (0,1) — (0,1) such that if
B C Q(0,1), |[B] >0, and = € Q(0,1/2), then

P*(Tp < 1q(0,1)) = ¢(IB])-

Proof. Again we suppose the dimension d is 2 for simplicity of notation. Set

o(e) = inf{PY(Ts <7Q(z,r)) : 20 € RY R>0,y € Q(z0,R/2),
’B| 2 ElQ(ZO7R)‘ﬂB g Q(ZOaR)}‘

By Proposition 19.1 and scaling, ¢(¢) > 0 for ¢ sufficiently close to 1. Let go be the infimum
of those ¢ for which ¢(g) > 0. We suppose qo > 0, and we will obtain our contradiction.

Choose q > qo such that (¢ + ¢?)/2 < qo. This is possible, since gy < 1 and so
(90+45)/2 < qo- Letn = (g—¢*)/2. Let B = (¢A\(1—¢q))/16 and let p be equal to (((1—0)/6)
as defined in Lemma 19.3. There exist zg € R?, R > 0, B C Q(20, R), and = € Q(z0, R/2)
such that ¢ > |B|/|Q(z0, R)| > ¢ — n and P*(Ts < 7g(z,r)) < pe(q)?. Without loss of
generality, let us assume zgp = 0 and R = 1, and so we have P*(Tg < 19(0,1)) < pe(q)*.

We next use Proposition 19.2 to construct the set D (with A replaced by B). Since
|B| > g —n and

IB| < ¢/DNQO, 1)),

then

B — 1
DnQo, z Bl ez _atl
q q 2

Let D= Dn Q(0,1 — ). Then |1N)| > ¢. By the definition of ¢, this implies that

P*(T5 < 7q(0,1)) = ¢(a)-
We want to show that if y € 13, then

PY(Tp < Tg(0,1)) = pe(q)- (19.3)
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Once we have that, we write

Pw(TB < TQ(O,l)) > P$<T5 <Tp < 7_Q(O,l))
> E*(PXTON (T < 1901))i T < TQ01)
> pp(@)P* (T < To(0,1)) = pe(a)?,

our contradiction.

We now prove (19.3). If y € OD, then y € R; for some R; € R and dist (y,0Q(0,1))
>1— (3. Let R be the cube with the same center as R; but side length half as long. By
Lemma 19.3,

PY(Tr: < 7q(0,1)) 2 p-

By the definition of ¢ and the fact that R; € R, then |B N R;| > q|R;|. By the definition
of ¢(q), we have P*(Tsnr, < Tr,) > (q) if z € R}. So by the strong Markov property,

X (Thw
PY(Tp < 79(0,1)) = EY(P ( Ri)(TB < 7R,); TR < TQ(0,1))
> po(q). m

Theorem 19.4 is the key estimate. We now proceed to show that £-harmonic func-
tions are Holder continuous and that they satisfy a Harnack inequality. A function A is
L-harmonic in D if h € C? and Lh = 0 in D. If h is £L-harmonic, then by It6’s formula,
h(Xinrp) is a martingale. There may be very few £-harmonic functions unless the coeffi-
cients of £ are smooth, so we will use the condition that h(X:a-,) is a martingale as our
hypothesis.

Theorem 19.5. Suppose h is bounded in Q(0,1) and h(Xinrq,, ,,) is a martingale. Then
there exist a and c; not depending on h such that

h(z) = h(y)] < arl|blloc]e =yl 2,y € Q(0,1/2).

Proof. Define Osc g h = sup,¢p h(z) — inf,ep h(z). To prove the theorem, it suffices to
show there exists p < 1 such that for all z € Q(0,1/2) and r < 1/4,

Osc h <p Osc h. (19.4)
Q(z,r/2) Q(zr)

If we look at C'h + D for suitable constants C' and D, we see that it is enough to consider
the case where infg(. ) h = 0 and supg(, ) h = 1. Let B = {z € Q(z,r/2) : h(z) > 1/2}.
We may assume that |B| > (1/2)|Q(z,r/2)|, for if not, we replace h by 1 — h.
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If v € Q(z,7/2), then h(x) < 1. On the other hand, since we know h(Xt/\TQ(o,l)) is

a martingale,
h(z) = E WX (Tqem A TB))]

> (1/2)P*(Tp < 1q(=r) = (1/2)p(27 D),

from Theorem 19.4 and scaling. Hence Oscg(;,rj2)h > 1 — (2741 /2. Setting p =
1 — (27(4+1/2) /2 proves (19.4). O

Theorem 19.6. Suppose L € N(A,0). There exists ¢; depending only on A such that
if h is nonnegative, bounded in Q(0,16), and h(X(t A Tg(,16))) Is a martingale, then
hz) < cih(y) if 2,y € Q(0,1).

Proof. If we look at h + ¢ and let ¢ — 0, we may assume h > 0. By looking at Ch,
we may assume infgg 1/2) h = 1. By Theorem 19.5, we know that A is Holder continuous
in Q(0,8), so there exists y € Q(0,1/2) such that h(y) = 1. We want to show that h is
bounded above by a constant in Q(0, 1), where the constant depends only on A.

By the support theorem and scaling, if z € (0, 2), there exists ¢ such that

PY(To2,1/2) < TQ(0,8)) = 0.

By scaling, if w € Q(x,1/2), then P¥(T((,1/4) < Tg(0,8)) = 0. So by the strong Markov
property,
PY(TQ,1/4) < TQ0,8)) = 6°.

Repeating and using induction,

Py(TQ(x’Q—k) < TQ(078)) > ok,

Then
1= h(y) > EY M X1@Q@2-))); To@.2-+) < TQ0,8)]
> 5k( inf h),
Q(z,27k)
or
inf h <ok (19.5)
Q(x,27Fk)

By (19.4) there exists p < 1 such that

Osc h<p Osc h. (19.6)
Q(z,2—(k+1)) Q(x,2—F)

Take m large so that p=™ >6-2/(57! —1). Let M = 2™. Then

5—2
> Osc  h. (19.7)

O h>p7 ™ O h >
Q(x,zx%—k) P Q(:v,SQC—’“) T 0l —1Qz,2k)
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Take K large so that vdM2~% < 1/8. Suppose there exists zo € Q(y,1) such
that h(zg) > 6~ %~1. We will construct a sequence x1, o, ... by induction. Suppose we
have z; € Q(v;_1, M2~ E+i=V) with h(z;) > 6 K771 j < n. Since |z; — 2, 1| <
VAM2-E+=1 1 < j <n, and |zg — y| <1, then |z, —y| < 2. Since h(z,) > 6 K1
and by (19.5), infg(,, 2-x-nyh < 5757,

Osc h>§ K571 —1).
Qzyn,27K—m)

So Osc g(a,,,m2-5-nyh > §~K—=n=2 which implies that there exists

Tnp1 € Q(zy, M275~") with h(z,41) > 6 %~"72 because h is nonnegative. By induc-
tion we obtain a sequence z,, with z,, € Q(y,4) and h(x,) — oco. This contradicts the
boundedness of h on Q(0,8). Therefore h is bounded on Q(0,1) by §—¥-1. O

Corollary 19.7. Suppose D is a bounded connected open domain and r > 0. There
exists ¢; depending only on D, A, and r such that if h is nonnegative, bounded in D, and
W Xinrp ) Is a martingale, then h(z) < e1h(y) if x,y € D and dist (x,0D) and dist (y, 0D)

are both greater than r.

Proof. We form a sequence z = yo, y1, Y2, - - . , Ym = y such that |y;+1—v;| < (a;+1/Na;)/32,
where a; = dist (y;,0D) and each a; < r. By compactness we can choose M depending
only on r so that no more than M points y; are needed. By scaling and Theorem 19.6,
h(y;) < cah(yit+1) with ¢ > 1. So

h(z) = h(yo) < c2h(y1) < -+ < B h(ym) = c5'h(y) < 5" h(y). O

20. Existence.

In this section we discuss the existence of solutions to the martingale problem for
an elliptic operator in nondivergence form. Let £ be the elliptic operator in nondivergence
form defined by

d

d
Lf@) = % 3 a0 @)+ b0 S @), fec? (20.1)

1,7=1 =1
We assume throughout that the a;; and b; are bounded and measurable. Since the co-
efficient of 0;; f(x) is (a;;(x) + a;i(x))/2, there is no loss of generality in assuming that
Q5 = Qj4. We let

N (A1, A) ={L : sup ||bi]|cc < A2 and (20.2)
i<d

d
Aly|? < Z yiyjaii(z) < A7Hyl? for all z,y € R?Y.

1,7=1
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If £L e N(A, B) for some A > 0, then we say £ is uniformly elliptic.
A probability measure P is a solution to the martingale problem for L started at x
if
P(Xg=2)=1 (20.3)

and

t
FOX) — FX0) = [ £A(X.)ds (20.9
0
is a local martingale under P whenever f is in C?(R?).

We begin by showing that continuity of the coefficients of L is a sufficient condition
for the existence of a solution to the martingale problem. For simplicity let us assume that
the a;; are uniformly continuous and that the b; are 0.

