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The topics covered are: stochastic differential equations, solving PDEs using proba-

bility, Harnack inequalities for nondivergence form elliptic operators, martingale problems,
and divergence form elliptic operators.

We use ∂i and ∂ij for ∂/∂xi and ∂2/∂xi∂xj , resp.

1. Pathwise solutions.
Let Wt be a one-dimensional Brownian motion. We will be concerned with the

stochastic differential equation (SDE)

dXt = σ(Xt) dWt + b(Xt) dt, X0 = x. (1.1)

This is a shorthand way of writing

Xt = x+
∫ t

0

σ(Xs) dWs +
∫ t

0

b(Xs) ds. (1.2)

Here σ and b are measurable real-valued functions. We will say (1.1) or (1.2) has a
solution if there exists a continuous adapted process Xt satisfying (1.2). Xt is necessarily
a semimartingale. Later on we will talk about various types of solutions, so to be more
precise, we say that Xt is a pathwise solution. We say that we have pathwise uniqueness
for (1.1) or (1.2) if whenever Xt and X ′

t are two solutions, then there exists a set N such
that P(N) = 0 and for all ω /∈ N , we have Xt = X ′

t for all t.
The definitions for the higher-dimensional analogues of (1.1) and (1.2) are the same.

Let σij be measurable functions for i, j = 1, . . . , d and bi measurable functions for i =
1, . . . , d. Let Wt be a d-dimensional Brownian motion. We consider the equation

dXt = σ(Xt) dWt + b(Xt) dt, X0 = x, (1.3)
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or equivalently, for i = 1, . . . , d,

Xi
t = xi +

∫ t

0

d∑
j=1

σij(Xs) dW j
s +

∫ t

0

bi(Xs) ds. (1.4)

Here Xt = (X1
t , . . . , X

d
t ) is a semimartingale on Rd.

The connection between stochastic differential equations and partial differential
equations comes about through the following theorem, which is simply an application of
Itô’s formula. Let σT denote the transpose of the matrix σ and let a be the matrix σσT . Let
C2(Rd) be the functions on Rd whose first and second partial derivatives are continuous,
let C2

b (Rd) be those functions in C2(Rd) that are bounded and have bounded first and
second derivatives, and let L be the operator on C2(Rd) defined by

Lf(x) =
1
2

d∑
i,j=1

aij(x)∂ijf(x) +
d∑
i=1

bi(x)∂if(x). (1.5)

Proposition 1.1. Suppose Xt is a solution to (1.3) with σ and b bounded and measurable

and let f ∈ C2
b (Rd). Then

f(Xt) = f(X0) +Mt +
∫ t

0

Lf(Xs) ds, (1.6)

where

Mt =
∫ t

0

d∑
i,j=1

∂if(Xs)σij(Xs) dW j
s (1.7)

is a martingale.

Proof. Since the components of the Brownian motion Wt are independent, we have
d〈W k,W `〉t = 0 if k 6= `. Therefore

d〈Xi, Xj〉t =
∑
k

∑
`

σik(Xt)σjl(Xt) d〈W k,W `〉t

=
∑
k

σik(Xt)σTkj(Xt) dt = aij(Xt) dt.

We now apply Itô’s formula:

f(Xt) = f(X0) +
∑
i

∫ t

0

∂if(Xs) dXi
s +

1
2

∫ t

0

∑
i,j

∂ijf(Xs) d〈Xi, Xj〉s

= f(X0) +Mt +
∑
i

∫ t

0

∂if(Xs)bi(Xs) ds

+
1
2

∫ t

0

∑
i,j

∂ijf(Xs)aij(Xs) ds

= f(X0) +Mt +
∫ t

0

Lf(Xs) ds.
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We will say that a process Xt and an operator L are associated if Xt satisfies (1.3)
for L given by (1.5) and a = σσT . We call the functions b the drift coefficients of Xt and
of L, and we call σ and a the diffusion coefficients of Xt and L, respectively.

2. Lipschitz coefficients.
We now proceed to show existence and uniqueness for the SDE (1.1) when the

coefficients σ and b are Lipschitz continuous. For notational simplicity, we first consider
the case where the dimension is one. Recall that a function f is Lipschitz if there exists a
constant c1 such that |f(x)− f(y)| ≤ c1|x− y| for all x, y.

Theorem 2.1. Suppose σ and b are Lipschitz and bounded. Then there exists a pathwise

solution to the SDE (1.1).

Proof. We use Picard iteration. Define X0(t) ≡ x and define inductively

Xi+1(t) = x+
∫ t

0

σ(Xi(s)) dWs +
∫ t

0

b(Xi(s)) ds (2.1)

for i = 0, 1, . . .. Note

Xi+1(t)−Xi(t) =
∫ t

0

[σ(Xi(s))− σ(Xi−1(s))] dWs (2.2)

+
∫ t

0

[b(Xi(s))− b(Xi−1(s))] ds.

Let gi(t) = E [sups≤t |Xi+1(s)−Xi(s)|2].
If Ft denotes the first term on the right-hand side of (2.2), then by Doob’s inequality,

E sup
s≤t

F 2
s ≤ c1E

∫ t

0

|σ(Xi(s))− σ(Xi−1(s))|2 ds (2.3)

≤ c2

∫ t

0

E |Xi(s)−Xi−1(s)|2 ds

≤ c2

∫ t

0

gi−1(s) ds.

If Gt denotes the second term on the right-hand side of (2.2), then by the Cauchy-Schwarz
inequality,

E sup
s≤t

G2
s ≤ E

( ∫ t

0

|b(Xi(s))− b(Xi−1(s))| ds
)2

(2.4)
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≤ E t

∫ t

0

|b(Xi(s))− b(Xi−1(s))|2ds

≤ c3t

∫ t

0

E |Xi(s)−Xi−1(s)|2 ds

≤ c3t

∫ t

0

gi−1(s) ds.

So (2.2), (2.3), (2.4), and the inequality (x + y)2 ≤ 2x2 + 2y2 tell us that there exists A
such that

gi(t) ≤ 2E sup
s≤t

F 2
s + 2E sup

s≤t
G2
s ≤ A(1 + t)

∫ t

0

gi−1(s) ds. (2.5)

Since σ and b are bounded, arguments to those in the derivation of (2.3) and (2.4)
show that g0(t) is bounded by B(1 + t) for some constant B. Iterating (2.5),

g1(t) ≤ A

∫ t

0

B(1 + s) ds ≤ AB(1 + t)2/2

for all t, so

g2(t) ≤ A

∫ t

0

(AB(1 + s)2)/2 ds ≤ A2B(1 + t)3/3!

for all t. By induction,

gi(t) ≤ AiB(1 + t)i+1/(i+ 1)!

Hence
∑∞
i=0 gi(t)

1/2 <∞. Fix t and define the norm

‖Y ‖ = (E sup
s≤t

|Ys|2)1/2. (2.6)

One can show that this norm is complete. We then have that

‖Xn −Xm‖ ≤
m−1∑
i=n

gi(t)1/2 → 0

if m > n and m,n → ∞. Therefore Xn is a Cauchy sequence with respect to this norm.
Then there is a process X such that ‖Xn −X‖ → 0 as n → ∞. For each t, we can look
at a subsequence so that sups≤t |X(s) − Xnj (s)| → 0 a.s., which implies that X(s) has
continuous paths. Letting i→∞ in (2.1), we see that X(s) satisfies (1.2).

Uniqueness will be shown next. We first examine a portion of the proof that is
known as Gronwall’s lemma.
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Lemma 2.3. (Gronwall’s lemma) Suppose g : [0,∞) → R is bounded on each finite

interval, is measurable, and there exist A and B such that for all t

g(t) ≤ A+B

∫ t

0

g(s) ds. (2.7)

Then g(t) ≤ AeBt for all t.

Proof. Iterating the inequality for g,

g(t) ≤ A+B

∫ t

0

[
A+B

∫ s

0

g(r) dr
]
ds

≤ A+ABt+B2

∫ t

0

∫ s

0

[
A+B

∫ r

0

g(q) dq
]
ds dt

= A+ABt+AB2t2/2 +B3

∫ t

0

∫ s

0

∫ r

0

g(q) dq dr ds

≤ · · · .

Since g is bounded on [0, t], say by C, then∫ t

0

g(s) ds ≤ Ct,

∫ t

0

∫ s

0

g(r) dr ds ≤
∫ t

0

Cs ds ≤ Ct2/2!,

and so on. Hence
g(t) ≤ AeBt +BnCtn/n!

for each n. Letting n→∞ completes the proof.

Theorem 2.4. Suppose σ and b are Lipschitz and bounded. Then the solution to the

SDE (1.1) is pathwise unique.

Proof. Suppose Xt and X ′
t are two pathwise solutions to (1.1). Let

g(t) = E sup
s≤t

|Xs −X ′
s|2.

Since Xt and X ′
t both satisfy (1.1), their difference satisfies

Xt −X ′
t = Ht + It,

where

Ht =
∫ t

0

[σ(Xs)− σ(X ′
s)] dWs, It =

∫ t

0

[b(Xs)− b(X ′
s)] ds.
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As in the proof of Theorem 2.1, there exist c1 and c2 such that

E sup
s≤t

H2
s ≤ c1

∫ t

0

g(s) ds, E sup
s≤t

I2
s ≤ c2t

∫ t

0

g(s) ds.

Hence, if t0 is a positive real and t ≤ t0, there exists a constant c3 depending on t0 such
that

g(t) ≤ 2E sup
s≤t

H2
s + 2E sup

s≤t
I2
s ≤ c3

∫ t

0

g(s) ds.

By Lemma 2.3, g(t) = 0 for t ≤ t0. Since t0 is arbitrary, uniqueness is proved.

It is often useful to be able to remove the boundedness assumption on σ and b. We
still want σ and b to be Lipschitz, so this can be phrased as follows.

Theorem 2.5. Suppose σ and b are Lipschitz and there exists a constant c1 such that

|σ(x)|+ |b(x)| ≤ c1(1 + |x|).

Then there exists a pathwise solution to (1.1) and the solution is pathwise unique.

We omit the proof.

We have considered the case of R-valued processes for simplicity, but with only
trivial changes the proofs work when the state space is Rd (and even infinite dimensions if
properly formulated), so we can state

Theorem 2.6. Suppose d ≥ 1 and suppose σ and b are Lipschitz. Then the SDE (1.3)

has a pathwise solution and this solution is pathwise unique.

In the above, we required σ and b to be functions of Xt only. Only cosmetic changes
are required if we allow σ and b to be functions of t and Xt and consider

dXt = σ(t,Xt) dWt + b(t,Xt) dt. (2.8)

3. Types of uniqueness.
When the coefficients σ and b fail to be Lipschitz, it is sometimes the case that (1.3)

may not have a pathwise solution at all, or it may not be unique. We define some other
notions of existence and uniqueness that are useful. We now assume that the dimension
of the state space may be larger than one.

We say a strong solution exists to the SDE (1.3) if given the Brownian motion Wt

there exists a process Xt satisfying (1.3) such that Xt is adapted to the filtration generated
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by Wt. A weak solution exists if there exists a pair of processes (Xt,Wt) such that Wt

is a Brownian motion and the equation (1.3) holds. There is weak uniqueness holding if
whenever (Xt,Wt) and (X ′

t,W
′
t ) are two weak solutions, then the joint laws of the processes

(X,W ) and (X ′,W ′) are equal. When this happens, we also say that the solution to (1.3)
is unique in law.

Let us explore some of the relationships between the various definitions just given.
Pathwise existence and the existence of a strong solution are very close, differing only in
unimportant measurability concerns. If the solution to (1.3) is pathwise unique, then weak
uniqueness holds. In the case that σ and b are Lipschitz, the proof is much simpler.

Proposition 3.1. Suppose σ and b are Lipschitz and bounded. Then the solution to (1.3)

is a strong solution. Weak uniqueness holds for (1.3).

Proof. For notational simplicity we consider the case of dimension one. The Picard
iteration in Theorem 2.1 preserves measurability, so the solution constructed in these two
theorems is adapted to the filtration generated by Wt. Thus the solution is a strong
solution.

Suppose (Xt,Wt) and (X ′
t,W

′
t ) are two solutions to (1.3). Let X ′′

t be the process
that is constructed from W ′

t analogously to how Xt was constructed from Wt, namely, by
Picard iteration and stopping times. It follows that (X,W ) and (X ′′,W ′) have the same
law. By the pathwise uniqueness, X ′′ = X ′, so the result follows.

We now give an example to show that weak uniqueness might hold even if pathwise
uniqueness does not. Let σ(x) be equal to 1 if x ≥ 0 and −1 otherwise. We take b to be
identically 0. We consider solutions to

Xt =
∫ t

0

σ(Xs) dWs. (3.1)

Weak uniqueness holds since Xt must be a martingale, and the quadratic variation of X
is d〈X〉t = σ(Xt)2 dt = dt; by a theorem of Lévy, Xt is a Brownian motion. Given a
Brownian motion Xt and letting Wt =

∫ t
0
σ−1(Xs) dXs where σ−1 = 1/σ, then again by

Lévy’s theorem, Wt is a Brownian motion; thus weak solutions exist.
On the other hand, pathwise uniqueness does not hold. To see this, let Yt = −Xt.

We have

Yt =
∫ t

0

σ(Ys) dWs − 2
∫ t

0

1{0}(Xs) dWs. (3.2)

The second term on the right has quadratic variation 4
∫ t
0

1{0}(Xs) ds, which is equal to 0
almost surely because X is a Brownian motion. Therefore the second term on the right of
(3.2) equals 0 almost surely, or Y is another pathwise solution to (3.1).
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This example is not satisfying because one would like σ to be positive and even
continuous if possible. Such examples exist, however.

4. One-dimensional case.
Although we have often looked at the case where the state space is R instead of Rd

for the sake of simplicity of notation, everything we have done so far has been valid in Rd

for any d. We now look at some stronger results that hold only in the one-dimensional
case.

Theorem 4.1. Suppose b is bounded and Lipschitz. Suppose there exists a continuous

function ρ : [0,∞) → [0,∞) such that ρ(0) = 0,
∫
0+
ρ−2(u) du = ∞, and σ is bounded and

satisfies

|σ(x)− σ(y)| ≤ ρ(|x− y|)

for all x and y. Then the solution to (1.3) is pathwise unique.

Proof. Let an ↓ 0 be selected so that
∫ an−1

an
du/ρ2(u) = n. Let hn be continuous,

supported in (an, an−1), 0 ≤ hn(u) ≤ 2/nρ2(u), and
∫ an−1

an
hn(u) du = 1 for each n. Let gn

be such that gn(0) = g′n(0) = 0 and g′′n = hn. Note |g′n(u)| ≤ 1 and g′n(u) = 1 if u ≥ an−1,
hence gn(u) ↑ u for u ≥ 0.

Let Xt and X ′
t be two solutions to (1.3). The function gn is in C2 and is 0 in a

neighborhood of 0. We apply Itô’s formula to gn((ε2 + |Xt − X ′
t|2)1/2) and let ε → 0 to

obtain

gn(|Xt −X ′
t|) = martingale +

∫ t

0

g′n(|Xs −X ′
s|)[b(Xs)− b(X ′

s)] ds

+
1
2

∫ t

0

g′′n(|Xs −X ′
s|)[σ(Xs)− σ(X ′

s)]
2 ds.

We take the expectation of the right-hand side. The martingale term has 0 expectation.
The next term has expectation bounded by

c1

∫ t

0

E |Xs −X ′
s| ds.

The final term on the right-hand side is bounded in expectation by

1
2

E
∫ t

0

2
n(ρ|Xs −X ′

s|)2
(ρ|Xs −X ′

s|)2 ds ≤
t

n
.

Letting n→∞,

E |Xt −X ′
t| ≤ c1

∫ t

0

E |Xs −X ′
s| ds.
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By Gronwall’s lemma, E |Xt − X ′
t| = 0 for each t. By the continuity of Xt and X ′

t, we
deduce the uniqueness.

5. Examples.
Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process is the solution to the SDE

dXt = dWt −
Xt

2
dt, X0 = x. (5.1)

The existence and uniqueness follow from Theorem 2.5, so (Px, Xt) is a strong Markov
process.

The equation (5.1) can be solved explicitly. Rewriting it and using the product rule,

et/2 dWt = et/2 dXt + et/2
Xt

2
dt = d[et/2Xt],

or

Xt = e−t/2x+ e−t/2
∫ t

0

es/2 dWs. (5.2)

Since the integrand of the stochastic integral is deterministic, it follows that Xt is a Gaus-
sian process and the distribution of Xt is that of a normal random variable with mean
e−t/2x and variance equal to e−t

∫ t
0
es ds = 1− e−t.

If we let Yt =
∫ t
0
es/2 dWs and Vt = Y (log(t + 1)), then Yt is a mean 0 con-

tinuous Gaussian process with independent increments, and hence so is Vt. Since the
variance of Vu − Vt is

∫ log(u+1)

log(t+1)
es ds = u − t, then Vt is a Brownian motion. Hence

Xt = e−t/2x + e−t/2V (et − 1). This representation of an Ornstein-Uhlenbeck process in
terms of a Brownian motion is useful for, among other things, calculating the exit proba-
bilities of a square root boundary.

Bessel processes. A Bessel process of order ν ≥ 0 will be defined to be a nonnegative
solution of the SDE

dXt = dWt +
ν − 1
2Xt

dt, X0 = x. (5.3)

Bessel processes have the same scaling properties as Brownian motion. That is, if
Xt is a Bessel process of order ν started at x, then aXa−2t is a Bessel process of order ν
started at ax. In fact, from (5.3),

d(aXa−2t) = a dWa−2t + a2 ν − 1
2aXa−2t

d(a−2t),

and the assertion follows from the uniqueness and the fact that aW (a−2t) is again a
Brownian motion.

Bessel processes are useful for comparison purposes, and so the following is worth
recording.
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Proposition 5.1. Suppose Xt is a Bessel process of order ν.

(i) If ν > 2, Xt never hits 0 and |Xt| → ∞ a.s.

(ii) If ν = 2, Xt hits every neighborhood of 0 infinitely often, but never hits 0.

(iii) If 0 < ν < 2, Xt hits 0 infinitely often.

(iv) If ν = 0, then Xt hits 0 and then remains at 0 thereafter.

When we say that Xt hits 0, we consider only times t > 0.

Proof. When ν = 2, Xt has the same law as a 2-dimensional Brownian motion, and
(ii) follows from the corresponding facts about 2-dimensional Brownian motion. Suppose
ν 6= 2; by Itô’s formula, (Xt)2−ν is a martingale. Assertions (i) and (iii) now follow from
a standard proof. Similarly, a Bessel process of order 0 hits 0. If Xt is such a process and
Yt = X2

t , then dYt = Y
1/2
t dWt. Starting from 0, Yt ≡ 0 is evidently a solution, so by the

uniqueness any solution starting at 0 must remain at 0 forever; (iv) now follows by the
strong Markov property.