Theorem 20.1. Suppose the a;; are bounded and uniformly continuous and the b; are
zero. Then there exists a solution to the martingale problem for L started at x.

Proof. Let aj; be uniformly bounded C? functions on R? that converge to a;; uniformly

on R, Let .

> a(2)di f (=), (20.5)

,j=1

Lnf(z) =

DO | —

let o,, be a Lipschitz square root of a™, and let X™ be the solution to
dX; = o™ (X]) dWy, Xy ==,

where W; is a d-dimensional Brownian motion. Let P,, be the law of X™. Our desired P
will be a limit point of the sequence {IP,,}.

Each P" is a probability measure on Q = C([0,00)). A collection of continuous
functions on a compact set has compact closure if they are uniformly bounded at one
point and they are equicontinuous. This implies easily that the P,, are tight.

Let P, be a subsequence that converges weakly and call the limit P. We must
show that PP is a solution to the martingale problem. If g is a continuous function on R?
with compact support, g(Xg) is a continuous function on €2, so

9(x) = En,9(Xo) — Eg(Xo).

Since this is true for all such g, we must have P(Xy = z) = 1.
Next let f € C?(R?) be bounded with bounded first and second partial derivatives.
To show

E[£(X,) — f(X.) - / CH(X,)dr:A] =0
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whenever A € Fj, it suffices to show

m

t
B[{s(x) - £x) - [ £rx)ar} [[ax)] =0 (206)
s i=1
whenever m > 1,0 <7y <--- <r,, <s, and the g; are continuous functions with compact
support on R?. Setting

Vi) = {rx) - 150 - [ £s0c)ar} [0,

Y is a continuous bounded function on 2, so EY = limy_,oc E,, Y. Since P, is a solution
to the martingale problem for £,,, ,

B [{7000 — 10 - [ £sx dr}ng x| =0

Since the g; are bounded, it suffices to show

E,, [/j(ﬁf—ﬁnkf)(xr)mr} =0 (20.7)

as k — oo.
Let € > 0. Choose k large so that |a;;(y) — a;F(y)| < eif4,j = 1,...,d. Since
f € C?, there exists ¢y such that

t
Bo [ IEF = Las EC] dr < ealt = s)e < cae

which proves (20.7).

Finally, suppose f € C? but is not necessarily bounded. Let fy; be a C? function
that is bounded with bounded first and second partial derivatives and that equals f on
B(0,M). If Ty, = inf{t : |X¢| > M}, the above argument applied to fp; shows that
far(Xe) — fM(XO) - ft Lfu(Xs)ds is a martingale, and hence so is f(Xiar,,) — f(Xo) —
ft/\TM s)ds. Since X; is continuous, Ty — oo a.s., and therefore f(X;) — f(Xo) —
fo Lf(X ds is a local martingale.

O

If the operator L is uniformly elliptic, we can allow the b; to be bounded without
requiring any other smoothness. If £ is given by (20.1), let £" be defined by

l\DI»—

Z dij f (x (20.8)
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Theorem 20.2. Suppose L € N(A1,As). If there exists a solution to the martingale
problem for L' started at x, then there exists a solution to the martingale problem for L
started at x.

Proof. Let P’ be a solution to the martingale problem for £’ started at z. Let o(z) be a
positive definite square root of a(z). Then under P’ X7 is a martingale and d(X*, X7), =
a;;(X¢)dt. Letting W; = fg o 1(X,)dX,, we see that W; is a d-dimensional Brownian
motion with quadratic variation (W W7), = §;;t. Hence under P’ the process W; is a
Brownian motion and
dX; = o(Xy) dW;.

Define a new probability measure P by setting the restriction of dP/dP’ to F; equal

to

M, = exp (/Ot(ba‘l)(Xs)dWS + % /Ot |(ba‘1)(XS)|2ds>. (20.9)

Under ', M; is a martingale. By the Girsanov theorem, under P each component of

X, — </A(bo'_1)(Xs) dWS,X>t — X, - /t b(X,) ds

is a martingale and the quadratic variation of X remains the same. If

’Wt:/oto—l(xs>d(xs—/os b(XT)dr>,

then under P, Wt is a martingale with <Wi,Wj ), = 0i;t, and hence W is a Brownian
motion. Thus
dX: = o(Xy) dW, + b(Xy) dt.

P is therefore a solution to the martingale problem for L. O

As a consequence of Theorems 20.1 and 20.2, there exists a solution to the martin-
gale problem if £ € N (A1, Az) for some Ay, Ay > 0 and the a;; are continuous.

Even if the a;; are not continuous, a solution to the martingale problem will exist
if uniform ellipticity holds.

21. The strong Markov property.
We are not assuming that our solutions are part of a strong Markov family. As
a substitute we have the following. Let P be a solution to the martingale problem for
L started at = and let S be a finite stopping time. Define a probability measure Pg on
Q= C([0,00)) by
Pg(A) =P(Aofg). (21.1)
Here 0g is the shift operator that shifts the path by S. Let Qg(w,dw’) be a regular
conditional probability for Pg[- | Fg].
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Proposition 21.1. With probability one, Qs(w, -) is a solution to the martingale problem
for L started at Xg(w).

Proof. If A(w) = {w': Xo(w') = Xg(w)}, we first show that Qg(w, A(w)) = 1 for almost
every w. To do this, it suffices to show that

P(B) = Ep[Qs(w, A(w)); B]
whenever B € Fg. The right-hand side, by the definition of Qg, is equal to

Ep[Ps(A | Fs); Bl = Ep[P(Xs = Xgo0s | Fs); B]
= P(Xg = Xg; B) = P(B).

Next, if f € C? and is bounded with bounded first and second partial derivatives,
we need to show that

M, = f(X,) — f(X0) - /O CF(X,)dr

is a martingale under Qg for almost every w. Let u > t. Since My 0f0g = M1 s — Mg is a
martingale with respect to Fg, then

Ep[M, 060s;BoflsN Al =Ep[M;ofg;BoflsnN A
whenever B € F; and A € Fg. This is the same as saying
Ep[(M,1p)00g; Al = Ep[(Mi1p) o fg; A]. (21.2)
Since (21.2) holds for all A € Fg, by the definition of Qg,
E qs[Mu; B] = Eqg [M;; B]

whenever B € F;, which is what we needed to show.
Finally, if f € C?, then M; is a local martingale under Qg by the same argument
as in the last paragraph of the proof of Theorem 20.1. O

Essentially the same proof shows that

Corollary 21.2. Let QY be a regular conditional probability for Ps[- | Xg|. Then with
probability one, QY is a solution to the martingale problem for L started at Xg(w).

If £ € N(A1,As), we can in fact show that there exists a family of solutions to the
martingale problem that is a strong Markov family. We take Ay = 0 for simplicity.
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Theorem 21.3. Let A > 0 and suppose L,, € N'(A,0) with the a}; € C? and converging
almost everywhere to the a;j. Suppose (PY, X;) is a strong Markov family of solutions to
the martingale problem for L,,. Then there exists a subsequence n; and a strong Markov
family of solutions (P*, X;) to the martingale problem for £ such that P, converges weakly
to P* for all x.

Note that part of the assertion is that the subsequence n; does not depend on x.

Proof. Let {g;} be a countable dense subset of C'(R?), the continuous bounded functions
on RY, and let {)\,;} be a countable dense subset of (0,00). Let

G g(x) zEﬁ/ e Mg(Xy) dt.
0

Note that ||G2gllo < ||g9llec/A. By the equicontinuity of G)\g in n for each g and a diago-
nalization argument, we can find a subsequence ny such that Gf{iﬂ g; converges boundedly
and uniformly on compacts. Since

| | 1
1GR9 = G hlloo < =llg = Bl
J

it follows that Gf{iﬂ g converges uniformly on compacts for all g € C'(R). Since

A !
1GR9 — Ghglloo < m”guoo’

it follows that Gf‘lk g converges uniformly on compacts for all bounded g € C'(R?) and all
A € (0,00). Call the limit G*g.

Suppose x,, — x. By the tightness estimate, Pizk is a tight sequence. Let P be any
subsequential limit point. By Corollary 20.4, IP is a solution to the martingale problem for
L started at x. If n’ is a subsequence of n; such that Pigf converges weakly to P, by the
equicontinuity of G\g,

n’—oo

E/ e Mg(X,)dt = lim ]EZ’,“/ e Mg(X,)dt
0 0

= lim G)g(z,) = G g(x).

n’—oo

This holds for all bounded and continuous g; hence we see that if P; and Py are any
two subsequential limit points of Pizk, their one-dimensional distributions agree by the
uniqueness of the Laplace transform and the continuity of g(X}).
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We next show that the two-dimensional distributions of any two subsequential limit
points must agree. If g and h are bounded and continuous and pu > A,

E / / =M e g( X, Vh(Xpye) ds di
0 0

= lim E 7 '/ / Me=hs (X V(X yys) ds dt

n’—oo

n’—oo

= lim E7 / e Mg(X, )Eff,t/ e " h(X,)dsdt
0 0

— lim E% /0 e M g(X,)GE h(X,) dt

n’—oo

= lim G; (9(G*h))(zw).

n’—oo

By the equicontinuity of the Gi,h and the fact that G h converges boundedly and uni-
formly on compacts to G*h, the right-hand side converges to G*(g(G*h))(z). By the
uniqueness of the Laplace transform, we see that any two subsequential limit points have
the same two-dimensional distributions.