Brownian bridge. Brownian motion conditioned to be at 0 at time 1 is called Brownian
bridge. Brownian bridge has the same law as Wt − tW1. To see this, the covariance of
Wt − tW1 and W1 is 0; hence they are independent. Therefore the law of Wt conditional
on W1 being 0 is the same as the law of Wt− tW1 + tW1 conditional on W1 being 0, which
is Wt − tW1 by independence.

We will see shortly that Brownian bridge can be represented as the solution of a
SDE

dXt = dWt −
Xt

1− t
dt, X0 = 0. (5.5)

Although Theorem 2.5 does not apply because the drift term depends on s as well as the
position Xs, similar proofs to those given above guarantee uniqueness and existence for
the solution of (5.5) for s ≤ t for any t < 1. As with the Ornstein-Uhlenbeck process, (5.5)
may be solved explicitly. We have

dWt = dXt +
Xt

1− t
dt = (1− t) d

[ Xt

1− t

]
,

or

Xt = (1− t)
∫ t

0

dWs

1− s
.

Thus Xt is a continuous Gaussian process with mean 0. The variance of Xt is

(1− t)2
∫ t

0

(1− s)−2 ds = t− t2,

the same as the variance of Brownian bridge. A similar calculation shows that the covari-
ance of Xt and Xs is the same as the covariance of Wt − tW1 and Ws − sW1. Hence the
law of Xt and Brownian bridge are the same.
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Linear equations. The equation dXt = AXt dWt + BXt dt may be written dXt = Xt dYt,
where Yt = AWt +Bt, and then we can check that the solution is

Xt = X0 exp(Yt − 〈Y 〉t/2).

6. Markov properties.
One of the more important applications of SDEs is to Markov processes. A Markov

process is one where the probability of future events depends on the past history only
through the present position. In order to be more precise, we need to introduce some
notation. Rather than having one probability measure and a collection of processes, it is
more convenient to have one process and a collection of measures.

Define Ω′ to be the set of all continuous functions from [0,∞) to Rd. We define
Zt(ω) = ω(t) for ω ∈ Ω′. We call Zt the canonical process. Suppose that for each starting
point x the SDE (1.3) has a solution that is unique in law. Let us denote the solution by
X(x, t, ω). For each x define a probability measure Px on Ω′ so that

Px(Zt1 ∈A1, . . . , Ztn ∈ An)
= P(X(x, t1, ω) ∈ A1, . . . , X(x, tn, ω) ∈ An)

whenever t1, . . . , tn ∈ [0,∞) and A1, . . . , An are Borel sets in Rd. The measure Px is
determined on the smallest σ-field containing these cylindrical sets. Let G00

t be the σ-
algebra generated by Zs, s ≤ t. We complete these σ-fields by considering all sets that are
in the Px completion of G00

t for all x. (This is not quite the same as the completion with
respect to Px, but it will be good enough for our purposes.) Finally, we obtain a right
continuous filtration by letting F ′

t = ∩ε>0G00
t+ε. We then extend Px to F ′

∞.
One advantage of Ω′ is that it is equipped with shift operators θt : Ω′ → Ω′ defined

by θt(ω)(s) = ω(t+ s). Another way of writing this is Zt ◦ θs = Zt+s. For stopping times
T we set θT (ω) = θT (ω)(ω).

The strong Markov property is the assertion that

E x[Y ◦ θT | F ′
T ] = E ZT [Y ], a.s. (Px) (6.1)

whenever x ∈ Rd, Y is bounded and F ′
∞ measurable, and T is a finite stopping time. The

Markov property holds if the above equality holds whenever T is a fixed (i.e., nonrandom)
time. If the strong Markov property holds, we say (Px, Zt) is a strong Markov process.

To prove the strong Markov property it suffices to show

E x[f(ZT+t) | F ′
T ] = E ZT f(Zt), a.s. (Px) (6.2)
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for all x ∈ Rd, f a bounded and continuous function on Rd, and T a bounded stopping
time. This is (6.1) with Y = f(Xt).

It turns out that if pathwise uniqueness or weak uniqueness holds for (1.3) for every
x, then (Px, Zt) form a strong Markov process.

Let T be a bounded stopping time. A regular conditional probability for E [ · | FT ]
is a kernel QT (ω, dω′) such that

(i) QT (ω, ·) is a probability measure on Ω′ for each ω;
(ii) for each F ′

∞ measurable set A, QT (·, A) is a F ′
∞ measurable random variable;

(iii) for each F ′
∞ measurable set A and each F ′

T measurable set B,∫
B

QT (ω,A) P(dω) = P(A ∩B).

Regular conditional probabilities need not always exist, but if the probability space is
regular enough, as Ω′ is, then they do.

We have the equation

Zt = Z0 +
∫ t

0

σ(Zr) dWr +
∫ t

0

b(Zr) dr, (6.3)

where Wr is a Brownian motion, not necessarily the same as the one in (1.3). If we let
Z̃t = ZT+t and W̃t = WT+t − WT , it is plausible that W̃ is a Brownian motion with
respect to the measure QT (ω, ·) for almost every ω. We write (6.3) with t replaced by
T + t and then write (6.3) with t replaced by T . Taking the difference and using a change
of variables, we obtain

Z̃t = Z̃0 +
∫ t

0

σ(Z̃r) W̃r +
∫ t

0

b(Z̃r) dr. (6.4)

Theorem 6.1. Suppose the solution to (1.3) is weakly unique for each x. Then (Px, Zt)
is a strong Markov process.

Proof. Fix x and let QT denote the regular conditional probability for E x[· | F ′
T ].

Except for ω in a null set, under QT (ω, ·) we have from (6.4) and Proposition 6.3 that Z̃ is
a solution to (1.3) with starting point Z̃0 = ZT . So if EQT

denotes the expectation with
respect to QT , the uniqueness in law tells us that

EQT
f(Z̃t) = E ZT f(Zt), a.s. (Px).

On the other hand,

EQT
f(Z̃t) = EQT

f(ZT+t) = E x[f(ZT+t) | F ′
T ], a.s. (Px),

12



which proves (6.2).

By a slight abuse of notation, we will say (Px, Xt) is a strong Markov family when
(Px, Zt) is a strong Markov family.

7. Poisson’s equation.
Let

Lf(x) =
1
2

d∑
i,j=1

aij(x)∂ijf(x) +
d∑
i=1

bi(x)∂if(x). (7.1)

We assume the aij and bi are bounded and at least C1. We also assume that the operator
L is uniformly strictly elliptic. An operator L is strictly elliptic if for each x there exists
Λ(x) such that

d∑
i,j=1

aij(x)yiyj ≥ Λ(x)
d∑
i=1

y2
i y = (y1, . . . , yd) ∈ Rd. (7.2)

The operator L is uniformly strictly elliptic or uniformly elliptic if Λ can be chosen to be
independent of x. We also call the matrix a strictly elliptic if (7.2) holds and uniformly
elliptic if (7.2) holds with Λ(x) not depending on x. We also assume throughout that the
dimension d is greater than or equal to 3.

We emphasize that the uniform ellipticity of L is used only to show that the exit
times of the domains we consider are finite a.s. For many nonuniformly elliptic operators,
it is often the case that the finiteness of the exit times is known for other reasons, and the
results then apply to equations involving these operators.

Suppose σ is a matrix such that a = σσT and each component of σ is bounded and
in C1. Let Xt be the solution to

Xt = x+
∫ t

0

σ(Xs) dWs +
∫ t

0

b(Xs) ds. (7.3)

We will write (Px, Xt) for the strong Markov process corresponding to σ and b.

We consider first Poisson’s equation in Rd. Suppose λ > 0 and f is a C1 function
with compact support. Poisson’s equation is

Lu(x)− λu(x) = −f(x), x ∈ Rd. (7.4)

Theorem 7.1. Suppose u is a C2
b solution to (7.4). Then

u(x) = E x

∫ ∞

0

e−λtf(Xt) dt.

13



Proof. Let u be the solution to (7.4). By Itô’s formula,

u(Xt)− u(X0) = Mt +
∫ t

0

Lu(Xs) ds,

where Mt is a martingale. By the product formula,

e−λtu(Xt)− u(X0) =
∫ t

0

e−λsdMs +
∫ t

0

e−λsLu(Xs) ds

− λ

∫ t

0

e−λsu(Xs) ds.

Taking E x expectation and letting t→∞,

−u(x) = E x

∫ ∞

0

e−λs(Lu− λu)(Xs) ds.

Since Lu− λu = −f , the result follows.

Let us now let D be a nice bounded domain, e.g., a ball. Poisson’s equation in D

requires one to find a function u such that Lu − λu = −f in D and u = 0 on ∂D, where
f ∈ C2(D) and λ ≥ 0. Here we can allow λ to be equal to 0. We will see later on that the
time to exit D, namely, τD = inf{t : Xt /∈ D}, is finite almost surely.

Theorem 7.2. Suppose u is a solution to Poisson’s equation in a bounded domain D that

is C2 in D and continuous on D. Then

u(x) = E x

∫ τD

0

e−λsf(Xs) ds.

Proof. The proof is nearly identical to that of Theorem 7.1. τD <∞ a.s. Let Sn = inf{t :
dist (Xt, ∂D) < 1/n}. By Itô’s formula,

u(Xt∧Sn)− u(X0) = martingale +
∫ t∧Sn

0

Lu(Xs) ds.

By the product formula,

E xe−λ(t∧Sn)u(Xt∧Sn
)− u(x)

= E x

∫ t∧Sn

0

e−λsLu(Xs) ds− E x

∫ t∧Sn

0

e−λsu(Xs) ds

= −E x

∫ t∧Sn

0

e−λsf(Xs) ds.

14



Now let n→∞ and then t→∞ and use the fact that u is 0 on ∂D.

8. Dirichlet problem.
Let D be a ball (or other nice bounded domain) and let us consider the solution to

the Dirichlet problem: given f a continuous function on ∂D, find u ∈ C(D) such that u is
C2 in D and

Lu = 0 in D, u = f on ∂D. (8.1)

Theorem 8.1. The solution to (8.1) satisfies

u(x) = E xf(XτD
).

Proof. We use the fact that τD < ∞ a.s. Let Sn = inf{t : dist (Xt, ∂D) < 1/n}. By
Itô’s formula,

u(Xt∧Sn) = u(X0) + martingale +
∫ t∧Sn

0

Lu(Xs) ds.

Since Lu = 0 inside D, taking expectations shows

u(x) = E xu(Xt∧Sn
).

We let t→∞ and then n→∞. By dominated convergence, we obtain u(x) = E xu(XτD
).

This is what we want since u = f on ∂D.

There are some further facts that can be deduced from Theorem 8.1. One is the
maximum principle: if x ∈ D,

sup
D

u ≤ sup
∂D

u. (8.2)

This follows from
u(x) = E xf(XτD

) ≤ sup
∂D

f.

If Lv = 0 in D, we say v is L-harmonic in D.

9. Cauchy problem.
The related parabolic partial differential equation ∂tu = Lu is often of interest.

Here ∂tu denotes ∂u/∂t.
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Suppose for simplicity that the function f is a continuous function with compact
support. The Cauchy problem is to find u such that u is bounded, u is in C2

b in x, u is C1

in t for t > 0, and

∂tu(x, t) = Lu(x, t), t > 0, x ∈ Rd,

u(x, 0) = f(x), x ∈ Rd. (9.1)

Theorem 9.1. The solution to (9.1) satisfies

u(x, t) = E xf(Xt).

Proof. Fix t0 and let Mt = u(Xt, t0 − t). The solution u to (9.1) is known to be C2 in
x and C1 in t for t > 0. Note ∂t[u(x, t0 − t)] = −(∂tu)(x, t0 − t). By Itô’s formula on
Rd × [0, t0),

u(Xt, t0 − t) = martingale +
∫ t

0

Lu(Xs, t0 − s) ds

+
∫ t

0

(−∂tu)(Xs, t0 − s) ds.

Since ∂tu = Lu, Mt is a martingale, and E xM0 = E xMt0 . On the one hand,

E xMt0 = E xu(Xt0 , 0) = E xf(Xt0),

while on the other,
E xM0 = E xu(X0, t0) = u(x, t0).

Since t0 is arbitrary, the result follows.

For bounded domains D, the Cauchy problem is to find u such that ∂t = Lu on D,
u(x, 0) = f(x) for x ∈ D, and u(x, t) = 0 for x ∈ ∂D. The solution is given by

u(x, t) = E x[f(Xt); t < τD],

where τD is the exit time of D. The proof is very similar to the case of Rd.

10. Schrödinger operators.
We next look at what happens when one adds a potential term, that is, when one

considers the operator
Lu(x) + q(x)u(x). (10.1)
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This is known as the Schrödinger operator, and q(x) is known as the potential. Equations
involving the operator in (10.1) are considerably simpler than the quantum mechanics
Schrödinger equation because here all terms are real-valued.

If Xt is the diffusion corresponding to L, then solutions to PDEs involving the
operator in (10.1) can be expressed in terms of Xt by means of the Feynman-Kac formula.
To illustrate, let D be a nice bounded domain, e.g., a ball, q a C2 function on D, and f a
continuous function on ∂D; q+ denotes the positive part of q.

Theorem 10.1. Let D, q, f be as above. Let u be a C2 function on D that agrees with

f on ∂D and satisfies Lu+ qu = 0 in D. If

E x exp
( ∫ τD

0

q+(Xs) ds
)
<∞,

then

u(x) = E x
[
f(XτD

)e
∫ τD

0
q(Xs) ds

]
. (10.2)

Proof. Let Bt =
∫ t∧τD

0
q(Xs) ds. By Itô’s formula and the product formula,

eB(t∧τD)u(Xt∧τD
) = u(X0) + martingale +

∫ t∧τD

0

u(Xr)eBr dBr

+
∫ t∧τD

0

eBr d[u(X)]r.

Taking E x expectation,

E xeB(t∧τD)u(Xt∧τD
) = u(x) + E x

∫ t∧τD

0

eBru(Xr)q(Xr) dr

+ E x

∫ t∧τD

0

eBrLu(Xr) dr.

Since Lu+ qu = 0,

E xeB(t∧τD)u(Xt∧τD
) = u(x).

If we let t→∞ and use the exponential integrability of q+, the result follows.

The existence of a solution to Lu + qu = 0 in D depends on the finiteness of

E xe

∫ τD

0
q+(Xs) ds, an expression that is sometimes known as the gauge.
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Even in one dimension with D = (0, 1) and q a constant function, the gauge need
not be finite. For Brownian motion it is known that Px(τD > t) ≥ ce−π

2t/2 for t sufficiently
large. Hence

E x exp
( ∫ τD

0

q ds
)

= E xeqτD

=
∫ ∞

0

qeqtPx(τD > t) dt;

this is infinite if q ≥ π2/2.

A very similar proof to that of Theorem 10.1 shows that under suitable assumptions
on q, g, and D, the solution to Lu+ qu = −g in D with boundary condition u = 0 on ∂D
is given by

u(x) = E x
[ ∫ τD

0

g(Xs)e
∫ s

0
q(Xr) dr

ds
]
. (10.3)

There is also a parabolic version of Theorem 10.1. The equation ∂tu = Lu + qu

with initial condition u(x, 0) = f(x) is solved by

u(x, t) = E x
[
f(Xt)e

∫ t

0
q(Xs) ds

]
. (10.4)

11. Fundamental solutions and Green functions.
The function p(t, x, y) is the fundamental solution for L if the solution to

∂tu = Lu, u(x, 0) = f(x) (11.1)

is given by

u(x, t) =
∫
p(t, x, y)f(y) dy

for all continuous f with compact support. We have seen that the solution is also given
by E xf(Xt). So ∫

p(t, x, y)f(y) dy = E xf(Xt) =
∫
f(y)Px(Xt ∈ dy).

Thus the fundamental solution is the same as the transition density for the associated
process.

An operator L in a nice domain D has a Green function GD(x, y) if GD(x, y) = 0
if either x or y is in ∂D and the solution to

Lu = f in D, u = 0 on ∂D
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is given by

u(x) = −
∫
GD(x, y)f(y) dy

when f is continuous. We have also seen that the solution is given by

u(x) = −E x

∫ τD

0

f(Xs) ds.

Thus GD(x, y) is the same as the occupation time density for Xt. That is, GD(x, y) is
the Radon-Nikodym derivative of the measure µ(A) = E x

∫ τD

0
1A(Xs) ds with respect to

Lebesgue measure.

12. Adjoints.
The adjoint operator to L is the operator

L∗f(x) =
d∑

i,j=1

∂ij
(
aij(x)f(x)

)
−

d∑
i=1

∂i
(
bi(x)f(x)

)
. (12.1)

The reason for the name is that∫
Rd

f(x)Lg(x) dx =
∫

Rd

g(x)L∗f(x) dx,

as integrations by parts show, provided f and g satisfy suitable regularity conditions. The
adjoint operator corresponds to the process that is the dual of Xt. Roughly speaking, the
dual of Xt is the process run backwards: Xt0−t.

13. Black-Scholes formula.
We aren’t going to derive the Black-Scholes PDE here, but we will show as an

example how to solve it using probability.
The equation is

ft(x, t) = 1
2σ

2x2fxx(x, t) + rxfx(x, t)− rf(x, t) (13.1)

with initial condition
f(x, 0) = (x−K)+. (13.2)

Here f(x, t) tells you the price of a European call at time T − t if the stock price is x,
where K is the strike price, σ is the volatility, r is the interest rate, and T is the exercise
time.

Let us first look at
ft = 1

2σ
2x2fxx + rxfx. (13.3)
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Solve
dXt = σXt dWt + rXt dt.

We have an explicit solution of this because it is linear:

Xt = x0e
σWt+rt− 1

2σ
2t.

To calculate E xg(Xt), we can write

E xg(Xt) =
∫
g(y)Px(Xt ∈ dy)

=
∫
g(xeσz+rt−

1
2σ

2t)P(Wt ∈ dz)

=
∫
g(xeσz+rt−

1
2σ

2t) 1√
2πt

e−z
2/2t dz.

The solution to (13.3) is

f(x, t) = E x(Xt −K)+.

Finally, to solve (13.1) we use the Feynman-Kac formula.

14. Nondivergence operators.
We consider operators in nondivergence form, that is, operators of the form

Lf(x) =
1
2

d∑
i,j=1

aij(x)∂ijf(x) +
d∑
i=1

bi(x)∂if(x). (14.1)

These operators are sometimes said to be of nonvariational form.
We assume throughout this chapter that the coefficients aij and bi are bounded

and measurable. Unless stated otherwise, we also assume that the operator L is uniformly
elliptic. The coefficients aij are called the diffusion coefficients and the bi are called the
drift coefficients. We let N (Λ1,Λ2) denote the set of operators of the form (14.1) with
supi ‖bi‖∞ ≤ Λ2 and

Λ1|y|2 ≤
d∑

i,j=1

yiaij(x)yj ≤ Λ−1
1 |y|2, y ∈ Rd, x ∈ Rd. (14.2)

We saw that if Xt is the solution to

dXt = σ(Xt) dWt + b(Xt) dt, X0 = x0, (14.3)
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where σ is a d×d matrix, b is a vector, and Wt is a Brownian motion, then Xt is associated
to the operator L with a = σσT . If f ∈ C2, then

f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds (14.4)

is a local martingale under P.
A very fruitful idea of Stroock and Varadhan is to phrase the association of Xt to

L in terms which use (14.4) as a key element. Let Ω consist of all continuous functions ω
mapping [0,∞) to Rd. Let Xt(ω) = ω(t) and let Ft be the right continuous modification
of the σ-field generated by the Xs, s ≤ t. A probability measure P is a solution to the
martingale problem for L started at x0 if

P(X0 = x0) = 1 (14.5)

and

f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds

is a local martingale under P whenever f ∈ C2(Rd). The martingale problem is well posed
if there exists a solution and this solution is unique.

Uniqueness of the martingale problem for L is closely connected to weak uniqueness
or uniqueness in law of (14.3). Recall that the cylindrical sets are ones of the form {ω :
ω(t1) ∈ A1, . . . , ω(tn) ∈ An} for n ≥ 1 and A1, . . . , An Borel subsets of Rd.

Theorem 14.1. Suppose a = σσT . Weak uniqueness for (14.3) holds if and only if the

solution for the martingale problem for L started at x0 is unique. Weak existence for (14.3)

holds if and only if there exists a solution to the martingale problem for L started at x0.

Proof. We prove the uniqueness assertion. Let Ω be the continuous functions on [0,∞)
and Zt the coordinate process: Zt(ω) = ω(t). First suppose the solution to the martingale
problem is unique. If (X1

t ,W
1
t ) and (X2

t ,W
2
t ) are two weak solutions to (14.3), define Px0

1

and Px0
2 on Ω by Px0

i (Z· ∈ A) = P(Xi
· ∈ A), i = 1, 2, for any cylindrical set A. Clearly

Px0
i (Z0 = x0) = P(Xi

0 = x0) = 1. (14.4) is a local martingale under Px0
i for each i and

each f ∈ C2. By the hypothesis of uniqueness for the solution of the martingale problem,
Px0

1 = Px0
2 . This implies that the laws of X1

t and X2
t are the same, or weak uniqueness

holds.
Now suppose weak uniqueness holds for (14.3). Let

Yt = Zt −
∫ t

0

b(Zs) ds.
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Let Px0
1 and Px0

2 be solutions to the martingale problem. If f(x) = xk, the kth coordinate
of x, then ∂if(x) = δik and ∂ijf = 0, or Lf(Zs) = bk(Zs). Therefore the kth coordinate
of Yt is a local martingale under Px0

i . Now let f(x) = xkxm. Computing Lf , we see that
Y kt Y

m
t −

∫ t
0
akm(Zs) ds is a local martingale. We set

Wt =
∫ t

0

σ−1(Zs) dYs.

The stochastic integral is finite since

E
∫ t

0

∑
j

(σ−1)ij(Zs)
∑
k

(σ−1)ik(Zs) d〈Y j , Y k〉s (14.6)

= E
∫ t

0

∑
i,k

(a−1)ik(Zs)aik(Zs) ds = t <∞.

It follows that Wt is a martingale, and a calculation similar to (14.6) shows that W k
t W

m
t −

δkmt is also a martingale under Px0
i . So by Lévy’s theorem, Wt is a Brownian motion

under both Px0
1 and Px0

2 , and (Zt,Wt) is a weak solution to (14.3). By the weak uniqueness
hypothesis, the laws of Zt under Px0

1 and Px0
2 agree, which is what we wanted to prove.

A similar proof shows that the existence of a weak solution to (14.3) is equivalent
to the existence of a solution to the martingale problem.

Since pathwise existence and uniqueness imply weak existence and uniqueness, if
the σij and bi are Lipschitz, then the martingale problem for L is well posed for every
starting point.

15. Some estimates.
Diffusions corresponding to elliptic operators in nondivergence form do not have an

exact scaling property as does Brownian motion, i.e., rXt/r2 does not necessarily have the
same law as Xt. However, they do have a weak scaling property that is nearly as useful:
rXt/r2 is again a diffusion corresponding to another elliptic operator of the same type.

Proposition 15.1. Suppose L is an elliptic operator with zero drift coefficients. Suppose

P is a solution to the martingale problem for L started at x0. Then the law of rZt/r2 is a

solution to the martingale problem for Lr started at rx0, where

Lrf(x) =
d∑

i,j=1

aij(x/r)∂ijf(x), f ∈ C2.
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Proof. It is obvious that rZt/r2 starts at rx0 with P probability one. If f ∈ C2, let
g(x) = f(rx). Setting Vt = rZt/r2 ,

f(Vt) = g(Zt/r2) (15.1)

= g(x0) + martingale +
∫ t

0

∑
i,j

∂ijg(Zs/r2) d〈Zi, Zj〉s/r2 .

By the definition of g, ∂ijg(x) = r2∂ijf(rx), so ∂ijg(Zs/r2) = r2∂ijf(Vs). From the
definition of martingale problem applied to the function xixj , we see that as in the proof
of Theorem 14.1, ZitZ

j
t −

∫ t
0
aij(Zs) ds is a local martingale under P, and hence d〈Zi, Zj〉s =

aij(Zs) ds and
d〈Zi, Zj〉s/r2 = r−2aij(Zs/r2) ds = r−2aij(Vs/r) ds.

Substituting in (15.1),

f(Vt) = f(V0) + martingale +
∫ t

0

∑
i,j

aij(Vs/r)∂ijf(Vs) ds.

Thus the law of Vt under P is a solution to the martingale problem for Lr.

The following elementary bounds on the time to exit a ball will be used repetitively.
Recall that τA denotes the hitting time of A.

Proposition 15.2. Suppose L ∈ N (Λ, 0), so that the drift coefficients of L are 0. Suppose

P is a solution to the martingale problem for L started at 0.

(a) There exists c1 depending only on Λ such that

P(τB(0,1) ≤ t) ≤ c1t.

(b) There exist c2 and c3 depending only on Λ such that

P(τB(0,1) ≥ t) ≤ c2e
−c3t.

Proof. Write B for B(0, 1). Let f be a C2 function that is zero at 0, one on ∂B, with
∂ijf bounded by a constant c4. Since P is a solution to the martingale problem,

E f(Xt∧τB
) = E

∫ t∧τB

0

Lf(Xs) ds ≤ c5t,

where c5 depends on c4 and Λ. Since f(Xt∧τB
) ≥ 1(τB≤t), this proves (a).
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To prove (b), look at X1
t . Since P is a solution to the martingale problem, taking

f(x) = x1 in (14.4) shows that X1
t is a local martingale. Taking f(x) = x2

1 in (14.4) shows
that (X1

t )
2 −

∫ t
0
a11(Xs) ds is also a local martingale. So d〈X1〉t = a11(Xt) dt, and X1

t

is a nondegenerate time change of a one-dimensional Brownian motion. X1
s stays in the

interval [−1, 1] up until time t only if a Brownian motion stays in the interval [−1, 1] up
until time c6t, and this is known to be bounded by c7e

−c8t. If Xs has not exited B by
time t, then X1

s has not exited [−1, 1], and (b) follows.

An important property of Xt is that it satisfies a support theorem. Suppose Xt

satisfies (15.1). We suppose that σ, σ−1, and b are bounded, but we impose no other
smoothness conditions. Let a = σσT .

Lemma 15.3. Suppose Yt = Mt + At is a continuous semimartingale with dAt/dt and

d〈M〉t/dt bounded above by c1 and d〈M〉t/dt bounded below by c2 > 0. If ε > 0 and

t0 > 0, then

P(sup
s≤t0

|Ys| < ε) ≥ c3,

where c3 > 0 depends only on c1, c2, ε, and t0.

Proof. Let Bt = inf{u : 〈M〉u > t}. Then Wt = MBt is a continuous martingale with
quadratic variation equal to t; hence by Lévy’s theorem, Wt is a Brownian motion. If
Zt = YBt

= Wt+Et, then Et =
∫ t
0
es ds for some es bounded by c4, where c4 depends only

on c1 and c2. Our assertion will follow if we can show

P( sup
s≤c1t0

|Zs| < ε) ≥ c3.

We now use Girsanov’s theorem. Define a probability measure Q by

dQ/dP = exp
(
−

∫ t0

0

es dWs −
1
2

∫ t0

0

e2s ds
)

on Ft0 . Under P, Wt is a martingale, so under Q we have that

Wt −
〈∫ ·

0

(−es) dW,W
〉
t
= Wt +

∫ t

0

es ds

is a martingale with the same quadratic variation as W has under P, namely, t. Then
under Q, Zt is a Brownian motion. By a well known property of Brownian motion

Q( sup
s≤c1t0

|Zs| < ε) ≥ c5,
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for c5 depending only on ε and c1t0. So if C is the event {sups≤c1t0 |Zs| < ε},

c5 ≤ Q(C) =
∫
C

(dQ/dP) dP ≤
(
E (dQ/dP)2

)1/2(
P(C)

)1/2

by the Cauchy-Schwarz inequality. The proof is concluded by noting that dQ/dP has a
second moment depending only on c4 and t0.

We use this lemma to obtain an analogous result for Xt.

Theorem 15.4. Let ε ∈ (0, 1), t0 > 0. There exists c1 depending only on the upper

bounds of σ, b, and σ−1 such that

P(sup
s≤t0

|Xs −X0| < ε) ≥ c1.

Proof. For notational simplicity assume X0 = 0. Let y = (ε/4, 0, . . . , 0). Applying Itô’s
formula with f(z) = |z − y|2 and setting Vt = |Xt − y|2, then V0 = (ε/4)2 and

dVt = 2
∑
i

(Xi
t − yi) dXi

t +
∑
i

d〈Xi〉t.

If we set Yt equal to Vt for t ≤ inf{u : |Vu| > (ε/2)2} and equal to some Brownian motion
for t larger than this stopping time, then Lemma 15.3 applies and

P(sup
s≤t0

|Vs − V0| ≤ (ε/8)2) = P(sup
s≤t0

|Ys − Y0| ≤ (ε/8)2) ≥ c2.

By the definition of y and Vt, this implies with probability at least c2 that Xt stays inside
B(0, ε).

We can now prove the support theorem for Xt.

Theorem 15.5. Suppose σ and b are bounded, σ−1 is bounded, x ∈ Rd,and Xt satisfies

(15.1) with X0 = x. Suppose ψ : [0, t] → Rd is continuous with ψ(0) = x and ε > 0. There

exists c1, depending only on ε, t, the modulus of continuity of ψ, and the bounds on b and

σ such that

P(sup
s≤t

|Xs − ψ(s)| < ε) ≥ c1.

This can be phrased as saying the graph of Xs stays inside an ε-tube about ψ. By
this we mean, if Gεψ = {(s, y) : |y − ψ(s)| < ε, s ≤ t}, then {(s,Xs) : s ≤ t} is contained in
Gεψ with positive probability.
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Proof. We can find a differentiable function ψ̂ such that ψ̂(0) = x and the ε/2 tube
about ψ̂ (which is Gε/2

ψ̂
in the above notation) is contained in Gεψ, the ε-tube about ψ. So

without loss of generality, we may assume ψ is differentiable with a derivative bounded by
a constant, say c2.

Define a new probability measure Q by

dQ/dP = exp
( ∫ t

0

ψ′(s)σ−1(Xs) dWs −
1
2

∫ t

0

|ψ′(s)σ−1(Xs)|2 ds
)

on Ft. We see that〈∫ ·

0

ψ′(s)σ−1(Xs) dWs, X
〉

=
〈∫ ·

0

ψ′(s)σ−1(Xs) dWs,

∫ ·

0

σ(Xs) dWs

〉
=

∫ t

0

ψ′(s) ds = ψ(t)− ψ(0).

So by the Girsanov theorem, under Q each component of Xt is a semimartingale and
Xi
t −

∫ t
0
bi(Xs) ds− ψi(t) is a martingale for each i. Furthermore, if

Ŵt =
∫ t

0

σ−1(Xt) [dXt − b(Xt) dt− ψ′(t) dt],

each component of Ŵ is a continuous martingale, and a calculation shows that d〈Ŵ i, Ŵ j〉t
= δij dt under Q. Therefore Ŵ is a d-dimensional Brownian motion under Q. Since

d(Xt − ψ(t)) = σ(Xt) dŴt + b(Xt) dt,

then by Theorem 15.4,
Q(sup

s≤t
|Xs − ψ(s)| < ε) ≥ c3.

Very similarly to the last paragraph of the proof of Lemma 15.3, we conclude

P(sup
s≤t

|Xs − ψ(s)| < ε) ≥ c4.

16. Convexity.
In this section we will let the aij be smooth (C2, say) and strictly elliptic, and

assume that the drift coefficients are identically 0. Let D be either B(0, 1) or a unit cube
centered at 0.
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Suppose u is continuous. The upper contact set of u is the set

Uu = {y ∈ D : there exists p ∈ Rd such that

u(x) ≤ u(y) + p · (x− y) for all x ∈ D}.

Here p · (x− y) denotes the inner product. In this definition p will depend on y. A point
y is in Uu if there is a hyperplane, namely, u(x) = u(y) + p · (x − y), that lies above the
graph of u but touches the graph at (y, u(y)). With this interpretation we see that when u
is concave (i.e., −u is convex), then Uu = D, and conversely, if Uu = D, then u is concave.

When u ∈ C1, for y ∈ Uu there is only one p such that u(x) ≤ u(y) + p · (x − y),
namely, p = ∇u(y). For u ∈ C2 let Hu denote the Hessian matrix:

(Hu)ij(x) = ∂iju(x).

Proposition 16.1. If u ∈ C2 and y ∈ Uu, then Hu(y) is nonpositive definite.

Proof. Let h be a unit vector. y ∈ Uu implies there exists p such that u(y + εh) ≤
u(y) + εp · h and u(y − εh) ≤ u(y)− εp · h. Combining,

u(y + εh) + u(y − εh)− 2u(y) ≤ 0.

Dividing by ε2 and letting ε→ 0 gives hTHu(y)h ≤ 0.

Let Su(y) be the set of slopes of supporting hyperplanes to u at y. That is,

Su(y) = {p ∈ Rd : u(x) ≤ u(y) + p · (x− y) for all x ∈ D}.

As we noted above, Su(y) 6= ∅ if and only if y ∈ Uu, and if u ∈ C1 and y ∈ Uu, then
Su(y) = {∇u(y)}. Let

Su(A) =
⋃
y∈A

Su(y).

Let |A| denote the Lebesgue measure of A and detH the determinant of H. Recall
that if V is a neighborhood in D, v : D → Rd is in C1, and v(V ) is the image of V under
v, then

|v(V )| ≤
∫
V

|det Jv|, (16.1)

where Jv is the Jacobian of v. (We have inequality instead of equality because we are not
assuming v is one-to-one.)
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Proposition 16.2. Suppose u is continuous on D and C2 in D. There exists c1 not

depending on u such that

sup
D
u ≤ sup

∂D
u+ c1

( ∫
Uu

|detHu|
)1/d

.

Proof. Replacing u by u− sup∂D u, we may assume sup∂D u = 0. We first show

|Su(D)| = |Su(Uu)| ≤
∫
Uu

|detHu|. (16.2)

Since Su(y) = {∇u(y)}, the Jacobian matrix of the mapping Su is Hu.
Next suppose u takes a positive maximum at y ∈ D. Let v be the function such

that the region below the graph of v is the cone with base D and vertex (y, u(y)). More
precisely, let G1 be the smallest convex set in D × [0,∞) containing ∂D × {0} and the
point (y, u(y)); let v(x) = sup{z ≥ 0 : (x, z) ∈ G1} for x ∈ D.

Suppose p ∈ Sv(D). We look at the family of hyperplanes α + p · (x − y). If we
start with α large and let α decrease to −∞, there is a first hyperplane that touches the
graph of u (not necessarily at (y, u(y))). Consequently p ∈ Su(D). We have thus shown
that Sv(D) ⊆ Su(D).

We see that
|Sv(D)| ≤ |Su(D)| ≤

∫
Uu

|detHu|. (16.3)

We now compute |Sv({y})|. If each coordinate of p is between−u(y)/d and +u(y)/d,
then p ∈ Sv(y). So

|Sv(D)| ≥ |Sv({y})| ≥ c2(u(y)/d)d.

Combining with (16.2),

u(y)d ≤ c−1
2 dd|Sv(D)| ≤ c3

∫
Uu

|detHu|.

We will use the inequality

1
d

d∑
j=1

λj ≥
d∏
j=1

λ
1/d
j , λj ≥ 0, j = 1, . . . , d. (16.4)

One way to prove (16.4) is to let Ω = {1, 2, . . . , d}, let P assign mass 1/d to each point of
Ω, let X be the random variable defined by X(j) = λj , and apply Jensen’s inequality to
the convex function − log x. We then have

− log
( d∑
j=1

λj
1
d

)
≤ 1
d

d∑
j=1

(− log λj),

which implies (16.4).

We now prove a key estimate due to Alexandroff-Bakelman-Pucci.
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Theorem 16.3. Suppose L ∈ N (Λ, 0), the coefficients of L are in C2, u ∈ C2, and Lu = f

in D. There exists c1 independent of u such that

sup
D
u ≤ sup

∂D
u+ c1

( ∫
D

|f(x)|d dx
)1/d

.

Proof. Fix y ∈ Uu, let B = −Hu(y), and let A be the matrix a(y). Let λ1, . . . , λd be the
eigenvalues of B. Since Hu is nonpositive definite, λj ≥ 0. Let P be an orthogonal matrix
and C a diagonal matrix such that B = PTCP . Note |detHu| = detB = λ1 · · ·λd and

(AB)ii =
d∑
j=1

AijBji = −
∑
j

aij(y)∂iju(y).

Then

−f(y) = −
∑
i,j

aij(y)∂iju(y) = trace (AB) (16.5)

= trace (APTCP ) = trace (CPAPT ) =
d∑
j=1

λj(PAPT )jj .

Since A is uniformly positive definite, there exists c2 such that (PAPT )jj ≥ c2, so by
(16.4),

−f(y) ≥
∑
j

c2λj = c2d
∑
j

(λj/d)

≥ c2d(
∏
j

λj)1/d = c2d|detHu|1/d.

Taking dth powers, integrating over Uu, and using Proposition 16.2 completes the proof.