Repeating the argument, we see that any two subsequential limit points have the
same finite dimensional distributions. Since X; is continuous, this implies that P; = P5.
We have thus shown that if z,, — x, then Pi:k converges weakly to a probability measure;
we call the limit P*. By the proof of Theorem 20.3, we know that P* is a solution to the
martingale problem for £ started at z.

We now want to show that (P*, X;) forms a strong Markov family of solutions. We
will do this by first showing that E}; f(X¢) converges uniformly on compacts to E* f(X;)
if f is bounded and continuous. We have pointwise convergence of E; f(X;) for each x
since we have weak convergence of P to P*.

We claim that the maps z — E 7 f(X;) are equicontinuous on compacts. If not, there
exists € > 0, R > 0, a subsequence n,,, and Z,,, ¥, € B(0, R) such that |x,, — ym| — 0
but

EZn (X)) —EYn £(X0)] > <. (21.3)

By compactness, there exists a further subsequence such that PZ:? converges weakly and

also Tp,;, — T € m; it follows that y,,, — x also. By what we have already proved,
Pi;i converges weakly to P*; hence E Zmi f(X¢) converges to E® f(X;) and the same with
T, replaced by yy,;, a contradiction to (21.3). We thus have that the maps z — E7, f(X;)
are equicontinuous.

This implies that the convergence of EJ f(X;) is uniform on compacts. In par-
ticular, the limit E® f(X;) is a continuous function of . The map x — E” f(X;) being
continuous when f is continuous implies that (P*, X;) is a strong Markov family of solu-
tions. O
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22. Some useful techniques.

In this section we want to provide a number of results that make proofs of uniqueness
for the martingale problem easier. First, we show that if the diffusion coefficients are
uniformly elliptic, then the drift coefficients do not matter. Second, we show that it is
enough to look at A-resolvents. Third, we prove that uniqueness of the martingale problem
is a local property. Fourth, we see that it suffices to look at strong Markov solutions.

Let us show that for uniformly elliptic operators we may assume the drift coefficients
are 0.

Theorem 22.1. Suppose L' is defined by (20.8) and suppose there is uniqueness for the
martingale problem for L' started at x. If L € N'(A1,Ay), then there is uniqueness for the
martingale problem for L started at x.

Proof. Let Py,P5 be two solutions to the martingale problem for £ started at x. From
the definition of martingale problem, (X g , X7) J fo a;j(Xs)ds. Define Q; on F, i =1, 2,

by

dQ; /dP; = exp ( — /Ot(bal)(XS) dXs — %/t(bale)(Xs)ds>,

0

where b denotes the transpose of b. A simple calculation shows that the quadratic varia-
tion of fg(b(fl)(Xs) dX, is fg(bafle)(Xs) ds, so dQ;/dP; is of the right form for use in
the Girsanov theorem. If f € C? and

M, = f(X) — F(Xo) - /0 LF(X.) ds, (22.1)

then M; is a local martingale under P;. By Ito’s formula, the martingale part of M; is the
same as the martingale part of fot Vf(Xs) - dXs. We calculate

</.ba1(X dXS,M /Z a1); (X0 f(X,) d(XT, XT)

0
:/0 sz(Xs>azf(Xs)ds
=1

Hence by the Girsanov theorem, under QQ; the process

M (= [ o) Vo) as) = ) - g0 - [ £5(x

is a local martingale. Clearly Q;(Xo = z) = 1, so Q; is a solution to the martingale
problem for £’ started at z. By the uniqueness assumption, Q; = Q. So if A € F;,

P;(A) = /Aexp (/Ot(ba_l)(Xs)dXs n % /Ot(ba_le)(Xs)ds> dQ;,
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which implies P1(A4) = Py(A). O

To prove uniqueness it turns out that it is sufficient to look at quantities which
are essentially A-potentials (that is, A-resolvents). It will be convenient to introduce the

notation

M(L,xz) = {P P is a solution to the (22.2)

martingale problem for £ started at z}.

Theorem 22.2. Suppose for all x € R?, A > 0, and f € C?(R?),

E 1 /Oo G_Atf(Xt) dt = E2 /Oo B_Atf(Xt> dt
0

0

whenever Py,Py € M(L,z). Then for each x € R? the martingale problem for L has a

unique solution.

Proof. By the uniqueness of the Laplace transform and the continuity of f and X, our
hypothesis implies that E|f(X;) = Eof(X;) for all t > 0 and f € C? if x € R? and
Py, Py € M(L,z). A limit argument shows that equality holds for all bounded f. In other
words, the one-dimensional distributions of X; under P; and P, are the same.

We next look at the two-dimensional distributions. Suppose f, g are bounded and
0<s<t Fori=12 letP;s(A) = P;(Aobs), and let Q; be a regular conditional
probability for E; (- | X5). By Corollary 21.2, Q; is a solution to the martingale problem
for L started at X;. By the first paragraph of this proof,

Eqg,9(Xi—s) =Eq,9(Xi—s), a.s.

Since Q(A) is measurable with respect to the o-field generated by the single random
variable X for each A, then E g, g(X:—s) is also measurable with respect to the o-field
generated by X;. So E g, g(X;—s) = ¢(X;) for some function ¢. Then

E1f(Xs)g(Xe) = E1[f(Xo)E1(9(X) | X)]
=E1f(Xs)Eq, (9(Xi—s)) = E1f(Xs)0(Xs).
By the uniqueness of the one-dimensional distributions, the right-hand side is equal to
Eof(Xs)p(Xs), which, similarly to the above, is equal to Eo f(X)g(X;). Hence the two-
dimensional distributions of X; under P; and Py are the same.
An induction argument shows that the finite dimensional distributions of X; under
P, and Py are the same. Since X; has continuous paths, we deduce P; = Ps. O

We now want to show that questions of uniqueness for martingale problems for
elliptic operators are local questions. We start by giving a “piecing-together” lemma.
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Lemma 22.3. Suppose L1, L, are two elliptic operators with bounded coefficients. Let
S =inf{t: |X; —z| > r} and let P1, Py be solutions to the martingale problems for L1, Lo,
respectively, started at x. Let Q2 be a regular conditional probability for Ep, [ | Fs],
where Py5(A) = Py(A o 0s). Define P by

P(BoesﬂA)ZE]pl[Qg(B);A], A€ Fs,B € Fu.

If the coefficients of L1 and Ly agree on B(x,r), then P is a solution to the martingale
problem for L started at x.

P represents the process behaving according to P; up to time S and according to Py after
time S.

Proof. It is clear that the restriction of P to Fg is equal to the restriction of P; to Fg.
Hence

P(XO = ZC) = PI(XO = .I') =1.
If feC?
tAS
My = f(Xins) = f(¥0) = [ L1 (X ds

tAS
— F(Xons) — f(Xo) — /O Lof(X,)ds

is a martingale under P;. Since for each t these random variables are Fg measurable,
M; is also a martingale under P. It remains to show that N; = f(Xgi¢) — f(Xs) —
| 5 " Lyf(X,)ds is a martingale under P. This follows from Proposition 21.1 and the
definition of P. 0

Theorem 22.4. Suppose £ € N'(Ay,As). Suppose for each x € R? there exist r,, > 0 and
K(z) € N (A1, As) such that the coefficients of K(x) agree with those of L in B(x,r,) and
the solution to the martingale problem for IC(x) is unique for every starting point. Then
the martingale problem for L started at any point has a unique solution.

Proof. Fix xy and suppose P; and Py are two solutions to the martingale problem for
L started at xg. Suppose x; is such that xg € B(z1,7,,/4). Let S = inf{t : | Xy — x| >
T2, /2}. Write PX for the solution to the martingale problem for K(z1) started at xq. Let
QF be the regular conditional probability defined as in (21.1). For i = 1,2, define

Pi(BofsNA)=E;[QN(B);A], i=1,2, A€ Fs,BE Fu. (22.3)

Since the coefficients of £ and K(x1) agree on B(z1,7,, ), by Lemma 22.3 applied to IP; and
PX, P; is a solution to the martingale problem for K(z) started at zy. By the uniqueness
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assumption, they must both be equal to P*. Hence the restriction of P; and Py to Fg
must be the same, namely, the same as the restriction of PX to Fg. We have thus shown
that any two solutions to the martingale problem for £ started at a point xy agree on Fg
if v € B(x1,75,/4) and S = inf{t : | X; — z1| > 74, /2}.