17. Green functions.
Let P be a solution to the martingale problem for L started at x (assuming one

exists) and let E be the corresponding expectation. If D is a domain, a function GD(x, y)
is called a Green function for the operator L in the domain D if

E
∫ τD

0

f(Xs) ds =
∫
D

GD(x, y)f(y) dy (17.1)

for all nonnegative Borel measurable functions f on D. The function Gλ(x, y) is called the
λ-resolvent density if

E
∫ ∞

0

e−λsf(Xs) ds =
∫

Rd

Gλ(x, y)f(y) dy (17.2)

for all nonnegative Borel measurable f on Rd.
An immediate consequence of the Alexandroff-Bakelman-Pucci estimate is the fol-

lowing.
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Theorem 17.1. Suppose L ∈ N (Λ, 0) and the diffusion coefficients are in C2. Then there

exists c1 depending only on Λ such that∣∣∣E ∫ τB(0,1)

0

f(Xs) ds
∣∣∣ ≤ c1

( ∫
B(0,1)

|f(y)|d dy
)1/d

.

Proof. We prove this inequality for f that are C2 in B(0, 1); a limit argument then
yields the inequality for arbitrary f . Let u(y) = E y

∫ τB(0,1)

0
f(Xs) ds. u is C2 in B(0, 1),

continuous on the closure of B(0, 1), and Lu = −f . In fact, u is 0 on the boundary of
B(0, 1). Now apply Theorem 4.3.

Corollary 17.2.
GB(x, ·) ∈ Ld/(d−1)(B).

Proof. By Theorem 17.1 and (17.1),∣∣∣∫
B

GB(x, y)f(y) dy
∣∣∣ ≤ c1‖f‖Ld(B)

for all f ∈ Ld(B). The result follows by the duality of Ld and Ld/(d−1).

We also have

Theorem 17.3. Suppose L ∈ N (Λ, 0) and the diffusion coefficients are in C2. There

exists c1 not depending on f such that if f ∈ Ld, then∣∣∣E ∫ ∞

0

e−λtf(Xt) dt
∣∣∣ ≤ c1

( ∫
Rd

|f(y)| dy
)1/d

.

Proof. By the smoothness of the diffusion coefficients, there is a unique solution to the
martingale problem for L starting at each x ∈ Rd; we denote it Px. Moreover, (Px, Xt)
forms a strong Markov family.

Let S0 = 0 and Si+1 = inf{t > Si : |Xt − XSi
| > 1}, i = 0, 1, . . . Then Si+1 =

Si + S1 ◦ θSi . By Proposition 2.3, there exists t0 such that supx Px(S1 ≤ t0) ≤ 1/2. Then

E xe−λS1 ≤ Px(S1 ≤ t0) + e−λt0Px(S1 > t0)

= (1− e−λt0)Px(S1 ≤ t0) + e−λt0 .
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So if ρ = supx E xeλS1 , then ρ < 1. By the strong Markov property,

E xe−λSi+1 = E x
(
e−λSiE x(e−λS1◦θSi | FSi

)
)
≤ ρE xe−λSi ,

and by induction E xe−λSi ≤ ρi.
We now write

E x

∫ ∞

0

e−λtf(Xt) dt =
∞∑
i=0

∫ Si+1

Si

e−λtf(Xt) dt. (17.3)

By the strong Markov property at time Si and Theorem 17.1,

∣∣∣E x

∫ Si+1

Si

e−λtf(Xt) dt
∣∣∣ =

∣∣∣E x
(
e−λSiEXSi

∫ S1

0

e−λtf(Xt) dt
)∣∣∣

≤ c2E
xe−λSi‖f‖d ≤ c2ρ

i‖f‖d.

Substituting in (17.3) proves the theorem.

This implies Gλ(x, ·) ∈ Ld/(d−1).

One disadvantage of Theorems 17.1 and 17.3 is that we required the diffusion coeffi-
cients to be smooth. We will remove this restriction in the next section by an approximation
procedure due to Krylov. Earlier Krylov had also proved, however, that Theorems 17.1
and 17.3 hold whenever Xt = x +

∫ t
0
σs dWs, where σs(ω) is an adapted, matrix-valued

process that is bounded and is uniformly positive definite (that is, there exists c1 such that
yTσs(ω)y ≥ c1|y|2 for all y ∈ Rd, where c1 is independent of s and y).

18. Resolvents.
In this section we present a theorem of Krylov on approximating resolvents and then

apply it to extend Theorem 17.3 to arbitrary solutions of the martingale problem for an
elliptic operator L. We suppose that L ∈ N (Λ, 0) for some Λ > 0, but make no smoothness
assumptions on the coefficients. Let P be any solution to the martingale problem for L
started at x0.

Recall that f ∗g(x) =
∫
f(y)g(x−y) dy. Let ϕ be a nonnegative radially symmetric

C∞ function with compact support such that
∫

Rd ϕ = 1 and ϕ > 0 on B(0, r) for some r.
Let ϕε(x) = ε−dϕ(x/ε).

Theorem 18.1. Let λ > 0. There exist aεij in C∞ with the following properties:

(i) if Lε is defined by

Lεf(x) =
1
2

d∑
i,j=1

aεij(x)∂ijf(x), (18.1)
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then Lε ∈ N (Λ, 0), and

(ii) if Pxε is the solution to the martingale problem for Lε started at x and

Gλεh(x) = E x
ε

∫ ∞

0

e−λth(Xt) dt (18.2)

for h bounded, then

(Gλεf ∗ ϕε)(x0) → E
∫ ∞

0

e−λtf(Xt) dt (18.3)

whenever f is continuous.

It turns out that Gλεf is equicontinuous in ε, so that in fact Gλεf(x0) converges to
the right-hand side of (18.3).

The aεij depend on P, and different solutions to the martingale problem could con-
ceivably give us different sequences aεij .

Proof. Define a measure µ by

µ(C) = E
∫ ∞

0

e−λt1C(Xt) dt. (18.4)

By the support theorem, for each y ∈ Rd and s > 0, there is positive probability under P
that Xt enters the ball B(y, s) and stays there a positive length of time. So µ(B(y, s)) > 0
for all y and s. Define

aεij(x) =
∫
ϕε(x− y)aij(y)µ(dy)∫
ϕε(x− y)µ(dy)

. (18.5)

By our assumptions on ϕ, the denominator is not zero. It is clear that (i) holds.
Suppose u is in C2 and bounded. By the product formula and Itô’s formula,

e−λtu(Xt) = u(X0)−
∫ t

0

u(Xs)λe−λs ds+
∫ t

0

e−λs d[u(X)]s

= u(X0)−
∫ t

0

u(Xs)λe−λs ds+ martingale

+
∫ t

0

e−λsLu(Xs) ds.

Taking expectations and letting t→∞,

u(x0) = E
∫ ∞

0

e−λs(λu− Lu)(Xs) ds =
∫

(λu− Lu)(x)µ(dx). (18.6)
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We next apply (18.6) to u = v ∗ϕε, where v is a bounded and C2 function. On the
left-hand side we have

∫
v(x0 − y)ϕε(y) dy. Note that

L(v ∗ ϕε)(z) =
1
2

∑
i,j

aij(z)∂ij(v ∗ ϕε)(z) (18.7)

=
1
2

∑
i,j

aij(z)((∂ijv) ∗ ϕε)(z)

=
1
2

∑
i,j

∫
aij(z)∂ijv(x)ϕε(x− z) dx.

However, by (18.5),∫
aij(z)ϕε(x− z)µ(dz) = aεij(x)

∫
ϕε(x− y)µ(dy). (18.8)

Combining (18.6), (18.7), and (18.8),∫
v(x0 − y)ϕε(y) dy =

∫
[λ(v ∗ ϕε)− L(v ∗ ϕε)](x)µ(dx) (18.9)

=
∫ ∫

(λ− Lε)v(x)ϕε(x− y)µ(dy) dx.

Suppose f is smooth, and let v(x) = Gλεf(x). v is in C2 and bounded and (λ −
Lε)v = f . Substituting in (18.9),∫

Gλεf(x0 − y)ϕε(y) dy =
∫ ∫

f(x)ϕε(x− y)µ(dy) dx (18.10)

=
∫
f ∗ ϕε(y)µ(dy).

By a limit argument, we have (18.10) when f is continuous. Since f is continuous, f ∗ ϕε
is bounded and converges to f uniformly. Hence∫

f ∗ ϕε(y)µ(dy) →
∫
f(y)µ(dy) = E

∫ ∞

0

e−λtf(Xt) dt.

It is easy to see that if the aij are continuous, then aεij converges to aij pointwise.
Defining bεi by the analogue of (18.5), there is no difficulty extending this theorem

to the case L ∈ N (Λ1,Λ2), Λ2 > 0.
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Theorem 18.2. Let P be as above. There exists c1 not depending on f such that∣∣∣E ∫ ∞

0

e−λtf(Xt) dt
∣∣∣ ≤ c1‖f‖d.

Proof. By Theorem 18.1, the left-hand side is the limit of |Gελf ∗ϕε(x0)| if f is continuous
and bounded. The coefficients in Lε are smooth, so by Theorem 17.3 ‖Gλεf‖∞ ≤ c1‖f‖d,
c1 independent of ε. This proves the proposition for f smooth, and the case of general f
follows by a limit argument.

Corollary 18.3. Under the assumptions of Theorem 18.1,

(Gλεf ∗ ϕε)(x0) → E
∫ ∞

0

e−λtf(Xt) dt,

if f is bounded.

Proof. We start with (18.10). By a limit argument, we have (18.10) holding for f bounded.
So we need to show that the right-hand side of (18.10) converges to

∫
f(y)µ(dy). Since

f is bounded, f ∗ ϕε converges to f almost everywhere and boundedly. By Theorem 18.2
and (18.4), µ is absolutely continuous with respect to Lebesgue measure. Then∫

f ∗ ϕε(y)µ(dy) =
∫
f ∗ ϕε(y)(dµ/dy) dy

→
∫
f(y)(dµ/dy) dy =

∫
f(y)µ(dy)

by dominated convergence.

19. Harnack inequality.
In this section we prove some theorems of Krylov and Safonov concerning positive

L-harmonic functions. Recall that a function h is L-harmonic in a domain D if h ∈ C2

and Lh = 0 in D. These results were first proved probabilistically by Krylov and Safonov
and are a good example of the power of the probabilistic point of view.

In this section we assume that L ∈ N (Λ, 0) so that the drift coefficients are 0. We
assume that for each x ∈ Rd we have a solution to the martingale problem for L started
at x and that (Px, Xt) forms a strong Markov family.

Let Q(x, r) denote the cube of side length r centered at x. Our main goal is to show
that Xt started at x must hit a set A before exiting a cube with positive probability if A
has positive Lebesgue measure and x is not too near the boundary. The first proposition
starts things off by handling the case when A nearly fills the cube. Recall that we are
using |A| to denote the Lebesgue measure of A.
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Proposition 19.1. There exist ε and c1 = c1(ε) such that if x ∈ Q(0, 1/2), A ⊆ Q(0, 1),
and |Q(0, 1)−A| < ε, then Px(TA < τQ(0,1)) ≥ c1.

Proof. Let us write τ for τQ(0,1). Recall there exist c2 and c3 not depending on x such
that E xτ ≥ c2 and E xτ2 ≤ c3.

Note that E x
∫ τ
0

1Ac(Xs) ds = E x
∫ τ
0

1(Q(0,1)−A)(Xs) ds. Since

E x(τ − (τ ∧ t0)) ≤ E x(τ ; τ ≥ t0) ≤ E xτ2/t0,

we can choose t0 large enough so that E x(τ − (τ ∧ t0)) ≤ c2/4. Then

E x

∫ τ

0

1(Q(0,1)−A)(Xs) ds (19.1)

≤ c2/4 + et0E x

∫ t0

0

e−s1(Q(0,1)−A)(Xs) ds

≤ c2/4 + et0E x

∫ ∞

0

e−s1(Q(0,1)−A)(Xs) ds

≤ c2/4 + c5e
t0‖1Q(0,1)−A‖d

≤ c2/4 + c5e
t0ε1/d.

If ε is chosen small enough, then E x
∫ τ
0

1Ac(Xs) ds < c2/2.
On the other hand,

c2 ≤ E xτ = E x(τ ;TA < τ) + E x

∫ τ

0

1Ac(Xs) ds

≤ (E xτ2)1/2(Px(TA < τ))1/2 + c2/2

≤ c
1/2
3 (Px(TA < τ))1/2 + c2/2,

and the result follows with c1 = c22/4c3.

We used Theorem 18.2 because it applies to arbitrary solutions to the martingale
problem, whereas Theorem 17.1 requires the aij to be smooth. As noted at the end of
Section 5, Theorem 17.1 actually holds for arbitrary solutions to the martingale problem;
if we used that fact, we then could have obtained the estimate in (19.1) more directly.

Next we decompose Q(0, 1) into smaller subcubes such that a set A fills up a certain
percentage of each of the smaller subcubes. If Q is a cube, let Q̂ denote the cube with the
same center as Q but side length three times as long.
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Proposition 19.2. Let q ∈ (0, 1). If A ⊆ Q(0, 1) and |A| ≤ q, then there exists D such

that (i) D is the union of cubes R̂i such that the interiors of the Ri are pairwise disjoint,

(ii) |A| ≤ q|D ∩Q(0, 1)|, and (iii) for each i, |A ∩Ri| > q|Ri|.

Proof. We will do the case d = 2; the higher-dimensional case differs only in the notation.
We form a collection of subsquares R = {Ri} as follows. Divide Q(0, 1) into four equal
squares Q1, Q2, Q3, and Q4 with disjoint interiors. For j = 1, 2, 3, 4, if |A ∩Qj | > q|Qj |,
we let Qj be one of the squares in R. If not, we split Qj into four equal subsquares
Qj1, Qj2, Qj3, Qj4 and repeat; Qjk will be one of the Ri if |A∩Qjk| > q|Qjk|, and otherwise
we divide Qjk. To be more precise, let Qn be the collection of squares of side lengths 2−n

with vertices of the form [j/2n, k/2n] for integers j and k. An element Q′ of Qn will be
in R if |A ∩ Q′| > q|Q′| and Q′ is not contained in any Q′′ ∈ Q0 ∪ Q1 ∪ · · · ∪ Qn−1 with
|A ∩Q′′| > q|Q′′|.

We let D = ∪iR̂i where the union is over Ri ∈ R. Assertions (i) and (iii) are clear
and it remains to prove (ii). Recall that almost every point z ∈ A is a point of density of
A, that is, |B(z, r) ∩ A|/|B(z, r)| → 1 a.e. for z ∈ A; this follows by the Lebesgue density
theorem. If z is a point of density of A and Tn denotes the element of Qn containing z,
then |Tn ∩ A|/|Tn| → 1. If z is a point of density of A and z is not on the boundary of
some square in Qn for some n, it follows that z must be in some Ri ∈ R. We conclude
that |A−D| = 0.

We form a new collection of squares S. We divide Q(0, 1) into four equal subsquares
Q1, Q2, Q3, Q4. If Qj ⊆ D, it will be in S; otherwise split Qj into four subsquares and
continue. More exactly, Q′ ∈ Qn will be in S if Q′ ⊆ D but Q′ is not contained in any
Q′′ ∈ Q0 ∪ · · ·Qn−1 for which Q′′ ⊆ D.

Since D is the union of cubes R̂i, then |D∩Q(0, 1)| =
∑
i |Si| where the sum is over

Si ∈ S. Since almost every point of A is contained in D and almost every point of D is in
one of the Si’s that are in S, we conclude |A| =

∑
i |Si ∩A|. It thus suffices to show that

|A ∩ Si| ≤ q|Si| (19.2)

for each Si ∈ S. We then sum over i and (ii) will be proved.
Consider Si ∈ S. If Si = Q(0, 1), we are done by the hypotheses on A. Otherwise Si

is in Qn for some n ≥ 1 and is contained in a square Q′ ∈ Qn−1. Let C1, C2, C3 denote the
other three squares ofQn that are contained in Q′. Since Si ∈ S, then Q′ = Si∪C1∪C2∪C3

is not in S. Since Si ⊆ D, at least one of the squares C1, C2, C3 cannot be contained in
D. We have Si ∪C1 ∪C2 ∪C3 ⊆ Ŝi. Ŝi is not contained in D, which implies that Si /∈ R.
We thus have Si ∪C1 ∪C2 ∪C3 is not contained in D but Si /∈ R; this could only happen
if |Si ∩A| ≤ q|Si|, which is (19.2).

36



Lemma 19.3. Let r ∈ (0, 1). Let y ∈ Q(0, 1) with dist (y, ∂Q(0, 1)) > r, L′ ∈ N (Λ, 0),
and P be a solution to the martingale problem for L′ started at y. If Q(z, r) ⊆ Q(0, 1),
then P(TQ(z,r) < τQ(0,1)) ≥ ζ(r) where ζ(r) > 0 depends only on r and Λ.

Proof. This follows easily from the support theorem.

We now prove the key result, that sets of positive Lebesgue measure are hit with
positive probability.

Theorem 19.4. There exists a nondecreasing function ϕ : (0, 1) → (0, 1) such that if

B ⊆ Q(0, 1), |B| > 0, and x ∈ Q(0, 1/2), then

Px(TB < τQ(0,1)) ≥ ϕ(|B|).

Proof. Again we suppose the dimension d is 2 for simplicity of notation. Set

ϕ(ε) = inf{Py(TB <τQ(z0,R)) : z0 ∈ Rd, R > 0, y ∈ Q(z0, R/2),

|B| ≥ ε|Q(z0, R)|, B ⊆ Q(z0, R)}.

By Proposition 19.1 and scaling, ϕ(ε) > 0 for ε sufficiently close to 1. Let q0 be the infimum
of those ε for which ϕ(ε) > 0. We suppose q0 > 0, and we will obtain our contradiction.

Choose q > q0 such that (q + q2)/2 < q0. This is possible, since q0 < 1 and so
(q0+q20)/2 < q0. Let η = (q−q2)/2. Let β = (q∧(1−q))/16 and let ρ be equal to ζ((1−β)/6)
as defined in Lemma 19.3. There exist z0 ∈ Rd, R > 0, B ⊆ Q(z0, R), and x ∈ Q(z0, R/2)
such that q > |B|/|Q(z0, R)| > q − η and Px(TB < τQ(z0,R)) < ρϕ(q)2. Without loss of
generality, let us assume z0 = 0 and R = 1, and so we have Px(TB < τQ(0,1)) < ρϕ(q)2.

We next use Proposition 19.2 to construct the set D (with A replaced by B). Since
|B| > q − η and

|B| ≤ q|D ∩Q(0, 1)|,

then

|D ∩Q(0, 1)| ≥ |B|
q

>
q − η

q
=
q + 1

2
.

Let D̃ = D ∩Q(0, 1− β). Then |D̃| > q. By the definition of ϕ, this implies that

Px(T
D̃
< τQ(0,1)) ≥ ϕ(q).

We want to show that if y ∈ D̃, then

Py(TB < τQ(0,1)) ≥ ρϕ(q). (19.3)
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Once we have that, we write

Px(TB < τQ(0,1)) ≥ Px(T
D̃
< TB < τQ(0,1))

≥ E x(PX(T (D̃))(TB < τQ(0,1));TD̃ < τQ(0,1))

≥ ρϕ(q)Px(T
D̃
< τQ(0,1)) ≥ ρϕ(q)2,

our contradiction.
We now prove (19.3). If y ∈ ∂D̃, then y ∈ R̂i for some Ri ∈ R and dist (y, ∂Q(0, 1))

≥ 1− β. Let R∗i be the cube with the same center as Ri but side length half as long. By
Lemma 19.3,

Py(TR∗
i
< τQ(0,1)) ≥ ρ.

By the definition of q and the fact that Ri ∈ R, then |B ∩ Ri| ≥ q|Ri|. By the definition
of ϕ(q), we have Pz(TB∩Ri

< τRi
) ≥ ϕ(q) if z ∈ R∗i . So by the strong Markov property,

Py(TB < τQ(0,1)) ≥ E y(PX(TR∗
i
)(TB < τRi

);TR∗
i
< τQ(0,1))

≥ ρϕ(q).

Theorem 19.4 is the key estimate. We now proceed to show that L-harmonic func-
tions are Hölder continuous and that they satisfy a Harnack inequality. A function h is
L-harmonic in D if h ∈ C2 and Lh = 0 in D. If h is L-harmonic, then by Itô’s formula,
h(Xt∧τD

) is a martingale. There may be very few L-harmonic functions unless the coeffi-
cients of L are smooth, so we will use the condition that h(Xt∧τD

) is a martingale as our
hypothesis.

Theorem 19.5. Suppose h is bounded in Q(0, 1) and h(Xt∧τQ(0,1)) is a martingale. Then

there exist α and c1 not depending on h such that

|h(x)− h(y)| ≤ c1‖h‖∞|x− y|α, x, y ∈ Q(0, 1/2).

Proof. Define OscB h = supx∈B h(x) − infx∈B h(x). To prove the theorem, it suffices to
show there exists ρ < 1 such that for all z ∈ Q(0, 1/2) and r ≤ 1/4,

Osc
Q(z,r/2)

h ≤ ρ Osc
Q(z,r)

h. (19.4)

If we look at Ch+D for suitable constants C and D, we see that it is enough to consider
the case where infQ(z,r) h = 0 and supQ(z,r) h = 1. Let B = {x ∈ Q(z, r/2) : h(x) ≥ 1/2}.
We may assume that |B| ≥ (1/2)|Q(z, r/2)|, for if not, we replace h by 1− h.
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If x ∈ Q(z, r/2), then h(x) ≤ 1. On the other hand, since we know h(Xt∧τQ(0,1)) is
a martingale,

h(x) = E x[h(X(τQ(z,r) ∧ TB))]

≥ (1/2)Px(TB < τQ(z,r)) ≥ (1/2)ϕ(2−(d+1)),

from Theorem 19.4 and scaling. Hence OscQ(z,r/2) h ≥ 1 − ϕ(2−(d+1))/2. Setting ρ =
1− ϕ(2−(d+1)/2)/2 proves (19.4).

Theorem 19.6. Suppose L ∈ N (Λ, 0). There exists c1 depending only on Λ such that

if h is nonnegative, bounded in Q(0, 16), and h(X(t ∧ τQ(0,16))) is a martingale, then

h(x) ≤ c1h(y) if x, y ∈ Q(0, 1).

Proof. If we look at h + ε and let ε → 0, we may assume h > 0. By looking at Ch,
we may assume infQ(0,1/2) h = 1. By Theorem 19.5, we know that h is Hölder continuous
in Q(0, 8), so there exists y ∈ Q(0, 1/2) such that h(y) = 1. We want to show that h is
bounded above by a constant in Q(0, 1), where the constant depends only on Λ.

By the support theorem and scaling, if x ∈ Q(0, 2), there exists δ such that

Py(TQ(x,1/2) < τQ(0,8)) ≥ δ.

By scaling, if w ∈ Q(x, 1/2), then Pw(TQ(x,1/4) < τQ(0,8)) ≥ δ. So by the strong Markov
property,

Py(TQ(x,1/4) < τQ(0,8)) ≥ δ2.

Repeating and using induction,

Py(TQ(x,2−k) < τQ(0,8)) ≥ δk.

Then
1 = h(y) ≥ E y[h(XT (Q(x,2−k)));TQ(x,2−k) < τQ(0,8)]

≥ δk
(

inf
Q(x,2−k)

h
)
,

or
inf

Q(x,2−k)
h ≤ δ−k. (19.5)

By (19.4) there exists ρ < 1 such that

Osc
Q(x,2−(k+1))

h ≤ ρ Osc
Q(x,2−k)

h. (19.6)

Take m large so that ρ−m ≥ δ−2/(δ−1 − 1). Let M = 2m. Then

Osc
Q(x,M2−k)

h ≥ ρ−m Osc
Q(x,2−k)

h ≥ δ−2

δ−1 − 1
Osc

Q(x,2−k)
h. (19.7)
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Take K large so that
√
dM2−K < 1/8. Suppose there exists x0 ∈ Q(y, 1) such

that h(x0) ≥ δ−K−1. We will construct a sequence x1, x2, . . . by induction. Suppose we
have xj ∈ Q(xj−1,M2−(K+j−1)) with h(xj) ≥ δ−K−j−1, j ≤ n. Since |xj − xj−1| <√
dM2−(K+j−1), 1 ≤ j ≤ n, and |x0 − y| ≤ 1, then |xn − y| < 2. Since h(xn) ≥ δ−K−n−1

and by (19.5), infQ(xn,2−K−n) h ≤ δ−K−n,

Osc
Q(xn,2−K−n)

h ≥ δ−K−n(δ−1 − 1).

So OscQ(xn,M2−K−n) h ≥ δ−K−n−2, which implies that there exists
xn+1 ∈ Q(xn,M2−K−n) with h(xn+1) ≥ δ−K−n−2 because h is nonnegative. By induc-
tion we obtain a sequence xn with xn ∈ Q(y, 4) and h(xn) → ∞. This contradicts the
boundedness of h on Q(0, 8). Therefore h is bounded on Q(0, 1) by δ−K−1.

Corollary 19.7. Suppose D is a bounded connected open domain and r > 0. There

exists c1 depending only on D, Λ, and r such that if h is nonnegative, bounded in D, and

h(Xt∧τD
) is a martingale, then h(x) ≤ c1h(y) if x, y ∈ D and dist (x, ∂D) and dist (y, ∂D)

are both greater than r.

Proof. We form a sequence x = y0, y1, y2, . . . , ym = y such that |yi+1−yi| < (ai+1∧ai)/32,
where ai = dist (yi, ∂D) and each ai < r. By compactness we can choose M depending
only on r so that no more than M points yi are needed. By scaling and Theorem 19.6,
h(yi) ≤ c2h(yi+1) with c2 > 1. So

h(x) = h(y0) ≤ c2h(y1) ≤ · · · ≤ cm2 h(ym) = cm2 h(y) ≤ cM2 h(y).

20. Existence.
In this section we discuss the existence of solutions to the martingale problem for

an elliptic operator in nondivergence form. Let L be the elliptic operator in nondivergence
form defined by

Lf(x) =
1
2

d∑
i,j=1

aij(x)∂ijf(x) +
d∑
i=1

bi(x)∂if(x), f ∈ C2. (20.1)

We assume throughout that the aij and bi are bounded and measurable. Since the co-
efficient of ∂ijf(x) is (aij(x) + aji(x))/2, there is no loss of generality in assuming that
aij = aji. We let

N (Λ1,Λ2) ={L : sup
i≤d

‖bi‖∞ ≤ Λ2 and (20.2)

Λ1|y|2 ≤
d∑

i,j=1

yiyjaij(x) ≤ Λ−1
1 |y|2 for all x, y ∈ Rd}.

40



If L ∈ N (A,B) for some A > 0, then we say L is uniformly elliptic.
A probability measure P is a solution to the martingale problem for L started at x

if
P(X0 = x) = 1 (20.3)

and

f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds (20.4)

is a local martingale under P whenever f is in C2(Rd).

We begin by showing that continuity of the coefficients of L is a sufficient condition
for the existence of a solution to the martingale problem. For simplicity let us assume that
the aij are uniformly continuous and that the bi are 0.

Theorem 20.1. Suppose the aij are bounded and uniformly continuous and the bi are

zero. Then there exists a solution to the martingale problem for L started at x.

Proof. Let anij be uniformly bounded C2 functions on Rd that converge to aij uniformly
on Rd. Let

Lnf(x) =
1
2

d∑
i,j=1

anij(x)∂ijf(x), (20.5)

let σn be a Lipschitz square root of an, and let Xn be the solution to

dXn
t = σn(Xn

t ) dWt, Xn
0 = x,

where Wt is a d-dimensional Brownian motion. Let Pn be the law of Xn. Our desired P
will be a limit point of the sequence {Pn}.

Each Pn is a probability measure on Ω = C([0,∞)). A collection of continuous
functions on a compact set has compact closure if they are uniformly bounded at one
point and they are equicontinuous. This implies easily that the Pn are tight.

Let Pnk
be a subsequence that converges weakly and call the limit P. We must

show that P is a solution to the martingale problem. If g is a continuous function on Rd

with compact support, g(X0) is a continuous function on Ω, so

g(x) = E nk
g(X0) → E g(X0).

Since this is true for all such g, we must have P(X0 = x) = 1.
Next let f ∈ C2(Rd) be bounded with bounded first and second partial derivatives.

To show

E
[
f(Xt)− f(Xs)−

∫ t

s

Lf(Xr) dr;A
]

= 0
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whenever A ∈ Fs, it suffices to show

E
[{
f(Xt)− f(Xs)−

∫ t

s

Lf(Xr) dr
} m∏
i=1

gi(Xri)
]

= 0 (20.6)

whenever m ≥ 1, 0 ≤ r1 ≤ · · · ≤ rm ≤ s, and the gi are continuous functions with compact
support on Rd. Setting

Y (ω) =
{
f(Xt)− f(Xs)−

∫ t

s

Lf(Xr) dr
} m∏
i=1

gi(Xri
),

Y is a continuous bounded function on Ω, so EY = limk→∞ E nk
Y . Since Pnk

is a solution
to the martingale problem for Lnk

,

E nk

[{
f(Xt)− f(Xs)−

∫ t

s

Lnk
f(Xr) dr

} m∏
i=1

gi(Xri
)
]

= 0.

Since the gi are bounded, it suffices to show

E nk

[∫ t

s

|(Lf − Lnk
f)(Xr)| dr

]
→ 0 (20.7)

as k →∞.
Let ε > 0. Choose k large so that |aij(y) − ank

ij (y)| < ε if i, j = 1, . . . , d. Since
f ∈ C2, there exists c2 such that

E nk

∫ t

s

|(Lf − Lnk
f)(Xr)| dr ≤ c2(t− s)ε ≤ c3ε,

which proves (20.7).
Finally, suppose f ∈ C2 but is not necessarily bounded. Let fM be a C2 function

that is bounded with bounded first and second partial derivatives and that equals f on
B(0,M). If TM = inf{t : |Xt| ≥ M}, the above argument applied to fM shows that
fM (Xt)− fM (X0)−

∫ t
0
LfM (Xs) ds is a martingale, and hence so is f(Xt∧TM

)− f(X0)−∫ t∧TM

0
Lf(Xs) ds. Since Xt is continuous, TM → ∞ a.s., and therefore f(Xt) − f(X0) −∫ t

0
Lf(Xs) ds is a local martingale.

If the operator L is uniformly elliptic, we can allow the bi to be bounded without
requiring any other smoothness. If L is given by (20.1), let L′ be defined by

L′f(x) =
1
2

d∑
i,j=1

aij(x)∂ijf(x). (20.8)

42



Theorem 20.2. Suppose L ∈ N (Λ1,Λ2). If there exists a solution to the martingale

problem for L′ started at x, then there exists a solution to the martingale problem for L
started at x.

Proof. Let P′ be a solution to the martingale problem for L′ started at x. Let σ(x) be a
positive definite square root of a(x). Then under P′ Xi

t is a martingale and d〈Xi, Xj〉t =
aij(Xt) dt. Letting Wt =

∫ t
0
σ−1(Xs) dXs, we see that Wt is a d-dimensional Brownian

motion with quadratic variation 〈W i,W j〉t = δijt. Hence under P′ the process Wt is a
Brownian motion and

dXt = σ(Xt) dWt.

Define a new probability measure P by setting the restriction of dP/dP′ to Ft equal
to

Mt = exp
( ∫ t

0

(bσ−1)(Xs) dWs +
1
2

∫ t

0

|(bσ−1)(Xs)|2 ds
)
. (20.9)

Under P′, Mt is a martingale. By the Girsanov theorem, under P each component of

Xt −
〈∫ ·

0

(bσ−1)(Xs) dWs, X
〉
t
= Xt −

∫ t

0

b(Xs) ds

is a martingale and the quadratic variation of X remains the same. If

W̃t =
∫ t

0

σ−1(Xs) d
(
Xs −

∫ s

0

b(Xr) dr
)
,

then under P, W̃t is a martingale with 〈W̃ i, W̃ j〉t = δijt, and hence W̃ is a Brownian
motion. Thus

dXt = σ(Xt) dW̃t + b(Xt) dt.

P is therefore a solution to the martingale problem for L.

As a consequence of Theorems 20.1 and 20.2, there exists a solution to the martin-
gale problem if L ∈ N (Λ1,Λ2) for some Λ1,Λ2 > 0 and the aij are continuous.

Even if the aij are not continuous, a solution to the martingale problem will exist
if uniform ellipticity holds.

21. The strong Markov property.
We are not assuming that our solutions are part of a strong Markov family. As

a substitute we have the following. Let P be a solution to the martingale problem for
L started at x and let S be a finite stopping time. Define a probability measure PS on
Ω = C([0,∞)) by

PS(A) = P(A ◦ θS). (21.1)

Here θS is the shift operator that shifts the path by S. Let QS(ω, dω′) be a regular
conditional probability for PS [ · | FS ].
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Proposition 21.1. With probability one, QS(ω, ·) is a solution to the martingale problem

for L started at XS(ω).

Proof. If A(ω) = {ω′ : X0(ω′) = XS(ω)}, we first show that QS(ω,A(ω)) = 1 for almost
every ω. To do this, it suffices to show that

P(B) = E P[QS(ω,A(ω));B]

whenever B ∈ FS . The right-hand side, by the definition of QS , is equal to

E P[PS(A | FS);B] = E P[P(XS = X0 ◦ θS | FS);B]

= P(XS = XS ;B) = P(B).

Next, if f ∈ C2 and is bounded with bounded first and second partial derivatives,
we need to show that

Mt = f(Xt)− f(X0)−
∫ t

0

Lf(Xr) dr

is a martingale under QS for almost every ω. Let u > t. Since Mt ◦ θS = Mt+S −MS is a
martingale with respect to FS+t, then

E P[Mu ◦ θS ;B ◦ θS ∩A] = E P[Mt ◦ θS ;B ◦ θS ∩A]

whenever B ∈ Ft and A ∈ FS . This is the same as saying

E P[(Mu1B) ◦ θS ;A] = E P[(Mt1B) ◦ θS ;A]. (21.2)

Since (21.2) holds for all A ∈ FS , by the definition of QS ,

E QS
[Mu;B] = E QS

[Mt;B]

whenever B ∈ Ft, which is what we needed to show.
Finally, if f ∈ C2, then Mt is a local martingale under QS by the same argument

as in the last paragraph of the proof of Theorem 20.1.

Essentially the same proof shows that

Corollary 21.2. Let Q′
S be a regular conditional probability for PS [ · | XS ]. Then with

probability one, Q′
S is a solution to the martingale problem for L started at XS(ω).

If L ∈ N (Λ1,Λ2), we can in fact show that there exists a family of solutions to the
martingale problem that is a strong Markov family. We take Λ2 = 0 for simplicity.
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Theorem 21.3. Let Λ > 0 and suppose Ln ∈ N (Λ, 0) with the anij ∈ C2 and converging

almost everywhere to the aij . Suppose (Pxn, Xt) is a strong Markov family of solutions to

the martingale problem for Ln. Then there exists a subsequence nk and a strong Markov

family of solutions (Px, Xt) to the martingale problem for L such that Pxnk
converges weakly

to Px for all x.

Note that part of the assertion is that the subsequence nk does not depend on x.

Proof. Let {gi} be a countable dense subset of C(Rd), the continuous bounded functions
on Rd, and let {λj} be a countable dense subset of (0,∞). Let

Gλng(x) = E x
n

∫ ∞

0

e−λtg(Xt) dt.

Note that ‖Gλng‖∞ ≤ ‖g‖∞/λ. By the equicontinuity of Gλng in n for each g and a diago-
nalization argument, we can find a subsequence nk such that Gλj

nkgi converges boundedly
and uniformly on compacts. Since

‖Gλj
n g −Gλj

n h‖∞ ≤ 1
λj
‖g − h‖∞

it follows that Gλj
nkg converges uniformly on compacts for all g ∈ C(R). Since

‖Gλng −Gµng‖∞ ≤ c1
λ− µ

‖g‖∞,

it follows that Gλnk
g converges uniformly on compacts for all bounded g ∈ C(Rd) and all

λ ∈ (0,∞). Call the limit Gλg.
Suppose xn → x. By the tightness estimate, Pxnk

nk is a tight sequence. Let P be any
subsequential limit point. By Corollary 20.4, P is a solution to the martingale problem for
L started at x. If n′ is a subsequence of nk such that Px

′
n

n′ converges weakly to P, by the
equicontinuity of Gλng,

E
∫ ∞

0

e−λtg(Xt) dt = lim
n′→∞

E xn′
n′

∫ ∞

0

e−λtg(Xt) dt

= lim
n′→∞

Gλn′g(xn′) = Gλg(x).

This holds for all bounded and continuous g; hence we see that if P1 and P2 are any
two subsequential limit points of Pxnk

nk , their one-dimensional distributions agree by the
uniqueness of the Laplace transform and the continuity of g(Xt).
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We next show that the two-dimensional distributions of any two subsequential limit
points must agree. If g and h are bounded and continuous and µ > λ,

E
∫ ∞

0

∫ ∞

0

e−λte−µsg(Xt)h(Xt+s) ds dt

= lim
n′→∞

E xn′
n′

∫ ∞

0

∫ ∞

0

e−λte−µsg(Xt)h(Xt+s) ds dt

= lim
n′→∞

E xn′
n′

∫ ∞

0

e−λtg(Xt)EXt

n′

∫ ∞

0

e−µsh(Xs) ds dt

= lim
n′→∞

E xn′
nk

∫ ∞

0

e−λtg(Xt)G
µ
n′h(Xt) dt

= lim
n′→∞

Gλn′
(
g(Gµn′h)

)
(xn′).