Let N > 0. m is compact and hence there exist finitely many points
T1,..., %y such that {B(z;,7,,/4)} is a cover for B(zo, N). Let us define a measur-
able mapping ¢ : B(zo, N) — {1,...,m} by letting ¢)(z) be the smallest index for which
T € B(:L‘w(m),m/,(m)/ll). Let Sp = 0 and Si_|_1 = inf{t >80 Xy ¢ B(I/J(Xsi),rw(x(si)/2)}.
The S; are thus stopping times describing when X; has moved far enough to exit its current
ball.

We now show that any two solutions P; and Py for the martingale problem for £
started at zop agree on Fg ar(B(zo,n)) for each i. We already have done the case i = 1 in
the first paragraph of this proof.

Let Q; s, be a regular conditional probability defined as in (21.1). If A € Fg, and
B € (Fyx 0fg,) N Fg,, then

PZ(AQB) :Ez[@z,sl(B);A]a 221,2

By Proposition 21.1, Q; 5, is a solution to the martingale problem for £ started at Xg,,
so by what we have shown in the first paragraph Q; 5, = Q2 5, on (F 00s,) N Fs,. Since
Qi,s, (B) is Fg, measurable and P; = Py on Fg,, this shows Py (AN B) =Py(AN B). The
random variable fosz e " f(X,) dr can be written

/051 e M F(X,)dr + e M (/OS e M F(X,)dr o 931).

Hence E 4 fOS2 e M F(X,)dr =Eq fOS2 e~ f(X,) dr whenever f is bounded and continuous
and A > 0. As in Theorem 22.2, this implies P; = Py on Fg,.

Using an induction argument, Py = Py on Fg, ar(B(,N)) for each i. Note that

r= min r,, > 0.
1<i<m

Since S;11 — S; is greater than the time for X; to move more than r/4, S; 1 TB(0,N) DY
the continuity of the paths of X;. Therefore P1 = P2 on - (p(z,,n))- Since N is arbitrary,
this shows that P; = Ps. O

It is often more convenient to work with strong Markov families. Recall the defini-
tion of M(L, x) from (22.2).
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Theorem 22.5. Let £ € N(A,0). Suppose there exists a strong Markov family (P§, X;)
such that for each x € R?, P¥ is a solution to the martingale problem for L started at .
Suppose whenever (P35, X;) is another strong Markov family for which P§ € M(L,z) for
each x, we have P7 = P% for all x. Then for each z the solution to the martingale problem
for L started at x is unique.

In other words, if we have uniqueness within the class of strong Markov families, then we

have uniqueness.

Proof. Let f be bounded and continuous, A > 0, and z € R%. Let P be any solution to

the martingale problem for £ started at x. There exists a sequence a}; converging to a;;

ij
almost everywhere as n — oo such that the coefficients of the a}; are C?, L™ € N(A,0),

and if IF’?L is a solution to the martingale problem for £" started at x,
B / e M (X)) dt — E / =M F(X,) dt. (22.4)
0 0

By Theorem 21.3, there exists a subsequence ny such that IT”;‘Lk converges weakly for
all z, and if we call the limit P*, then (P*, X}) is a strong Markov family of solutions. By
our hypothesis, P* = P{. Using the weak convergence of P to PY,

Eik/o ektf(Xt)dtHEf/o e MF(X,) dt

Combining with (22.4), [;° e~ f(X;) dt has the same expectation under P and P{. Our
result now follows by Theorem 22.2. O

23. Uniqueness.

We present a case for which uniqueness of the martingale problem is known. We
assume £ € N(Ay,Ay) for some A; > 0, and by virtue of Theorem 22.1, we may take
Ao = 0 without loss of generality.

Theorem 23.1. Suppose d > 3. There exists ¢4 (depending only on the dimension d)
with the following property: if

sup sup laij(z) — 65 < eq,

hj oz

then there exists a unique solution to the martingale problem for L started at any x € R?.

Proof. Let IP’l, Py be any two solutions to the martingale problem for £ started at x.
Define G} f(z) = E? fo e Mf(Xy)dt. If f € C? is bounded with bounded first and second
partial derlvatlves, then by Ito’s formula,

f(Xy) = f(Xo) + martingale —|—/ Lf(Xs)ds
0
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Multiplying by e~ *, taking the expectation with respect to P;, and integrating over ¢ from

0 to oo,
* 1
Ei/ e MF(X,) dt = A )+ E; / / Lf(X)dsdt (23.1)
0
1
— Af( )+IE1/ LF(X )/ e Mdtds
0 s
1 1 s
=< fla)+<E; | e Lf(X,)ds
A A 0
Set -
u(z) :/ e_’\t((27rt)_d/2e_zz/2t) dt,
0
the A-potential density of Brownian motion. Let U™f = [ fly)ur(z — y)dy, the A\

potential of f with respect to Brownian motion. Then set

d
B=2 Y (ay(x) = 6;j)di; f (). (23.2)

4,j=1

N | =

If f=U?g for g € C? with compact support, then
Urg =U"(g — \U*g).

AU?g
2
Since Lf = (1/2)Af + Bf, we have from (23.1) that

=g —g=Xf—g

GN = AT (@) + A6 (552 + B ) (@)
= A (@) +ATIGI A - 9) + AT GBS,

AUNg
2

or

Gig = f(z) + G}Bf(x).

Hence
Grg =U’g(z) + G)BUg(z),  i=1,2. (23.3)

(We remark that if we were to iterate (23.3), that is, substitute for G? on the right-hand
side, we would be led to
Grg=Ug¢+UBU g+ ---,

which indicates that (23.3) is essentially variation of parameters in disguise.)
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We return to the proof. Let

p= sup |Gig—Gayl.
llglla<1

p < oo. Taking the difference of (23.3) with ¢ = 1 and i = 2, we have
Gig— Gag = (G — G3)(BU g). (23.4)
The right-hand side is bounded by p||BUg|lq. We need the result from analysis that

105U glla < callglla-
Then
d
IBU glla < ea Y 105U glla < eacrd?|glla < (1/2)l|gla

t,j=1

if we take e4 < 1/2¢1d?. Hence

1GYg — G3g| < (p/2) |9l

If we now take the supremum of the left-hand side over g € C? with ||g[lq4 < 1, we obtain
p < p/2. Since we observed that p < oo, this means that p = 0, or G1g = G3g if g € L%,
In particular, this holds if g is continuous with compact support. By a limit argument,
this holds for all continuous bounded g. This is true for every starting point € R?, so by
Theorem 22.2, Py = Ps. O

Corollary 23.2. Let C be a positive definite matrix. There exists €4 such that if

supsup |a;;(z) — Cyj| < eq,

,]

then there exists a unique solution to the martingale problem for L started at any x € R?.

Proof. Let o(z) be a positive definite square root of a(z) and C'/? a positive definite
square root of C'. By Theorem 20.1, to establish uniqueness it suffices to establish weak
uniqueness of the stochastic differential equation dX; = o(X;)dW;. If X; is a solution
to this stochastic differential equation, it is easy to see that YV; = C~'/2X, is a solution
to dY; = (cC~1/2)(Y;) dW, and conversely. By Theorem 20.1 again, weak uniqueness for
the latter stochastic differential equation will follow if we have weak uniqueness for the
martingale problem for £, where the coefficients of £ are C~'a;;. The assumption
|laij(z) — Ci;| < eq implies |C~a;;(z) — &;j] < c1g4, where ¢; depends on C. The result
follows by Theorem 23.1 by taking ¢4 sufficiently small. O

We now can prove the important result due to Stroock and Varadhan.
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Theorem 23.3. If L € N(A1, As) and the a;; are continuous, then the martingale problem
for L started at x has a unique solution.

Proof. By Theorem 22.1, we may suppose that Ay = 0. If x € R?, let C = a(x) and then
choose 1, such that if y € B(x,2r;), then |a;;(y) — a;j(z)| < eq fori,j =1,...,d, where
eq is given by Corollary 23.2. Let af;(y) be continuous functions that agree with a;;(y) on

B(z,r;) and such that if
d

K2f(z) = D aii(2)0:5(2),
ij=1
then £* € N(A4,0), and

sup sup |aj;(y) — aij(z)| < €a.
iy

By Corollary 23.2, we have uniqueness of the martingale problem for K” starting at any
point in RY. Moreover, the coefficients of K agree with those of £ inside B(z,r;). The
conclusion now follows by Theorem 22.4. O

24. Consequences of uniqueness.

We mention some conclusions that one can draw when uniqueness holds.

Theorem 24.1. Suppose there exists a unique solution P* to the martingale problem for
L started at x for each x € RY. Then (P*, X;) forms a strong Markov family.

Uniqueness implies some convergence results.

Theorem 24.2. Suppose L, € N(A1,As) and the diffusion coefficients a;y converge to
a;; almost everywhere, and similarly for the drift coefficients b}'. Suppose z, — z, P is
the unique solution to the martingale problem for L started at x, and for each n, P, is a
solution to the martingale problem for L,, started at x,. Then P, converges weakly to P.

Proof. The probability measures P,, are tight. Any subsequential limit point is a solution
to the martingale problem for £ started at x. By the uniqueness hypothesis, any subse-
quential limit point must be equal to PP; this implies that the whole sequence converges to
P. O

25. Divergence form operators.
Elliptic operators in divergence form are operators £ defined on C? functions by

L) = 5 Y lasds P)(x), (25.1)

1,7=1
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where the a;; are measurable functions of = and a;;(x) = aj;(z) for all pairs 4,j and

all xz. Let D(A) be the set of operators in divergence form such that for all z and all

y= (y17"'7yd)7
d

Ayl < ) aij(@)yiy; < A7yl (25.2)
ij=1

Throughout this chapter we assume the operator £ is uniformly elliptic, that is, £ € D(A)
for some A > 0.

If the a;; are not differentiable, an interpretation has to be given to Lf; see (25.6).
For most of this chapter we will assume the a;; are smooth. With this assumption,
T 18 d
Lf@) =5 Y ay@df@) + 5 (Zaiaij(x))@j f(2), (25.3)
=1

i,j=1 j i=1

and so L is equivalent to an operator in nondivergence form with

d
bj(x) = (1/2) ) diag;(x).
=1

However, all of our estimates for £ € D(A) will depend only on A and not on any smooth-
ness of the a;;. So by a limit procedure, our results and estimates will be valid for operators
L where the a;; are only bounded and strictly elliptic.

We refer to the conclusion of the following proposition as scaling.

Proposition 25.1. Let £ € D(A) and let (P*, X;) be the associated process (in the sense
of Section 1.2). If r > 0, ai;(x) = a;j(x/r), and L" f(z) = Zij:l di(a;;0;f)(x), then
L™ € D(A) and (P*/",rX,,2) is the process associated to L.

Proof. Using (25.3), this is proved entirely analogously to the nondivergence case. O

An important example of operators in divergence form is given by the Laplace-
Beltrami operators on Riemannian manifolds. Such an operator is the infinitesimal gen-
erator of a Brownian motion on the manifold. After a time change, the Laplace-Beltrami
operator in local coordinates is an operator in divergence form, where the a;; matrix is the

inverse of the matrix g;; that determines the Riemannian metric.

Recall the divergence theorem. Suppose D is a nice region, F' is a smooth vector
field, v(x) is the outward pointing normal vector at « € 0D, and o is surface measure on
0D. The divergence theorem then says that

Fu(y)o(dy) = / div F(z) da. (25.4)

oD D
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Proposition 25.2. Let g be a C* function with compact support and f a bounded C'*®
function. Then

| s@es@yar=—; [ (3 9@y @) de

2,7=1

The integrand on the right could be written Vg -aV f.

Proof. We apply the divergence theorem. Let D be a ball large enough to contain the
support of g and let F'(z) be the vector field whose ith component is

g d
72

Since g is 0 on D, then F - v = 0 on 0D, and also,

DN | =
M@«
/\

div F(z) = Z a;;(x >
i=1
1
=5 D Oig(@)ai;(@)9; f(x) + g(x)Lf(x).
ij=1
We now substitute into (25.4). O

Applying Proposition 25.2 twice, if f and g are smooth with compact support,

/g(x)ﬁf(x)dx:/f(x)ﬁg(x)dx. (25.5)

This equation says that L is self-adjoint with respect to Lebesgue measure.

Note that Proposition 25.2 allows us to give an interpretation to £f = 0 even when
the a;; are not differentiable. We say f is a solution to Lf = 0 if f is differentiable in some

sense, e.g., f € WP for some p, and
/ Z 9; f (z)aij(2)d;9(x) dr =0 (25.6)
t,j=1

whenever ¢ is in C* with compact support. Here WP is the closure of C? N L™ with

respect to the norm

d
LA lwre = £l + > 10: -
=1
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The expression

d
/% Z a;j(x)0; f(x)0;9(x) de = %/Vf(:v) ~a(z)Vg(x)dz

i,j=1

is an example of what is known as a Dirichlet form. If we denote it by £(f,g), then
Proposition 25.2 says that

/ gLfdr = —E(f,g)

for g with compact support. In the case of Brownian motion, the Dirichlet form is

Eonll0) =5 / Vf(z)- V() de.

Part of defining a Dirichlet form is specifying the domain. For example, the Dirichlet
form for Brownian motion in R% has domain {f € L? : Egn(f, f) < oo}. The Dirichlet
form for reflecting Brownian motion in a domain D C R? operates on {f € L%(D) :
[ IV f(2)]? dz < 0o}, whereas the Dirichlet form for Brownian motion killed on exiting a
set D has domain {f € L*(D) : [, |V f(2)|*dx < oo, f =0 on dD}.

Note that the uniform ellipticity of £ implies that

Apm(f, f) < Ec(f ) < A epml(f, f)- (25.7)

26. Inequalities.
We will make use of several classical inequalities. The first is the Sobolev inequality.

Theorem 26.1. Suppose d > 2. There exists c¢; such that if f € C? and Vf € L?, then

</Rd |f(9c)|2d/(d‘2) dm) (d—2)/2d < Cl(/Rd |Vf(:v)|2dx>1/2

A variant of the Sobolev inequality is the following for bounded domains.

Corollary 26.2. Suppose d > 2. Let Q be the unit cube. Suppose f is C? on Q and
Vf € L*(Q). There exists ¢; such that

([ o) <ol [wse [ 162]
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Proof. Let Q* be the cube with the same center as ) but side length twice as long. By
reflecting over the boundaries of ), we can extend f to Q* so that fQ* fIP < o fQ | f|P
for p = 2d/(d—2) and also [,,. [f|* < 2 [, [fI? and [,. V> < e2 [, [Vf]?, where ¢z is a
constant not depending on f. Let ¢ be a C* function taking values in [0, 1] with support
in @* and so that ¢ =1 on Q). Applying Theorem 26.1 to ¢f,

(], )" < (fren)" < [1vene,

where p = 2d/(d — 2). Since

IV (eh)I* < 2AVel?|f1? + 200l V17,

and ¢ and V¢ are bounded by constants independent of f and have support in Q*, the
result follows. O

Another closely related inequality is the Nash inequality.

Theorem 26.3. Suppose d > 2. There exists ¢; such that if f € C?, f € L' N L?, and
Vf € L?, then
o\ 1+2/d ) 4/d
([ e from)([i)™

Proof. If fA(f‘) = [€"¢ f(z) dz is the Fourier transform of f, then the Fourier transform
of 8, f is i€, f(€). Recall |f(€)| < [|f]. By the Plancherel theorem, [ |f|? = co [ |F(€)[?d¢
and [ [Vf[* = cz [ || £(§)[* d§. We have

2 _ TreN 2 72 @Az
[ie=e [iferase [ (fFee [ T

gc3Rd</|f\)2+C4R_2/]Vf\2.

We now choose R to minimize the right-hand side. O

The Poincaré inequality states the following.

Theorem 26.4. Suppose @ is a unit cube of side length h and f is C? on Q with
Vf € L*(Q). There exists ¢c; not depending on f such that

/ f(z) — fol?dz < c1h2/ IV f(z)|? da,
Q Q
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where fo = |Q|™" [, f(z)dz.

Proof. By a translation of the coordinate axes, we may suppose () is centered at the
origin. Since V(f — fo) = Vf, by subtracting a constant from f we may suppose without
loss of generality that fo = 0. Let us also suppose for now that h = 1.

If m = (my,...,mgq), let C,, denote the Fourier coefficient of ™% that is,

Cpm = / e 72T f (g0 dip.
Q

Since fQ f =0, then Cy = 0. The mth Fourier coefficient of 9;f is 2mim;C,,. By the
Parseval identity and the fact that Cy = 0,

/Q VIR = 3 @02 mf|Co? (26.1)

> ) |Cnl? = ¢ /Q |f|?.

We eliminate the supposition that A = 1 by a scaling argument, namely, we apply (26.1)
to f(x) = g(xzh) for z in the unit cube, and then replace g by f. O

Finally, we will need the John-Nirenberg inequality. We continue to use the notation

fo= IQ!‘l/ f (26.2)
Q
Theorem 26.5. Suppose Qg is a cube, f € L'(Qy), and for all cubes Q C Qo,

1
o | 1@ = fol <1. (26.3)
@l Jg
Then there exist ¢; and ¢y independent of f such that

/ e @ =faol gy < ey,

0

An f satisfying (26.3) is said to be in BMO, the space of functions of bounded mean
oscillation.

27. Moser’s Harnack inequality.

Let Q(h) denote the cube centered at the origin with side length h. Moser’s Harnack
inequality (Theorem 27.5) says that if £ € D(A), there exists ¢; depending only on A such
that if Lu =0 and v > 0 in Q(4), then

sup u < ¢p inf wu.
Q1) ' Q1)
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We begin proving this important fact by establishing a sort of converse to Poincaré’s
inequality for powers of u. Recall that u is £-harmonic in Q(r) if u is C? on Q(r) and

Lu =0 on Q(r).