By the equicontinuity of the Gµnh and the fact that Gµnk
h converges boundedly and uni-

formly on compacts to Gµh, the right-hand side converges to Gλ(g(Gµh))(x). By the
uniqueness of the Laplace transform, we see that any two subsequential limit points have
the same two-dimensional distributions.

Repeating the argument, we see that any two subsequential limit points have the
same finite dimensional distributions. Since Xt is continuous, this implies that P1 = P2.
We have thus shown that if xn → x, then Pxnk

nk converges weakly to a probability measure;
we call the limit Px. By the proof of Theorem 20.3, we know that Px is a solution to the
martingale problem for L started at x.

We now want to show that (Px, Xt) forms a strong Markov family of solutions. We
will do this by first showing that E x

nk
f(Xt) converges uniformly on compacts to E xf(Xt)

if f is bounded and continuous. We have pointwise convergence of E x
nk
f(Xt) for each x

since we have weak convergence of Pxnk
to Px.

We claim that the maps x 7→ E x
nf(Xt) are equicontinuous on compacts. If not, there

exists ε > 0, R > 0, a subsequence nm, and xm, ym ∈ B(0, R) such that |xm − ym| → 0
but

|E xm
nm
f(Xt)− E ym

nm
f(Xt)| > ε. (21.3)

By compactness, there exists a further subsequence such that P
xmj
nmj

converges weakly and

also xmj → x ∈ B(0, R); it follows that ymj
→ x also. By what we have already proved,

P
xmj
nmj

converges weakly to Px; hence E
xmj
nmj

f(Xt) converges to E xf(Xt) and the same with
xmj

replaced by ymj
, a contradiction to (21.3). We thus have that the maps x 7→ E x

nf(Xt)
are equicontinuous.

This implies that the convergence of E x
nk
f(Xt) is uniform on compacts. In par-

ticular, the limit E xf(Xt) is a continuous function of x. The map x 7→ E xf(Xt) being
continuous when f is continuous implies that (Px, Xt) is a strong Markov family of solu-
tions.
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22. Some useful techniques.
In this section we want to provide a number of results that make proofs of uniqueness

for the martingale problem easier. First, we show that if the diffusion coefficients are
uniformly elliptic, then the drift coefficients do not matter. Second, we show that it is
enough to look at λ-resolvents. Third, we prove that uniqueness of the martingale problem
is a local property. Fourth, we see that it suffices to look at strong Markov solutions.

Let us show that for uniformly elliptic operators we may assume the drift coefficients
are 0.

Theorem 22.1. Suppose L′ is defined by (20.8) and suppose there is uniqueness for the

martingale problem for L′ started at x. If L ∈ N (Λ1,Λ2), then there is uniqueness for the

martingale problem for L started at x.

Proof. Let P1,P2 be two solutions to the martingale problem for L started at x. From
the definition of martingale problem, 〈Xi, Xj〉t =

∫ t
0
aij(Xs) ds. Define Qi on Ft, i = 1, 2,

by

dQi/dPi = exp
(
−

∫ t

0

(ba−1)(Xs) dXs −
1
2

∫ t

0

(ba−1bT )(Xs) ds
)
,

where bT denotes the transpose of b. A simple calculation shows that the quadratic varia-
tion of

∫ t
0
(ba−1)(Xs) dXs is

∫ t
0
(ba−1bT )(Xs) ds, so dQi/dPi is of the right form for use in

the Girsanov theorem. If f ∈ C2 and

Mt = f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds, (22.1)

then Mt is a local martingale under Pi. By Itô’s formula, the martingale part of Mt is the
same as the martingale part of

∫ t
0
∇f(Xs) · dXs. We calculate

〈∫ ·

0

ba−1(Xs) dXs,M
〉
t
=

∫ t

0

d∑
i,j=1

(ba−1)j(Xs)∂if(Xs) d〈Xi, Xj〉s

=
∫ t

0

d∑
i=1

bi(Xs)∂if(Xs) ds.

Hence by the Girsanov theorem, under Qi the process

Mt −
(
−

∫ t

0

b(Xs) · ∇f(Xs) ds
)

= f(Xt)− f(X0)−
∫ t

0

L′f(Xs) ds

is a local martingale. Clearly Qi(X0 = x) = 1, so Qi is a solution to the martingale
problem for L′ started at x. By the uniqueness assumption, Q1 = Q2. So if A ∈ Ft,

Pi(A) =
∫
A

exp
( ∫ t

0

(ba−1)(Xs) dXs +
1
2

∫ t

0

(ba−1bT )(Xs) ds
)
dQi,
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which implies P1(A) = P2(A).

To prove uniqueness it turns out that it is sufficient to look at quantities which
are essentially λ-potentials (that is, λ-resolvents). It will be convenient to introduce the
notation

M(L, x) = {P :P is a solution to the (22.2)

martingale problem for L started at x}.

Theorem 22.2. Suppose for all x ∈ Rd, λ > 0, and f ∈ C2(Rd),

E 1

∫ ∞

0

e−λtf(Xt) dt = E 2

∫ ∞

0

e−λtf(Xt) dt

whenever P1,P2 ∈ M(L, x). Then for each x ∈ Rd the martingale problem for L has a

unique solution.

Proof. By the uniqueness of the Laplace transform and the continuity of f and Xt, our
hypothesis implies that E 1f(Xt) = E 2f(Xt) for all t > 0 and f ∈ C2 if x ∈ Rd and
P1,P2 ∈M(L, x). A limit argument shows that equality holds for all bounded f . In other
words, the one-dimensional distributions of Xt under P1 and P2 are the same.

We next look at the two-dimensional distributions. Suppose f, g are bounded and
0 < s < t. For i = 1, 2, let Pi,s(A) = Pi(A ◦ θs), and let Qi be a regular conditional
probability for E i,s(· | Xs). By Corollary 21.2, Qi is a solution to the martingale problem
for L started at Xs. By the first paragraph of this proof,

E Q1g(Xt−s) = E Q2g(Xt−s), a.s.

Since Q1(A) is measurable with respect to the σ-field generated by the single random
variable Xs for each A, then E Q1g(Xt−s) is also measurable with respect to the σ-field
generated by Xs. So E Q1g(Xt−s) = ϕ(Xs) for some function ϕ. Then

E 1f(Xs)g(Xt) = E 1[f(Xs)E 1(g(Xt) | Xs)]

= E 1f(Xs)E Q1(g(Xt−s)) = E 1f(Xs)ϕ(Xs).

By the uniqueness of the one-dimensional distributions, the right-hand side is equal to
E 2f(Xs)ϕ(Xs), which, similarly to the above, is equal to E 2f(Xs)g(Xt). Hence the two-
dimensional distributions of Xt under P1 and P2 are the same.

An induction argument shows that the finite dimensional distributions of Xt under
P1 and P2 are the same. Since Xt has continuous paths, we deduce P1 = P2.

We now want to show that questions of uniqueness for martingale problems for
elliptic operators are local questions. We start by giving a “piecing-together” lemma.
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Lemma 22.3. Suppose L1,L2 are two elliptic operators with bounded coefficients. Let

S = inf{t : |Xt−x| ≥ r} and let P1,P2 be solutions to the martingale problems for L1,L2,

respectively, started at x. Let Q2 be a regular conditional probability for E P2S
[· | FS ],

where P2S(A) = P2(A ◦ θS). Define P by

P(B ◦ θS ∩A) = E P1 [Q2(B);A], A ∈ FS , B ∈ F∞.

If the coefficients of L1 and L2 agree on B(x, r), then P is a solution to the martingale

problem for L started at x.

P represents the process behaving according to P1 up to time S and according to P2 after
time S.

Proof. It is clear that the restriction of P to FS is equal to the restriction of P1 to FS .
Hence

P(X0 = x) = P1(X0 = x) = 1.

If f ∈ C2,

Mt = f(Xt∧S)− f(X0)−
∫ t∧S

0

L1f(Xs) ds

= f(Xt∧S)− f(X0)−
∫ t∧S

0

L2f(Xs) ds

is a martingale under P1. Since for each t these random variables are FS measurable,
Mt is also a martingale under P. It remains to show that Nt = f(XS+t) − f(XS) −∫ S+t

S
L2f(Xs) ds is a martingale under P. This follows from Proposition 21.1 and the

definition of P.

Theorem 22.4. Suppose L ∈ N (Λ1,Λ2). Suppose for each x ∈ Rd there exist rx > 0 and

K(x) ∈ N (Λ1,Λ2) such that the coefficients of K(x) agree with those of L in B(x, rx) and

the solution to the martingale problem for K(x) is unique for every starting point. Then

the martingale problem for L started at any point has a unique solution.

Proof. Fix x0 and suppose P1 and P2 are two solutions to the martingale problem for
L started at x0. Suppose x1 is such that x0 ∈ B(x1, rx1/4). Let S = inf{t : |Xt − x1| >
rx1/2}. Write PK for the solution to the martingale problem for K(x1) started at x0. Let
QK
S be the regular conditional probability defined as in (21.1). For i = 1, 2, define

Pi(B ◦ θS ∩A) = E i[QK
S (B);A], i = 1, 2, A ∈ FS , B ∈ F∞. (22.3)

Since the coefficients of L and K(x1) agree on B(x1, rx1), by Lemma 22.3 applied to Pi and
PK, Pi is a solution to the martingale problem for K(x1) started at x0. By the uniqueness
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assumption, they must both be equal to PK. Hence the restriction of P1 and P2 to FS
must be the same, namely, the same as the restriction of PK to FS . We have thus shown
that any two solutions to the martingale problem for L started at a point x0 agree on FS
if x0 ∈ B(x1, rx1/4) and S = inf{t : |Xt − x1| > rxi/2}.

Let N > 0. B(x0, N) is compact and hence there exist finitely many points
x1, . . . , xm such that {B(xi, rxi

/4)} is a cover for B(x0, N). Let us define a measur-
able mapping ψ : B(x0, N) → {1, . . . ,m} by letting ψ(x) be the smallest index for which
x ∈ B(xψ(x), rψ(x)/4). Let S0 = 0 and Si+1 = inf{t > Si : Xt /∈ B(ψ(XSi), rψ(X(Si)/2)}.
The Si are thus stopping times describing when Xt has moved far enough to exit its current
ball.

We now show that any two solutions P1 and P2 for the martingale problem for L
started at x0 agree on FSi∧τ(B(x0,N)) for each i. We already have done the case i = 1 in
the first paragraph of this proof.

Let Qi,S1 be a regular conditional probability defined as in (21.1). If A ∈ FS1 and
B ∈ (F∞ ◦ θS1) ∩ FS2 , then

Pi(A ∩B) = E i[Qi,S1(B);A], i = 1, 2.

By Proposition 21.1, Qi,S1 is a solution to the martingale problem for L started at XS1 ,
so by what we have shown in the first paragraph Q1,S1 = Q2,S1 on (F∞ ◦ θS1)∩FS2 . Since
Qi,S1(B) is FS1 measurable and P1 = P2 on FS1 , this shows P1(A∩B) = P2(A∩B). The
random variable

∫ S2

0
e−λrf(Xr) dr can be written

∫ S1

0

e−λrf(Xr) dr + e−λS1

(∫ S1

0

e−λrf(Xr) dr ◦ θS1

)
.

Hence E 1

∫ S2

0
e−λrf(Xr) dr = E 2

∫ S2

0
e−λrf(Xr) dr whenever f is bounded and continuous

and λ > 0. As in Theorem 22.2, this implies P1 = P2 on FS2 .
Using an induction argument, P1 = P2 on FSi∧τ(B(x0,N)) for each i. Note that

r = min
1≤i≤m

rxi
> 0.

Since Si+1 − Si is greater than the time for Xt to move more than r/4, Si ↑ τB(0,N) by
the continuity of the paths of Xt. Therefore P1 = P2 on Fτ(B(x0,N)). Since N is arbitrary,
this shows that P1 = P2.

It is often more convenient to work with strong Markov families. Recall the defini-
tion of M(L, x) from (22.2).
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Theorem 22.5. Let L ∈ N (Λ, 0). Suppose there exists a strong Markov family (Px1 , Xt)
such that for each x ∈ Rd, Px1 is a solution to the martingale problem for L started at x.

Suppose whenever (Px2 , Xt) is another strong Markov family for which Px2 ∈ M(L, x) for

each x, we have Px1 = Px2 for all x. Then for each x the solution to the martingale problem

for L started at x is unique.

In other words, if we have uniqueness within the class of strong Markov families, then we
have uniqueness.

Proof. Let f be bounded and continuous, λ > 0, and x ∈ Rd. Let P be any solution to
the martingale problem for L started at x. There exists a sequence anij converging to aij
almost everywhere as n → ∞ such that the coefficients of the anij are C2, Ln ∈ N (Λ, 0),
and if P̃xn is a solution to the martingale problem for Ln started at x,

Ẽ
x

n

∫ ∞

0

e−λtf(Xt) dt→ E
∫ ∞

0

e−λtf(Xt) dt. (22.4)

By Theorem 21.3, there exists a subsequence nk such that P̃xnk
converges weakly for

all x, and if we call the limit P̃x, then (P̃x, Xt) is a strong Markov family of solutions. By
our hypothesis, P̃x = Px1 . Using the weak convergence of P̃xnk

to Px1 ,

Ẽ
x

nk

∫ ∞

0

e−λtf(Xt) dt→ E x
1

∫ ∞

0

e−λtf(Xt) dt.

Combining with (22.4),
∫∞
0
e−λtf(Xt) dt has the same expectation under P and Px1 . Our

result now follows by Theorem 22.2.

23. Uniqueness.
We present a case for which uniqueness of the martingale problem is known. We

assume L ∈ N (Λ1,Λ2) for some Λ1 > 0, and by virtue of Theorem 22.1, we may take
Λ2 = 0 without loss of generality.

Theorem 23.1. Suppose d ≥ 3. There exists εd (depending only on the dimension d)

with the following property: if

sup
i,j

sup
x
|aij(x)− δij | < εd,

then there exists a unique solution to the martingale problem for L started at any x ∈ Rd.

Proof. Let P1, P2 be any two solutions to the martingale problem for L started at x.
Define Gλi f(x) = E x

i

∫∞
0
e−λtf(Xt) dt. If f ∈ C2 is bounded with bounded first and second

partial derivatives, then by Itô’s formula,

f(Xt) = f(X0) + martingale +
∫ t

0

Lf(Xs) ds.
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Multiplying by e−λt, taking the expectation with respect to Pi, and integrating over t from
0 to ∞,

E i

∫ ∞

0

e−λtf(Xt) dt =
1
λ
f(x) + E i

∫ ∞

0

e−λt
∫ t

0

Lf(Xs) ds dt (23.1)

=
1
λ
f(x) + E i

∫ ∞

0

Lf(Xs)
∫ ∞

s

e−λt dt ds

=
1
λ
f(x) +

1
λ

E i

∫ ∞

0

e−λsLf(Xs) ds.

Set

uλ(z) =
∫ ∞

0

e−λt
(
(2πt)−d/2e−z

2/2t
)
dt,

the λ-potential density of Brownian motion. Let Uλf(x) =
∫
f(y)uλ(x − y) dy, the λ-

potential of f with respect to Brownian motion. Then set

B =
1
2

d∑
i,j=1

(aij(x)− δij)∂ijf(x). (23.2)

If f = Uλg for g ∈ C2 with compact support, then

Uλg = U0(g − λUλg).

∆Uλg
2

= λUλg − g = λf − g.

Since Lf = (1/2)∆f + Bf , we have from (23.1) that

Gλi f = λ−1f(x) + λ−1Gλi

(∆Uλg
2

+ Bf
)
(x)

= λ−1f(x) + λ−1Gλi (λf − g) + λ−1Gλi Bf,

or
Gλi g = f(x) +Gλi Bf(x).

Hence
Gλi g = Uλg(x) +Gλi BUλg(x), i = 1, 2. (23.3)

(We remark that if we were to iterate (23.3), that is, substitute for Gλi on the right-hand
side, we would be led to

Gλi g = Uλg + UλBUλg + · · · ,

which indicates that (23.3) is essentially variation of parameters in disguise.)
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We return to the proof. Let

ρ = sup
‖g‖d≤1

|Gλ1g −Gλ2g|.

ρ <∞. Taking the difference of (23.3) with i = 1 and i = 2, we have

Gλi g −Gλ2g = (Gλ1 −Gλ2 )(BUλg). (23.4)

The right-hand side is bounded by ρ‖BUλg‖d. We need the result from analysis that

‖∂ijUλg‖d ≤ c1‖g‖d.

Then

‖BUλg‖d ≤ εd

d∑
i,j=1

‖∂ijUλg‖d ≤ εdc1d
2‖g‖d ≤ (1/2)‖g‖d

if we take εd < 1/2c1d2. Hence

|Gλ1g −Gλ2g| ≤ (ρ/2)‖g‖d.

If we now take the supremum of the left-hand side over g ∈ C2 with ‖g‖d ≤ 1, we obtain
ρ ≤ ρ/2. Since we observed that ρ < ∞, this means that ρ = 0, or Gλ1g = Gλ2g if g ∈ Ld.
In particular, this holds if g is continuous with compact support. By a limit argument,
this holds for all continuous bounded g. This is true for every starting point x ∈ Rd, so by
Theorem 22.2, P1 = P2.

Corollary 23.2. Let C be a positive definite matrix. There exists εd such that if

sup
i,j

sup
x
|aij(x)− Cij | < εd,

then there exists a unique solution to the martingale problem for L started at any x ∈ Rd.

Proof. Let σ(x) be a positive definite square root of a(x) and C1/2 a positive definite
square root of C. By Theorem 20.1, to establish uniqueness it suffices to establish weak
uniqueness of the stochastic differential equation dXt = σ(Xt) dWt. If Xt is a solution
to this stochastic differential equation, it is easy to see that Yt = C−1/2Xt is a solution
to dYt = (σC−1/2)(Yt) dWt and conversely. By Theorem 20.1 again, weak uniqueness for
the latter stochastic differential equation will follow if we have weak uniqueness for the
martingale problem for LC , where the coefficients of LC are C−1aij . The assumption
|aij(x) − Cij | < εd implies |C−1aij(x) − δij | < c1εd, where c1 depends on C. The result
follows by Theorem 23.1 by taking εd sufficiently small.

We now can prove the important result due to Stroock and Varadhan.
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Theorem 23.3. If L ∈ N (Λ1,Λ2) and the aij are continuous, then the martingale problem

for L started at x has a unique solution.

Proof. By Theorem 22.1, we may suppose that Λ2 = 0. If x ∈ Rd, let C = a(x) and then
choose rx such that if y ∈ B(x, 2rx), then |aij(y) − aij(x)| < εd for i, j = 1, . . . , d, where
εd is given by Corollary 23.2. Let axij(y) be continuous functions that agree with aij(y) on
B(x, rx) and such that if

Kxf(z) =
d∑

i,j=1

axij(z)∂ijf(z),

then Kx ∈ N (Λ1, 0), and
sup
i,j

sup
y
|axij(y)− aij(x)| < εd.