Proposition 27.1. Suppose r > 1 and u is nonnegative and L-harmonic in Q(r). There
exists ¢, depending only on the ellipticity bound A such that if v = uP for p € R, then

2
[ovesa(z2s) oo [ WP
QM) 2p—1/ (r—=1)* Jou

Proof. The result is trivial if p = 1/2. The result is also trivial if p = 0, for then v is
identically 1 and Vv = 0. So we suppose p is some value other than 0 or 1/2. Let ¢ be a
smooth function taking values in [0, 1] with support in Q(r) such that ¢ =1 on Q(1) and
V| < ea/(r —1). Let w = u*~1¢2. Since u is L-harmonic and w = 0 outside of Q(r),
Proposition 25.2 tells us that

022/ wﬁu:—/ Vw - aVu
Q(r) Q(r)

=—2p-1) / u?P 720V - aVu — 2/ uP~1pVe - aVu.
Q(r) Q(r)

We then have, using (25.2) and the Cauchy-Schwarz inequality,

/ IVv|2<p2=/ T N
Q(r) Q(r)

< Ap? / u2p—2g02Vu -aVu
Q(r)

2 2
ZCQL -1,V - aVu
2p — 1] Joe
2 2
= =P uP Ve - auP ' Vu
2p — 1] Jou
2
T vV - apVo
120 — 1] Jou

2c3|p| / 2 2\ !/? / 2 2\ /2
< [Vol=p v :
|2P—1|< Q(r) > ( Q(r) )

Dividing both sides by (fQ(r) |Vv|2¢?)1/2, we obtain

[oweps [ wepe?
Q1) Q(r)
2p 2/
2 2 2
C3 V7|Vl

2p 2 1
2 2
C3<2p—1> (r—1)2 /Q(r)v ’ -
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Let us define y
p

P(p,h) = / u’) o

™)

Proposition 27.2. Suppose d > 3. If u > 0 in Q(2) and Lu = 0 in Q(2), then for all
qo > 0 there exists ¢y (depending on qo but not u) such that

sup u < c1P(qo, 2).
Q(1)

Proof. Let R=d/(d—2),p>0,and 2 > r > 1. By Corollary 26.2 and Proposition 27.1,

</Q(1) quR>1/R < CQ[/Q(I) IV (uP)|? +/Q(1) \upﬂ
2
= ¢ [(r —11)2 (2192f 1) /Q(r) ur /Q(l) |up‘2]
< (r f41)2 <2p2f 1>2 /Q(r) u?P.

Taking both sides to the 1/2p power and using scaling, if r < s < 2r,

®(2Rp1) < (7 g (21(925)1?)1/%‘1)(2“ ) (27.1)

Suppose pg = R—™~1/2 /2, where m is the smallest positive integer such that 2pg <
qo- Let p, = R"pg, 7, =1+ 27". Then

Tn g—n—1

1=_2 @ >9n
— T 222

and by our assumption on pg,

( 2pn >2<C
2pn_1 =

where c¢5 depends only on R. Substituting in (27.1),
c;[)(2pn—|—17 rn-l-l) < (0622n)1/(2Rnp0)q)(2pn, rn)‘

By induction,
(p(Qpn) Tn) < ngﬁq)(2p07 2)7

where
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Therefore ®(2p,,, ) < c7P(2pg,2). By Holder’s inequality,
@(2])07 2) < C8(I)(q07 2)
The conclusion now follows from the fact that

sup u < limsup ®(2p,,, 7). O
Q(1) n—00

Proposition 27.3. Suppose u is bounded below by a positive constant on Q(2) and
qo > 0. Then there exists ¢; (depending only on gy but not u) such that

—1/q0
inf v > (/ u*q()) )
Q) Q(2)

Proof. The proof is almost identical to the above, working with

~1/
®(—p, h) = (/ u—P> ! (27.2)

Q(h)
instead of ®(p, h). O

To connect ®(p, h) for p > 0 and p < 0, we look at log wu.

Proposition 27.4. Suppose u is positive and L-harmonic in QQ(4). There exists ¢; inde-
pendent of u such that if w = logu, then

/ IVw|? < ¢ h?2
Q

for all cubes @ of side length h contained in Q(2).

Proof. Let Q* be the cube with the same center as () but side length twice as long. Note
Q" C Q(4). Let ¢ be C* with values in [0, 1], equal to 1 on @, supported in Q*, and such
that ||V¢|leo < c2/h. Since Vw = Vu/u and u is L-harmonic in Q(4),

0:2/%2£u:—/V(<p2/u)-aVu

) 2
:—/ <pv¢~aVu+/<p—2Vu~aVu
U

u

= —2/g0Vg0-an+/<,02Vw-an.
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So by the Cauchy-Schwarz inequality and (25.2),
/ % Vwl|? §03/ ©*Vw -aVw = ¢4 Ve - apVw

< C5</Q* !V@P)l/z(/* gpgww‘Q)l/z.

Dividing by the second factor on the right, squaring, and using the bound on |V,
[1vuP< [ IvuP < @iQlem?,
Q Q*

which implies our result. O

Putting all the pieces together, we have Moser’s Harnack inequality.

Theorem 27.5. There exists ¢; such that if u is £-harmonic and nonnegative in Q(4),
then

sup u < ¢q inf wu.
Q(1) Q(1)

Proof. By looking at v + ¢ and letting ¢ — 0, we may suppose u is bounded below in
Q(4). Set w = logu. Multiplying u by a constant, we may suppose that fQ(2) w = 0. By
Proposition 27.4 and Theorem 26.4, there exists ¢z such that if () is a cube contained in

Q(2), then

|@|/'w wal)’ |Q|/'“’ wal CZ|@|/'V“" < ¢

By the John-Nirenberg inequality applied to w/ czl),/ > and —w / c:l))/ 2, there exist ¢4 and qq

such that
/ e < ey, / eV < ¢y,
Q(2) Q(2)

/ UQO/ u % < 64217
Q(2) Q(2)

(g0, 2) < ¢/ ®(—go,2). (27.3)

This can be rewritten as

or

This and Propositions 27.2 and 27.3 show

sup u < c5P(qo,2) < cgP(—qo,2) < ¢7 inf w. O
Q(1) Q(1)
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An easy corollary proved by repeated use of Theorem 27.5 to a suitable overlapping
sequence of cubes is the following.

Corollary 27.6. Suppose D; C D, C D,, where Dy and D5 are bounded connected
domains in R? and d > 3. There exists ¢; depending only on Dy and Ds such that if u is
nonnegative and L-harmonic in Dy, then

supu < ¢q inf u.
D, Dy

Another corollary of the Moser Harnack inequality is that L-harmonic functions
must be Holder continuous with a modulus of continuity independent of the smoothness
of the Qjj-

Theorem 27.7. Suppose d > 3 and suppose u is L-harmonic in Q)(2). There exist ¢; and
a not depending on u such that if z,y € Q(1),

[u(@) = u(y)| < er|z —y[* sup [ul.
Q®)

Proof. Fix z and let r < 1. Our result will follow if we show there exists p < 1 independent
of r such that

Osc u<p Osc u. (27.4)
B(z,r/2) B(z,r)

By looking at C'u+ D for suitable C' and D, we may suppose that the infimum of Cu+ D on
B(zx,r) is 0, the supremum is 1, and there exists ¢ € B(z,7/2) such that (Cu+ D)(zg) >
1/2. By Corollary 27.6 with D; = B(z,7/2) and Dy = B(x,r), there exists ¢y such that

(Cu+ D)(y) > ca(Cu+ D)(xg) > c2/2, y € B(x,r/2).
On the other hand, if (P*, X;) is the process associated with £, then
(Cu+D)(y) =E¥(Cu+ D) (XrB@m) <1

by optional stopping. Hence Osc p(y,,/2)(Cu+ D) <1 —c3/2, and (27.4) follows. O

28. Upper bounds on heat kernels.
We are now going to investigate bounds on the transition densities of X;, where
(P*, X}) is the process associated to an operator £ € D(A). Let P, be the operator defined
by
Py f(x) = E*f(Xy).
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We shall see that there exists a symmetric function p(t, x,y) such that

/f p(t,x,y)d

and that p(¢, x,y) has upper and lower bounds similar to those of Brownian motion. Re-
call that 0;u means Ju/0t. Since u(z,t) = E* f(X;) is also a solution to the Cauchy
problem Opu = Lu in R? x (0,00) with initial condition u(z,0) = f(z) and, u(z,t) =
[ f(y)p(t,z,y) dy, then p(t,z,y) is also the fundamental solution to the Cauchy problem
for E. The equation 0;u = Lu is a model for heat flow in a nonhomogeneous medium,
which leads to the name heat kernel for p(t,z,y).

First, we derive some properties of P;. We continue to assume that the coefficients
a;; are smooth and that £ € D(A) for some A > 0.

Proposition 28.1. If f € O is bounded and in L', then P, f is differentiable in t and

(9tPtf - Ptﬁf - £Ptf

Proof. By It6’s formula,

t+h
Pt+hf(l') — Ptf(fl)') =E”* /t Ef(XS) dS,

SO

0P, f(z) = E*Lf(X,) = P,Lf(x)

by the continuity of Lf.
We know P, f is a smooth function of x. Applying It6’s formula to P; f,

Pu(Pif)(z) — P f(x) = E°P f(Xp) —E* P f(Xo)

= Em/ﬂh L(Pf)(X

However, Py, (P;f) = Piypnf by the Markov property. Dividing by h, letting h — 0, and
using the continuity of L(P;f),

Next we show that P; is a symmetric operator.

Proposition 28.2. If f and ¢ are bounded and in L',
[ t@Pg@)ds = [ g@)Pif(@) do
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Proof. Let f,g € L' N C? be bounded with bounded first and second partial derivatives.

By (25.5),
[#en = [acn

/ F((A- L)) = / i(A—L)F). (28.1)

If f,g are bounded C* functions and A > 0, let f = G*f, § = G*g, where G* is defined
by

Therefore

G f(z) =E* /OO e MF(X,) dt.
0

f and g can be shown to be smooth and (A\—L)f = f, (A—L)g = g. By Jensen’s inequality,
f and g are in L'. Substituting in (28.1),

/(GAf)g = /(GAg)f, A>0.

We have seen in Proposition 28.1 that P, f is differentiable in ¢, and hence continuous in
t. Noting G* f = fooo e~ MP, f dt, the uniqueness of the Laplace transform tells us that

[@na=[@war >0

We now use a limit argument to extend this to the case where f and g are arbitrary
bounded functions in L!. O

With these preliminaries out of the way, we can now present Nash’s method, which

yields an upper bound for the transition density.

Theorem 28.3. There exists a function p(t, x,y) mapping (0,00) x R x R? to [0, 00) that
is symmetric in x and y for almost every pair (x,y) (with respect to Lebesgue measure on
R? x RY) and such that P;f( = [ f(y)p(t,z,y) dy for all bounded functions f. There
exists ¢; depending only on A such that

pt,z,y) <at™%  t>0, z,yeR™

Proof. Let f be C*° with compact support with [ f = 1. We observe that

[Pt@do= [wrp= [or=[1=1
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because P;1 = 1.
Set

B(t) = / (Puf(x))? d,

and note F(0) = [ f(z)*dz < oo. By Proposition 28.1,

E(t) =2 / Puf(@)0y(Pf (2)) da = 2 / Pof()CPf(z) da.

By Proposition 25.2, this is equal to

- / V(Pf) - aV(Pif)(x) dz < —A / V(P ()2 de.

since L € D(A). By Theorem 26.3 (the Nash inequality), we have the right-hand side
bounded above in turn by

—eo( [rs@p) ([ i) = —n
Therefore
E'(t) < —coE(t)1+2/4, (28.2)

(B = e

(We are treating the differential inequality (28.2) by the same methods we would use if it
were an equality and we had a first order separable differential equation.) An integration
yields

E@t)~%1 - E0)"Y1 > ¢qt,

or
E(t)"%1 > cqt.

We conclude from this that
E(t) < eyt 2,

Using the linearity of P;, we thus have that
IPefll2 < el £ (28.3)

for f smooth. A limit argument extends this to all f € L'. We now use a duality argument.
Ifge L' and f € L2,

/ 9(P.f) = / F(Pig) < Il Prglla < /24 gl 11 £ -
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Taking the supremum over g € L! with ||g||; <1,
1/2,—
1P flloe < 52t~ £]l2. (28.4)

By the semigroup property, (28.4) applied to P/, f, and (28.3) applied to f,

1P: flloo = [1Pj2(Peyaf)lloo < ci/*(t/2)= 4| Pyjafll2
< ea(t)2)" 3| f]]1.
This says
RS @)] < et [ 17 dy (285

Applying this to f = 15, B a Borel set, we see that P*(X; € dy) is absolutely continuous
with respect to Lebesgue measure and the density, which we shall call p(t, x,y), is nonneg-
ative and bounded by c5t~%? for almost all pairs (z,y). The symmetry (except for a null
set of pairs) follows easily by Proposition 28.2. O

Recall Py sf = P,P,f, or

/ F@p(t + 5,2, y)dy = / Puf(2)p(t, 2, 2)dz
_ / / F@)p(s, 2z y)p(t, 7, 2)dy d=.

This is true for every bounded f and it follows that

p(t + 5,2, y) = / Dty 2)plt, 2y) dz, ace.

29. Off-diagonal upper bounds.

One of the most important facts concerning divergence form operators is Aronson’s
bounds: if p(t,z,y) is the fundamental solution to the heat equation du/0t = Lu in RY,
then there exist constants ci, co, ¢3, ¢4 such that

p(t7xay> < Clt_d/Z eXp(_C2‘x - y’2/t)7 T,y € Rd7 > 07 (291)

and
cst™ % exp(—calz —yP/t) < p(t,z,y),  zyeR? >0 (29.2)

In this section we will prove (29.1). We will assume for convenience that the a;; are
smooth, but none of our estimates will depend on the smoothness; the case of non-smooth
a;; will follow from by an easy limit argument.
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Under the assumption that the a;; are smooth, the diffusion X, associated with £

can be written . .
X, = Xo+ / o (X,)dW, + / b(X)ds, (29.3)
0 0

where W; is a d-dimensional Brownian motion, the first integral on the right is an Ito
stochastic integral, ¢ is a bounded positive definite square root of a, and the ith component
of b is 2?:1 Oaj;/0x;. It is easy to deduce from this that for each xo and each ¢

E* sup | Xs — x| < o0. (29.4)

s<t

Let 29 € RY,

M(t) = / ly— zolp(t.z0,y)dy, Q) = — / Pt 20,y log plt, 20, y)dy.  (29.5)

Since M (t) = E*°|X; — x|, then M (t) is finite by (29.4). The finiteness of Q(¢) will follow
from (29.6) and (29.7) below.

Theorem 29.1. There exists ¢; not depending on xq or t such that M(t) < ¢it'/2.

Proof. First, using Theorem 28.3 and the fact that [ p(¢,zo,y)dy = 1, we have
Q(t) > —co + 3dlogt. (29.6)

Second, note infs(slogs + As) = —e~*71. Using this with A = aly — x| + b, we

obtain
~QUt) + aM(t) + b= [lp(t,0,9) 0B P(t 70,3) + (aly — 0] + Dp(t, 7, )y
> e 07t /e_‘l'y_mody = —c3e ba™
Setting a = d/M (t) and e=® = (e/c3)a?, after some algebra we obtain
M(t) > c4e9®/2, (29.7)

Third, we differentiate Q(t). Since the a;; are smooth and uniform ellipticity holds,
it is known that p(t, zo, y) is strictly positive and is C* in each variable on (0, 00) x R? x R?
and that p(t,zg,y) and its first and second partial derivatives have exponential decay at
infinity. Performing the differentiation,

Q)= - /(1 + logp(t,xo,y))%p(t, To,y)dy
= — /(1 +log p(t, w0, y))Lp(t, xo, y)dy.
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Note that [1Lp(t,z,y)dy = [(L1)p(t, z,y)dy = 0. Applying Proposition 25.2, the above
expression is equal to

/V(logp(t,wo,y))-an(t,xo,y)dy
= /[V(logp(t,xo,y)) -aV(log p(t, o, y))]p(t, zo, y)dy.

Using Cauchy-Schwarz and the uniform ellipticity bounds,

Q1) 2 es( [ 1910w p(t.20,0)lp(t. 20,)dy) = ca( [ Vplt,mo.0)ldy)

Set r(y) = |y — xo|. As |Vr| <1, we have similarly that M'(t) = — [ Vr - aVp(t, zo,y)dy,
and so
0] < [ la Volt,ao.0)ldy

(Because r is not differentiable at xg, to establish this we approximate r by smooth func-
tions and use a simple limit argument.) We thus conclude

Q'(t) > co(M'(1))*. (29.8)
By the continuity of X3, (29.4), and dominated convergence,

lim M (t) = %irr(l)]Em‘)]Xt — x| =0,

t—0

S0
¢

c €W/ < M(t) < 07/ (Q'(s))Y%ds. (29.9)
0

Finally, define R(t) = d~[Q(t) +c2 — & log t], and observe from (29.6) that R(¢) > 0.
Then
Q'(t) = dR'(t) +d/(2t).

Using (29.9) and the inequality (a + b)'/2 < a'/2 +b/(2a'/?), we have

b1 1/2
cstt/2eR®) < M (1) < 09d1/2/ (% + R’(s)) ds
0

< c10 /Ot <2i5>1/2ds + ¢19 /Ot (g)l/QR’(s)ds.

By integration by parts and the fact that R > 0, this is less than

t\1/2
011(215)1/2 —+ CllR(t) (5) y
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which leads to
cge™®) < M(t)/t1/? < e15(1 + R(1)).

The inequality cge®®) < ¢15(1+ R(t)) implies that R(t) is bounded, and the result follows.
0J

Theorem 29.2. There exist ¢; and cy such that (29.1) holds for all x,y € R%, t > 0.