By Corollary 23.2, we have uniqueness of the martingale problem for Kx starting at any
point in Rd. Moreover, the coefficients of Kx agree with those of L inside B(x, rx). The
conclusion now follows by Theorem 22.4.

24. Consequences of uniqueness.
We mention some conclusions that one can draw when uniqueness holds.

Theorem 24.1. Suppose there exists a unique solution Px to the martingale problem for

L started at x for each x ∈ Rd. Then (Px, Xt) forms a strong Markov family.

Uniqueness implies some convergence results.

Theorem 24.2. Suppose Ln ∈ N (Λ1,Λ2) and the diffusion coefficients anij converge to

aij almost everywhere, and similarly for the drift coefficients bni . Suppose xn → x, P is

the unique solution to the martingale problem for L started at x, and for each n, Pn is a

solution to the martingale problem for Ln started at xn. Then Pn converges weakly to P.

Proof. The probability measures Pn are tight. Any subsequential limit point is a solution
to the martingale problem for L started at x. By the uniqueness hypothesis, any subse-
quential limit point must be equal to P; this implies that the whole sequence converges to
P.

25. Divergence form operators.
Elliptic operators in divergence form are operators L defined on C2 functions by

Lf(x) =
1
2

d∑
i,j=1

∂i(aij∂jf)(x), (25.1)

54



where the aij are measurable functions of x and aij(x) = aji(x) for all pairs i, j and
all x. Let D(Λ) be the set of operators in divergence form such that for all x and all
y = (y1, . . . , yd),

Λ|y|2 ≤
d∑

i,j=1

aij(x)yiyj ≤ Λ−1|y|2. (25.2)

Throughout this chapter we assume the operator L is uniformly elliptic, that is, L ∈ D(Λ)
for some Λ > 0.

If the aij are not differentiable, an interpretation has to be given to Lf ; see (25.6).
For most of this chapter we will assume the aij are smooth. With this assumption,

Lf(x) =
1
2

d∑
i,j=1

aij(x)∂ijf(x) +
1
2

d∑
j=1

( d∑
i=1

∂iaij(x)
)
∂jf(x), (25.3)

and so L is equivalent to an operator in nondivergence form with

bj(x) = (1/2)
d∑
i=1

∂iaij(x).

However, all of our estimates for L ∈ D(Λ) will depend only on Λ and not on any smooth-
ness of the aij . So by a limit procedure, our results and estimates will be valid for operators
L where the aij are only bounded and strictly elliptic.

We refer to the conclusion of the following proposition as scaling.

Proposition 25.1. Let L ∈ D(Λ) and let (Px, Xt) be the associated process (in the sense

of Section I.2). If r > 0, arij(x) = aij(x/r), and Lrf(x) =
∑d
i,j=1 ∂i(a

r
ij∂jf)(x), then

Lr ∈ D(Λ) and (Px/r, rXt/r2) is the process associated to Lr.

Proof. Using (25.3), this is proved entirely analogously to the nondivergence case.

An important example of operators in divergence form is given by the Laplace-
Beltrami operators on Riemannian manifolds. Such an operator is the infinitesimal gen-
erator of a Brownian motion on the manifold. After a time change, the Laplace-Beltrami
operator in local coordinates is an operator in divergence form, where the aij matrix is the
inverse of the matrix gij that determines the Riemannian metric.

Recall the divergence theorem. Suppose D is a nice region, F is a smooth vector
field, ν(x) is the outward pointing normal vector at x ∈ ∂D, and σ is surface measure on
∂D. The divergence theorem then says that∫

∂D

F · ν(y)σ(dy) =
∫
D

divF (x) dx. (25.4)
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Proposition 25.2. Let g be a C∞ function with compact support and f a bounded C∞

function. Then ∫
Rd

g(x)Lf(x) dx = −1
2

∫
Rd

( d∑
i,j=1

∂ig(x)aij(x)∂jf(x)
)
dx.

The integrand on the right could be written ∇g · a∇f .

Proof. We apply the divergence theorem. Let D be a ball large enough to contain the
support of g and let F (x) be the vector field whose ith component is

g(x)
2

d∑
j=1

aij(x)∂jf(x).

Since g is 0 on ∂D, then F · ν = 0 on ∂D, and also,

divF (x) =
1
2

d∑
i=1

∂i

(
g(x)

d∑
j=1

aij(x)∂jf(x)
)

=
1
2

d∑
i,j=1

∂ig(x)aij(x)∂jf(x) + g(x)Lf(x).

We now substitute into (25.4).

Applying Proposition 25.2 twice, if f and g are smooth with compact support,∫
g(x)Lf(x) dx =

∫
f(x)Lg(x) dx. (25.5)

This equation says that L is self-adjoint with respect to Lebesgue measure.

Note that Proposition 25.2 allows us to give an interpretation to Lf = 0 even when
the aij are not differentiable. We say f is a solution to Lf = 0 if f is differentiable in some
sense, e.g., f ∈W 1,p for some p, and

∫ d∑
i,j=1

∂if(x)aij(x)∂jg(x) dx = 0 (25.6)

whenever g is in C∞ with compact support. Here W 1,p is the closure of C2 ∩ L∞ with
respect to the norm

‖f‖W 1,p = ‖f‖p +
d∑
i=1

‖∂if‖p.
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The expression

∫
1
2

d∑
i,j=1

aij(x)∂if(x)∂jg(x) dx =
1
2

∫
∇f(x) · a(x)∇g(x) dx

is an example of what is known as a Dirichlet form. If we denote it by E(f, g), then
Proposition 25.2 says that ∫

gLf dx = −E(f, g)

for g with compact support. In the case of Brownian motion, the Dirichlet form is

EBM (f, g) =
1
2

∫
∇f(x) · ∇g(x) dx.

Part of defining a Dirichlet form is specifying the domain. For example, the Dirichlet
form for Brownian motion in Rd has domain {f ∈ L2 : EBM (f, f) < ∞}. The Dirichlet
form for reflecting Brownian motion in a domain D ⊆ Rd operates on {f ∈ L2(D) :∫
D
|∇f(x)|2 dx <∞}, whereas the Dirichlet form for Brownian motion killed on exiting a

set D has domain {f ∈ L2(D) :
∫
D
|∇f(x)|2 dx <∞, f = 0 on ∂D}.

Note that the uniform ellipticity of L implies that

ΛEBM (f, f) ≤ EL(f, f) ≤ Λ−1EBM (f, f). (25.7)

26. Inequalities.
We will make use of several classical inequalities. The first is the Sobolev inequality.

Theorem 26.1. Suppose d > 2. There exists c1 such that if f ∈ C2 and ∇f ∈ L2, then( ∫
Rd

|f(x)|2d/(d−2) dx
)(d−2)/2d

≤ c1

( ∫
Rd

|∇f(x)|2 dx
)1/2

.

A variant of the Sobolev inequality is the following for bounded domains.

Corollary 26.2. Suppose d > 2. Let Q be the unit cube. Suppose f is C2 on Q and

∇f ∈ L2(Q). There exists c1 such that

( ∫
Q

|f |2d/(d−2)
)(d−2)/d

≤ c1

[ ∫
Q

|∇f |2 +
∫
Q

|f |2
]
.
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Proof. Let Q∗ be the cube with the same center as Q but side length twice as long. By
reflecting over the boundaries of Q, we can extend f to Q∗ so that

∫
Q∗ |f |p ≤ c2

∫
Q
|f |p

for p = 2d/(d− 2) and also
∫
Q∗ |f |2 ≤ c2

∫
Q
|f |2 and

∫
Q∗ |∇f |2 ≤ c2

∫
Q
|∇f |2, where c2 is a

constant not depending on f . Let ϕ be a C∞ function taking values in [0, 1] with support
in Q∗ and so that ϕ = 1 on Q. Applying Theorem 26.1 to ϕf ,( ∫

Q

|f |p
)2/p

≤
( ∫

|ϕf |p
)2/p

≤ c1

∫
|∇(ϕf)|2,

where p = 2d/(d− 2). Since

|∇(ϕf)|2 ≤ 2|∇ϕ|2|f |2 + 2|ϕ|2|∇f |2,

and ϕ and ∇ϕ are bounded by constants independent of f and have support in Q∗, the
result follows.

Another closely related inequality is the Nash inequality.

Theorem 26.3. Suppose d ≥ 2. There exists c1 such that if f ∈ C2, f ∈ L1 ∩ L2, and

∇f ∈ L2, then ( ∫
|f |2

)1+2/d

≤ c1

( ∫
|∇f |2

)( ∫
|f |

)4/d

.

Proof. If f̂(ξ) =
∫
eix·ξf(x) dx is the Fourier transform of f , then the Fourier transform

of ∂jf is iξj f̂(ξ). Recall |f̂(ξ)| ≤
∫
|f |. By the Plancherel theorem,

∫
|f |2 = c2

∫
|f̂(ξ)|2 dξ

and
∫
|∇f |2 = c2

∫
|ξ|2|f̂(ξ)|2 dξ. We have∫
|f |2 = c2

∫
|f̂(ξ)|2 dξ ≤ c2

∫
|ξ|≤R

|f̂ |2 + c2

∫
|ξ|>R

|ξ|2

R2
|f̂ |2

≤ c3R
d
( ∫

|f |
)2

+ c4R
−2

∫
|∇f |2.

We now choose R to minimize the right-hand side.

The Poincaré inequality states the following.

Theorem 26.4. Suppose Q is a unit cube of side length h and f is C2 on Q with

∇f ∈ L2(Q). There exists c1 not depending on f such that∫
Q

|f(x)− fQ|2 dx ≤ c1h
2

∫
Q

|∇f(x)|2 dx,
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where fQ = |Q|−1
∫
Q
f(x) dx.

Proof. By a translation of the coordinate axes, we may suppose Q is centered at the
origin. Since ∇(f − fQ) = ∇f , by subtracting a constant from f we may suppose without
loss of generality that fQ = 0. Let us also suppose for now that h = 1.

If m = (m1, . . . ,md), let Cm denote the Fourier coefficient of e2πim·x, that is,

Cm =
∫
Q

e−2πim·xf(x) dx.

Since
∫
Q
f = 0, then C0 = 0. The mth Fourier coefficient of ∂jf is 2πimjCm. By the

Parseval identity and the fact that C0 = 0,∫
Q

|∇f |2 =
∑
m

(2π)2|m|2|Cm|2 (26.1)

≥ c2
∑
m

|Cm|2 = c2

∫
Q

|f |2.

We eliminate the supposition that h = 1 by a scaling argument, namely, we apply (26.1)
to f(x) = g(xh) for x in the unit cube, and then replace g by f .

Finally, we will need the John-Nirenberg inequality. We continue to use the notation

fQ = |Q|−1

∫
Q

f. (26.2)

Theorem 26.5. Suppose Q0 is a cube, f ∈ L1(Q0), and for all cubes Q ⊆ Q0,

1
|Q|

∫
Q

|f(x)− fQ| ≤ 1. (26.3)

Then there exist c1 and c2 independent of f such that∫
Q0

ec1[f(x)−fQ0 ] dx ≤ c2.

An f satisfying (26.3) is said to be in BMO, the space of functions of bounded mean
oscillation.

27. Moser’s Harnack inequality.
Let Q(h) denote the cube centered at the origin with side length h. Moser’s Harnack

inequality (Theorem 27.5) says that if L ∈ D(Λ), there exists c1 depending only on Λ such
that if Lu = 0 and u ≥ 0 in Q(4), then

sup
Q(1)

u ≤ c1 inf
Q(1)

u.
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We begin proving this important fact by establishing a sort of converse to Poincaré’s
inequality for powers of u. Recall that u is L-harmonic in Q(r) if u is C2 on Q(r) and
Lu = 0 on Q(r).

Proposition 27.1. Suppose r > 1 and u is nonnegative and L-harmonic in Q(r). There

exists c1 depending only on the ellipticity bound Λ such that if v = up for p ∈ R, then∫
Q(1)

|∇v|2 ≤ c1

( 2p
2p− 1

)2 1
(r − 1)2

∫
Q(r)

|v|2.

Proof. The result is trivial if p = 1/2. The result is also trivial if p = 0, for then v is
identically 1 and ∇v = 0. So we suppose p is some value other than 0 or 1/2. Let ϕ be a
smooth function taking values in [0, 1] with support in Q(r) such that ϕ = 1 on Q(1) and
|∇ϕ| ≤ c2/(r − 1). Let w = u2p−1ϕ2. Since u is L-harmonic and w = 0 outside of Q(r),
Proposition 25.2 tells us that

0 = 2
∫
Q(r)

wLu = −
∫
Q(r)

∇w · a∇u

= −(2p− 1)
∫
Q(r)

u2p−2ϕ2∇u · a∇u− 2
∫
Q(r)

u2p−1ϕ∇ϕ · a∇u.

We then have, using (25.2) and the Cauchy-Schwarz inequality,∫
Q(r)

|∇v|2ϕ2 =
∫
Q(r)

p2u2p−2|∇u|2ϕ2

≤ Λp2

∫
Q(r)

u2p−2ϕ2∇u · a∇u

= c2
2p2

|2p− 1|

∫
Q(r)

u2p−1ϕ∇ϕ · a∇u

=
2c2p2

|2p− 1|

∫
Q(r)

upϕ∇ϕ · aup−1∇u

=
2c2p

|2p− 1|

∫
Q(r)

v∇ϕ · aϕ∇v

≤ 2c3|p|
|2p− 1|

( ∫
Q(r)

|∇v|2ϕ2
)1/2( ∫

Q(r)

v2|∇ϕ|2
)1/2

.

Dividing both sides by (
∫
Q(r)

|∇v|2ϕ2)1/2, we obtain∫
Q(1)

|∇v|2 ≤
∫
Q(r)

|∇v|2ϕ2

≤ c23

( 2p
2p− 1

)2
∫
Q(r)

v2|∇ϕ|2

≤ c23

( 2p
2p− 1

)2 1
(r − 1)2

∫
Q(r)

v2.

60



Let us define

Φ(p, h) =
( ∫

Q(h)

up
)1/p

.

Proposition 27.2. Suppose d ≥ 3. If u ≥ 0 in Q(2) and Lu = 0 in Q(2), then for all

q0 > 0 there exists c1 (depending on q0 but not u) such that

sup
Q(1)

u ≤ c1Φ(q0, 2).

Proof. Let R = d/(d− 2), p > 0, and 2 > r > 1. By Corollary 26.2 and Proposition 27.1,( ∫
Q(1)

u2pR
)1/R

≤ c2

[ ∫
Q(1)

|∇(up)|2 +
∫
Q(1)

|up|2
]

≤ c3

[ 1
(r − 1)2

( 2p
2p− 1

)2
∫
Q(r)

u2p +
∫
Q(1)

|up|2
]

≤ c4
(r − 1)2

( 2p
2p− 1

)2
∫
Q(r)

u2p.

Taking both sides to the 1/2p power and using scaling, if r < s < 2r,

Φ(2Rp, r) ≤
( c4

(s/r − 1)2
(2p)2

(2p− 1)2
)1/2p

Φ(2p, s). (27.1)

Suppose p0 = R−m−1/2/2, where m is the smallest positive integer such that 2p0 <

q0. Let pn = Rnp0, rn = 1 + 2−n. Then

rn
rn−1

− 1 =
2−n−1

1 + 2−(n−1)
≥ 2−n/2

and by our assumption on p0, ( 2pn
2pn − 1

)2

≤ c5,

where c5 depends only on R. Substituting in (27.1),

Φ(2pn+1, rn+1) ≤ (c622n)1/(2R
np0)Φ(2pn, rn).

By induction,
Φ(2pn, rn) ≤ cα6 2βΦ(2p0, 2),

where

α =
∞∑
j=0

1
2Rjp0

<∞, β =
∞∑
j=0

2j
2Rjp0

<∞.

61



Therefore Φ(2pn, rn) ≤ c7Φ(2p0, 2). By Hölder’s inequality,

Φ(2p0, 2) ≤ c8Φ(q0, 2).

The conclusion now follows from the fact that

sup
Q(1)

u ≤ lim sup
n→∞

Φ(2pn, rn).

Proposition 27.3. Suppose u is bounded below by a positive constant on Q(2) and

q0 > 0. Then there exists c1 (depending only on q0 but not u) such that

inf
Q(1)

u ≥
( ∫

Q(2)

u−q0
)−1/q0

.

Proof. The proof is almost identical to the above, working with

Φ(−p, h) =
( ∫

Q(h)

u−p
)−1/p

(27.2)

instead of Φ(p, h).

To connect Φ(p, h) for p > 0 and p < 0, we look at log u.

Proposition 27.4. Suppose u is positive and L-harmonic in Q(4). There exists c1 inde-

pendent of u such that if w = log u, then∫
Q

|∇w|2 ≤ c1h
d−2

for all cubes Q of side length h contained in Q(2).

Proof. Let Q∗ be the cube with the same center as Q but side length twice as long. Note
Q∗ ⊆ Q(4). Let ϕ be C∞ with values in [0, 1], equal to 1 on Q, supported in Q∗, and such
that ‖∇ϕ‖∞ ≤ c2/h. Since ∇w = ∇u/u and u is L-harmonic in Q(4),

0 = 2
∫
ϕ2

u
Lu = −

∫
∇(ϕ2/u) · a∇u

= −
∫

2ϕ∇ϕ
u

· a∇u+
∫
ϕ2

u2
∇u · a∇u

= −2
∫
ϕ∇ϕ · a∇w +

∫
ϕ2∇w · a∇w.

62



So by the Cauchy-Schwarz inequality and (25.2),∫
Q∗
ϕ2|∇w|2 ≤ c3

∫
Q∗
ϕ2∇w · a∇w = c4

∫
Q∗
∇ϕ · aϕ∇w

≤ c5

( ∫
Q∗
|∇ϕ|2

)1/2( ∫
Q∗
ϕ2|∇w|2

)1/2

.

Dividing by the second factor on the right, squaring, and using the bound on |∇ϕ|,∫
Q

|∇w|2 ≤
∫
Q∗
ϕ2|∇w|2 ≤ c25|Q∗|(c2/h)2,

which implies our result.

Putting all the pieces together, we have Moser’s Harnack inequality.

Theorem 27.5. There exists c1 such that if u is L-harmonic and nonnegative in Q(4),
then

sup
Q(1)

u ≤ c1 inf
Q(1)

u.

Proof. By looking at u + ε and letting ε → 0, we may suppose u is bounded below in
Q(4). Set w = log u. Multiplying u by a constant, we may suppose that

∫
Q(2)

w = 0. By
Proposition 27.4 and Theorem 26.4, there exists c3 such that if Q is a cube contained in
Q(2), then

( 1
|Q|

∫
Q

|w − wQ|
)2

≤ 1
|Q|

∫
Q

|w − wQ|2 ≤ c2
h2

|Q|

∫
Q

|∇w|2 ≤ c3.