Proof. First, if Sy = inf{t: |X; — Xo| > A}, then

P?(sup | Xs — Xo| > A) < P¥(S\ <t,| Xt — Xo| > A/2) +PP(S) < t,|X: — Xo| < \/2)
s<t

t
< PP(IX, — Xo| > A/2) +/ P*(|X, — X.| > \/2, Sy € ds).
0

By Chebyshev’s inequality and Theorem 1, the first term on the right hand side is bounded
by
2E "X, — Xo| _ 2M(t) _ cstt/?
A A T A
By the strong Markov property, the second term is bounded by

t 2 [t e3t)?
/ E*[PX(|X,_, — Xo| > A/2): Sy € ds] < X/ Mt ) (Sy € ds) <
0 0
Adding,
) 251/2
P* (sup | X, — Xo| > \) < C3A . (29.10)
s<t

Second, let D > 0, let n = [aD?], and let b > 0, where a,b will be chosen in a
moment. By (29.10) we have

Eme_nSD/n <1. IP):C(SD/n < b/n) + e—n(b/n)]P’l’(SD/n > b/n)
=(1—- €_b)]P)w(SD/n <b/n)+e"
iy 2c3(b/n)'/?
P N A A
(1—e7") D/n

<e?

IN

if we first choose b large and then a small; a,b can be chosen independently of x, D and n
because
(b/m)'/? _ (bn)'/?

= < (ab)/?.
D/n p = (@)
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Let Tp = 0 and define inductively T;11 = T; + Sp/, © 01,, where the 6; are the usual
shift operators for Markov processes; this means that 7; is the ith time that X; moves a
distance D/n. By the strong Markov property

Eaze—nTm — Ex[e_nTmfl;EXTmfl e—nSD/n] < €_2E xe—nTm,l,
so by induction
E:ne—nTn < €—2n

Then
P*(sup | Xs — Xo| > D) < P*(T,, <1) = P%(e "In > ¢77) (29.11)
s<1

2
< enEme—nTn S ene—Zn — e—n < e—C4D )

Third, let A= {z: |z — 2| > |z —y|}. By (29.11) with D = |z — y|/2 and Theorem

28.3
/p(l,w,z)p(l,z,y)dz < 05/ p(l,z,2)dz = csP" (X1 € A)
A A
< esP7(| Xy — @] > |z — y]/2) < esem el
while

/ P12, 2)p(1, 2, y)dz < esPY(X1 € A) < esPY(|Xy —y| = o —y|/2) < ese ol
Adding and using the semigroup property,

p<2,$,y) = /p(l,x,z)p(l,z,y)dz < 2056_06‘m_y‘2.

The theorem now follows by scaling. O

30. Lower bounds.
In this section we obtain a lower bound on the transition densities. We start with a
lower bound for p;(z) = p(t, zo,z) when z is close to xg. To do that we need the following

weighted Poincaré inequality.

Theorem 30.1. Let ¢(z) = c1e~1*I/2, where 3 is chosen so that Jga p(x)dx = 1. Then

/Rd |f(z) = f]?e(x)de < ¢y /Rd IV f(2)[20(2) d,
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where f = [o. f(z)p(x) dx.

Proof. The proof is very similar to the proof of the ordinary Poincaré inequality. For
the one dimensional case, instead of Fourier series, we express f in terms of Hermite
polynomials. Hy = 0 and H}, = c¢Hp—1 where |cx| > 0 for £ # 0. For the higher
dimensional case, we write f as a series in H?Zl Hy, (z;). O

Theorem 30.2. Let x1 € R%. There exist constants ¢; and ¢y such that if lx1 — x| < 1,
then p(2, 0, 71) > ¢s.

Proof. Let p(z) = cre™1*=711°/2 where c3 is chosen so that Jga o) dz = 1. We will
choose r later on and we suppose |x1 — xg| < r/2. Define

G(t) = /logpt(x)go(x) dz.

Then

/%Wc
— [(¥p)-a(vE)

\Y% \Y%
_ /th pt [ VDt LaV
b
\Y% V 1 \Y \Y% \Y%
= — ﬁ ﬁ _/|: pt.a pt+2 pt.ax.i.x.a[xga
2 Pt Dt 2 2 bt Pt

./
——= [ x-ax
2 (P

> %/!Vlogpt|2so—04

> cs / |logp: — G()|*p — ca

> o5 / logpy — G()p — ca,
Dy

where D; = {x € B(zo,7) : ps(x) > e X} and r and K will be chosen in a moment.
First choose r such that

/ pe(z)de < 7, t<1.
B(zg,r)°

i
B(zo,r) D B(zo,r)—Dq

< cg|Dy|t=¥? + crrde K,

N

NI
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Choose K so that cyrde™® < 1/4. Then cg|Ds|t=%? > 1/2, or |Dy| > 142 /(2¢c6) > cs if
te(l/2,1].
For any ¢, by Jensen’s inequality,

G(t) = /(logpt(x))go < log/ptgo < log/pt =logl=0.

So G(t) < 0. If logps > 0, then |logp; — G(t)| > |G(t)|. If —K < logp; < 0, then either
(a):  |G(t)] > 2K or (b): |G(t)] < 2K. In case (a),

(logpt — G)* = (—[logp| + |G(1)])* = FIG(1)[*.
In case (b),
(logpr — G)? = (=|logpe| + |G(1)])* = 0 > F|G(1)* — K>.

Therefore, using the fact that ¢ is bounded below by a positive constant on B(zg,r) and
D cC B(zg,r),

/ [logpe — G(t)]*¢ = eo| Do (IG(1)]* — K?) > c10G()* — caa.
D,

We thus have

G'(t) > BG(t)* — A, te[1/2,1]

for some constants A and B.
Now we do some calculus. Suppose G(1) < —Q where Q = max(44, (16A4/B)'/?).
Since G'(t) > —A,
G(1)—-G(t) > -A/2, te[1/2,1],

or

G(t) <G(1)+ A)2.
This implies G(t) < —Q/2. Since BQ?/4 > 4A, then A < £G(t)?, and hence

B
G'(t) > EG(t)2
Solving, G'/G* > B/2, or (1/G) = —-G'/G* < —B/2, and then
1 1 B
- T <« _Z1_pn<_==
¢ cp = 24!

Since G(t) <0, then 1/G(1) < —B/4, or 1 > —BG(1)/4, or

4
G(1) = ——.
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So either G(1) > —Q or G(1) > —4/B. In either case there exists R > 0 such that
G(1) > —R.
Finally, applying the above first with o and then with zg replaced by

logp(Z,xo,ml) = log/p(l,xo,z)p(l,xl,z) dz
Z log/p(l,a:o,Z)p(l,xl,z)go(Z) dz
> [ tog(p(1, 0, )p(1, 1, 2)lz) d

:/logp(l,xo,z)gp(z)dz—f—/logp(lml,z)go(z)dz
> —2R.

This gives our result. O

We now complete the proof of the lower bound by what is known as a chaining
argument.

Theorem 30.3. There exist ¢; and ¢y depending only on A such that

p(t, xZ, y) > Clt_d/ze_cﬂm_y\z/t'

Proof. By Theorem 30.2 with zy = x and scaling, there exists ¢3 such that if |z — y| <
cst!/2 then p(t,x,y) > cat~%2. Thus to prove the theorem, it suffices to consider the case
|z —y| > cst!/2.

By Theorem 30.2 (with zp = w) and scaling, there exist ¢4 and c5 such that if
|z —w| < eq(t/n)'V?,

p(t/n,w,z) > es(t/n)~ 2. (30.1)

Let R = |r — y| and let n be the smallest positive integer greater than 9R?/c3t. So
3R/n < cu(t/n)"/?. Let vg = x, v, =y, and vy, ...,v,_; be points equally spaced on the
line segment connecting x and y. Let B; = B(v;, R/n). If w € B; and z € B;11, then
|z —w| < 3R/n < cq(t/n)Y/?, and so p(t/n,w,z) > cs5(t/n)~%? by (30.1).

By the semigroup property,

p(t,z,y

)
= /.../p(t/n,x,zl)p(t/n,zl,zg)--~p(t/n, Zn—1,Y)dz1 - - dzp_q

2/ / p(t/n,$,21)p(t/n,21,22)"‘p(t/n,Zn_l,y)d21"‘ dzn—l
Bn_1 By

n—1
> (co(t/n)~ )" ] IBil.

=1

75



Since |B;| > ¢7(R/n)® and (R/n)(t/n)~'/? is bounded below by a positive constant, then
p(t,x,y) > cach (n/t)Y? > cgt~™¥? exp(—nlogcyt).
If n > 2, then n/2 < 9R?/cit, so
p(t,z,y) > cst™Y? exp(—18R? log ¢ ' /c3t).
If n < 2, then 9R?/c3t < 2, and
p(t,z,y) > cst™ Y% exp(—2logcg b).

The result follows with ¢; = cg(cZ A 1) and co = 18(log(cg ') A 1)/c3. O
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