By the John-Nirenberg inequality applied to w/c
1/2
3 and −w/c1/23 , there exist c4 and q0

such that ∫
Q(2)

eq0w ≤ c4,

∫
Q(2)

e−q0w ≤ c4.

This can be rewritten as ∫
Q(2)

uq0
∫
Q(2)

u−q0 ≤ c24,

or
Φ(q0, 2) ≤ c

2/q0
4 Φ(−q0, 2). (27.3)

This and Propositions 27.2 and 27.3 show

sup
Q(1)

u ≤ c5Φ(q0, 2) ≤ c6Φ(−q0, 2) ≤ c7 inf
Q(1)

u.
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An easy corollary proved by repeated use of Theorem 27.5 to a suitable overlapping
sequence of cubes is the following.

Corollary 27.6. Suppose D1 ⊆ D1 ⊆ D2, where D1 and D2 are bounded connected

domains in Rd and d ≥ 3. There exists c1 depending only on D1 and D2 such that if u is

nonnegative and L-harmonic in D2, then

sup
D1

u ≤ c1 inf
D2
u.

Another corollary of the Moser Harnack inequality is that L-harmonic functions
must be Hölder continuous with a modulus of continuity independent of the smoothness
of the aij .

Theorem 27.7. Suppose d ≥ 3 and suppose u is L-harmonic in Q(2). There exist c1 and

α not depending on u such that if x, y ∈ Q(1),

|u(x)− u(y)| ≤ c1|x− y|α sup
Q(2)

|u|.

Proof. Fix x and let r < 1. Our result will follow if we show there exists ρ < 1 independent
of r such that

Osc
B(x,r/2)

u ≤ ρ Osc
B(x,r)

u. (27.4)

By looking at Cu+D for suitable C and D, we may suppose that the infimum of Cu+D on
B(x, r) is 0, the supremum is 1, and there exists x0 ∈ B(x, r/2) such that (Cu+D)(x0) ≥
1/2. By Corollary 27.6 with D1 = B(x, r/2) and D2 = B(x, r), there exists c2 such that

(Cu+D)(y) ≥ c2(Cu+D)(x0) ≥ c2/2, y ∈ B(x, r/2).

On the other hand, if (Px, Xt) is the process associated with L, then

(Cu+D)(y) = E y(Cu+D)(Xτ(B(x,r))) ≤ 1

by optional stopping. Hence OscB(x,r/2)(Cu+D) ≤ 1− c2/2, and (27.4) follows.

28. Upper bounds on heat kernels.
We are now going to investigate bounds on the transition densities of Xt, where

(Px, Xt) is the process associated to an operator L ∈ D(Λ). Let Pt be the operator defined
by

Ptf(x) = E xf(Xt).
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We shall see that there exists a symmetric function p(t, x, y) such that

Ptf(x) =
∫
f(y)p(t, x, y) dy

and that p(t, x, y) has upper and lower bounds similar to those of Brownian motion. Re-
call that ∂tu means ∂u/∂t. Since u(x, t) = E xf(Xt) is also a solution to the Cauchy
problem ∂tu = Lu in Rd × (0,∞) with initial condition u(x, 0) = f(x) and, u(x, t) =∫
f(y)p(t, x, y) dy, then p(t, x, y) is also the fundamental solution to the Cauchy problem

for L. The equation ∂tu = Lu is a model for heat flow in a nonhomogeneous medium,
which leads to the name heat kernel for p(t, x, y).

First, we derive some properties of Pt. We continue to assume that the coefficients
aij are smooth and that L ∈ D(Λ) for some Λ > 0.

Proposition 28.1. If f ∈ C∞ is bounded and in L1, then Ptf is differentiable in t and

∂tPtf = PtLf = LPtf.

Proof. By Itô’s formula,

Pt+hf(x)− Ptf(x) = E x

∫ t+h

t

Lf(Xs) ds,

so
∂tPtf(x) = E xLf(Xt) = PtLf(x)

by the continuity of Lf .
We know Ptf is a smooth function of x. Applying Itô’s formula to Ptf ,

Ph(Ptf)(x)− Ptf(x) = E xPtf(Xh)− E xPtf(X0)

= E x

∫ h

0

L(Ptf)(Xs) ds.

However, Ph(Ptf) = Pt+hf by the Markov property. Dividing by h, letting h → 0, and
using the continuity of L(Ptf),

∂tPtf(x) = E xL(Ptf)(X0) = LPtf(x).

Next we show that Pt is a symmetric operator.

Proposition 28.2. If f and g are bounded and in L1,∫
f(x)Ptg(x) dx =

∫
g(x)Ptf(x) dx.
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Proof. Let f, g ∈ L1 ∩ C2 be bounded with bounded first and second partial derivatives.
By (25.5), ∫

f(Lg) =
∫
g(Lf).

Therefore ∫
f
(
(λ− L)g

)
=

∫
g
(
(λ− L)f

)
. (28.1)

If f, g are bounded C∞ functions and λ > 0, let f = Gλf , g = Gλg, where Gλ is defined
by

Gλf(x) = E x

∫ ∞

0

e−λtf(Xt) dt.

f and g can be shown to be smooth and (λ−L)f = f , (λ−L)g = g. By Jensen’s inequality,
f and g are in L1. Substituting in (28.1),∫

(Gλf)g =
∫

(Gλg)f, λ > 0.

We have seen in Proposition 28.1 that Ptf is differentiable in t, and hence continuous in
t. Noting Gλf =

∫∞
0
e−λtPtf dt, the uniqueness of the Laplace transform tells us that∫

(Ptf)g =
∫

(Ptg)f, t > 0.

We now use a limit argument to extend this to the case where f and g are arbitrary
bounded functions in L1.

With these preliminaries out of the way, we can now present Nash’s method, which
yields an upper bound for the transition density.

Theorem 28.3. There exists a function p(t, x, y) mapping (0,∞)×Rd×Rd to [0,∞) that

is symmetric in x and y for almost every pair (x, y) (with respect to Lebesgue measure on

Rd × Rd) and such that Ptf(x) =
∫
f(y)p(t, x, y) dy for all bounded functions f . There

exists c1 depending only on Λ such that

p(t, x, y) ≤ c1t
−d/2, t > 0, x, y ∈ Rd.

Proof. Let f be C∞ with compact support with
∫
f = 1. We observe that∫

Ptf(x) dx =
∫

1(Ptf) =
∫

(Pt1)f =
∫
f = 1
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because Pt1 = 1.
Set

E(t) =
∫

(Ptf(x))2 dx,

and note E(0) =
∫
f(x)2 dx <∞. By Proposition 28.1,

E′(t) = 2
∫
Ptf(x)∂t(Ptf(x)) dx = 2

∫
Ptf(x)LPtf(x) dx.

By Proposition 25.2, this is equal to

−
∫
∇(Ptf) · a∇(Ptf)(x) dx ≤ −Λ

∫
|∇(Ptf)(x)|2 dx,

since L ∈ D(Λ). By Theorem 26.3 (the Nash inequality), we have the right-hand side
bounded above in turn by

−c2
( ∫

(Ptf(x))2
)1+2/d( ∫

Ptf(x)
)4/d

= −c2E(t)1+2/d.

Therefore
E′(t) ≤ −c2E(t)1+2/d, (28.2)

or
(E(t)−2/d)′ ≥ c3.

(We are treating the differential inequality (28.2) by the same methods we would use if it
were an equality and we had a first order separable differential equation.) An integration
yields

E(t)−2/d − E(0)−2/d ≥ c3t,

or
E(t)−2/d ≥ c3t.

We conclude from this that
E(t) ≤ c4t

−d/2.

Using the linearity of Pt, we thus have that

‖Ptf‖2 ≤ c
1/2
4 t−d/4‖f‖1 (28.3)

for f smooth. A limit argument extends this to all f ∈ L1. We now use a duality argument.
If g ∈ L1 and f ∈ L2,∫

g(Ptf) =
∫
f(Ptg) ≤ ‖f‖2‖Ptg‖2 ≤ c

1/2
4 t−d/4‖g‖1‖f‖2.
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Taking the supremum over g ∈ L1 with ‖g‖1 ≤ 1,

‖Ptf‖∞ ≤ c
1/2
4 t−d/4‖f‖2. (28.4)

By the semigroup property, (28.4) applied to Pt/2f , and (28.3) applied to f ,

‖Ptf‖∞ = ‖Pt/2(Pt/2f)‖∞ ≤ c
1/2
4 (t/2)−d/4‖Pt/2f‖2

≤ c4(t/2)−d/2‖f‖1.

This says

|Ptf(x)| ≤ c5t
−d/2

∫
|f(y)| dy. (28.5)

Applying this to f = 1B , B a Borel set, we see that Px(Xt ∈ dy) is absolutely continuous
with respect to Lebesgue measure and the density, which we shall call p(t, x, y), is nonneg-
ative and bounded by c5t−d/2 for almost all pairs (x, y). The symmetry (except for a null
set of pairs) follows easily by Proposition 28.2.

Recall Pt+sf = PtPsf , or∫
f(y)p(t+ s, x, y)dy =

∫
Psf(z)p(t, x, z)dz

=
∫ ∫

f(y)p(s, z, y)p(t, x, z)dy dz.

This is true for every bounded f and it follows that

p(t+ s, x, y) =
∫
p(t, x, z)p(t, z, y) dz, a.e.

29. Off-diagonal upper bounds.
One of the most important facts concerning divergence form operators is Aronson’s

bounds: if p(t, x, y) is the fundamental solution to the heat equation ∂u/∂t = Lu in Rd,
then there exist constants c1, c2, c3, c4 such that

p(t, x, y) ≤ c1t
−d/2 exp(−c2|x− y|2/t), x, y ∈ Rd, t > 0, (29.1)

and
c3t

−d/2 exp(−c4|x− y|2/t) ≤ p(t, x, y), x, y ∈ Rd, t > 0. (29.2)

In this section we will prove (29.1). We will assume for convenience that the aij are
smooth, but none of our estimates will depend on the smoothness; the case of non-smooth
aij will follow from by an easy limit argument.
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Under the assumption that the aij are smooth, the diffusion Xt associated with L
can be written

Xt = X0 +
∫ t

0

σ(Xs)dWs +
∫ t

0

b(Xs)ds, (29.3)

where Wt is a d-dimensional Brownian motion, the first integral on the right is an Itô
stochastic integral, σ is a bounded positive definite square root of a, and the ith component
of b is

∑d
j=1 ∂aji/∂xj . It is easy to deduce from this that for each x0 and each t

E x0 sup
s≤t

|Xs − x0|2 <∞. (29.4)

Let x0 ∈ Rd,

M(t) =
∫
|y − x0|p(t, x0, y)dy, Q(t) = −

∫
p(t, x0, y) log p(t, x0, y)dy. (29.5)

Since M(t) = E x0 |Xt−x0|, then M(t) is finite by (29.4). The finiteness of Q(t) will follow
from (29.6) and (29.7) below.

Theorem 29.1. There exists c1 not depending on x0 or t such that M(t) ≤ c1t
1/2.

Proof. First, using Theorem 28.3 and the fact that
∫
p(t, x0, y)dy = 1, we have

Q(t) ≥ −c2 + 1
2d log t. (29.6)

Second, note infs(s log s + λs) = −e−λ−1. Using this with λ = a|y − x0| + b, we
obtain

−Q(t) + aM(t) + b =
∫

[p(t, x0, y) log p(t, x0, y) + (a|y − x0|+ b)p(t, x0, y)]dy

≥ −e−b−1

∫
e−a|y−x0|dy = −c3e−ba−d.

Setting a = d/M(t) and e−b = (e/c3)ad, after some algebra we obtain

M(t) ≥ c4e
Q(t)/d. (29.7)

Third, we differentiate Q(t). Since the aij are smooth and uniform ellipticity holds,
it is known that p(t, x0, y) is strictly positive and is C∞ in each variable on (0,∞)×Rd×Rd

and that p(t, x0, y) and its first and second partial derivatives have exponential decay at
infinity. Performing the differentiation,

Q′(t) = −
∫

(1 + log p(t, x0, y))
∂

∂t
p(t, x0, y)dy

= −
∫

(1 + log p(t, x0, y))Lp(t, x0, y)dy.
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Note that
∫

1Lp(t, x, y)dy =
∫

(L1)p(t, x, y)dy = 0. Applying Proposition 25.2, the above
expression is equal to∫

∇(log p(t, x0, y))·a∇p(t, x0, y)dy

=
∫

[∇(log p(t, x0, y)) · a∇(log p(t, x0, y))]p(t, x0, y)dy.

Using Cauchy-Schwarz and the uniform ellipticity bounds,

Q′(t) ≥ c5

( ∫
|∇ log p(t, x0, y)|p(t, x0, y)dy

)2

= c5

( ∫
|∇p(t, x0, y)|dy

)2

.

Set r(y) = |y − x0|. As |∇r| ≤ 1, we have similarly that M ′(t) = −
∫
∇r · a∇p(t, x0, y)dy,

and so
|M ′(t)| ≤

∫
|a · ∇p(t, x0, y)|dy.

(Because r is not differentiable at x0, to establish this we approximate r by smooth func-
tions and use a simple limit argument.) We thus conclude

Q′(t) ≥ c6(M ′(t))2. (29.8)

By the continuity of Xt, (29.4), and dominated convergence,

lim
t→0

M(t) = lim
t→0

E x0 |Xt − x0| = 0,

so

c4e
Q(t)/d ≤M(t) ≤ c7

∫ t

0

(Q′(s))1/2ds. (29.9)

Finally, define R(t) = d−1[Q(t)+c2− d
2 log t], and observe from (29.6) that R(t) ≥ 0.

Then
Q′(t) = dR′(t) + d/(2t).

Using (29.9) and the inequality (a+ b)1/2 ≤ a1/2 + b/(2a1/2), we have

c8t
1/2eR(t) ≤M(t) ≤ c9d

1/2

∫ t

0

( 1
2s

+R′(s)
)1/2

ds

≤ c10

∫ t

0

( 1
2s

)1/2

ds+ c10

∫ t

0

(s
2

)1/2

R′(s)ds.

By integration by parts and the fact that R ≥ 0, this is less than

c11(2t)1/2 + c11R(t)
( t

2

)1/2

,
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which leads to

c8e
R(t) ≤M(t)/t1/2 ≤ c12(1 +R(t)).

The inequality c8eR(t) ≤ c12(1+R(t)) implies that R(t) is bounded, and the result follows.

Theorem 29.2. There exist c1 and c2 such that (29.1) holds for all x, y ∈ Rd, t > 0.

Proof. First, if Sλ = inf{t : |Xt −X0| ≥ λ}, then

Px(sup
s≤t

|Xs −X0| ≥ λ) ≤ Px(Sλ ≤ t, |Xt −X0| ≥ λ/2) + Px(Sλ ≤ t, |Xt −X0| ≤ λ/2)

≤ Px(|Xt −X0| ≥ λ/2) +
∫ t

0

Px(|Xt −Xs| ≥ λ/2, Sλ ∈ ds).

By Chebyshev’s inequality and Theorem 1, the first term on the right hand side is bounded
by

2E x|Xt −X0|
λ

≤ 2M(t)
λ

≤ c3t
1/2

λ
.

By the strong Markov property, the second term is bounded by∫ t

0

E x[PXs(|Xt−s −X0| ≥ λ/2);Sλ ∈ ds] ≤
2
λ

∫ t

0

M(t− s)Px(Sλ ∈ ds) ≤
c3t

1/2

λ
.

Adding,

Px(sup
s≤t

|Xs −X0| ≥ λ) ≤ 2c3t1/2

λ
. (29.10)

Second, let D > 0, let n = [aD2], and let b > 0, where a, b will be chosen in a
moment. By (29.10) we have

E xe−nSD/n ≤ 1 · Px(SD/n < b/n) + e−n(b/n)Px(SD/n > b/n)

= (1− e−b)Px(SD/n < b/n) + e−b

≤ (1− e−b)
2c3(b/n)1/2

D/n
+ e−b

≤ e−2

if we first choose b large and then a small; a, b can be chosen independently of x,D and n
because

(b/n)1/2

D/n
=

(bn)1/2

D
≤ (ab)1/2.
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Let T0 = 0 and define inductively Ti+1 = Ti + SD/n ◦ θTi , where the θt are the usual
shift operators for Markov processes; this means that Ti is the ith time that Xt moves a
distance D/n. By the strong Markov property

E xe−nTm = E x[e−nTm−1 ; EXTm−1 e−nSD/n ] ≤ e−2E xe−nTm−1 ,

so by induction
E xe−nTn ≤ e−2n.

Then

Px(sup
s≤1

|Xs −X0| ≥ D) ≤ Px(Tn ≤ 1) = Px(e−nTn ≥ e−n) (29.11)

≤ enE xe−nTn ≤ ene−2n = e−n ≤ e−c4D
2
.

Third, let A = {z : |z − x| > |z − y|}. By (29.11) with D = |x− y|/2 and Theorem
28.3 ∫

A

p(1, x, z)p(1, z, y)dz ≤ c5

∫
A

p(1, x, z)dz = c5Px(X1 ∈ A)

≤ c5Px(|X1 − x| ≥ |x− y|/2) ≤ c5e
−c6|x−y|2 ,

while∫
Ac

p(1, x, z)p(1, z, y)dz ≤ c5Py(X1 ∈ Ac) ≤ c5Py(|X1 − y| ≥ |x− y|/2) ≤ c5e
−c6|x−y|2 .

Adding and using the semigroup property,

p(2, x, y) =
∫
p(1, x, z)p(1, z, y)dz ≤ 2c5e−c6|x−y|

2
.

The theorem now follows by scaling.

30. Lower bounds.
In this section we obtain a lower bound on the transition densities. We start with a

lower bound for pt(x) = p(t, x0, x) when x is close to x0. To do that we need the following
weighted Poincaré inequality.

Theorem 30.1. Let ϕ(x) = c1e
−|x|2/2, where c3 is chosen so that

∫
Rd ϕ(x)dx = 1. Then∫

Rd

|f(x)− f |2ϕ(x) dx ≤ c1

∫
Rd

|∇f(x)|2ϕ(x) dx,
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where f =
∫

Rd f(x)ϕ(x) dx.

Proof. The proof is very similar to the proof of the ordinary Poincaré inequality. For
the one dimensional case, instead of Fourier series, we express f in terms of Hermite
polynomials. H0 = 0 and H ′

k = ckHk−1 where |ck| > 0 for k 6= 0. For the higher
dimensional case, we write f as a series in

∏d
i=1Hki

(xi).

Theorem 30.2. Let x1 ∈ Rd. There exist constants c1 and c2 such that if |x1− x0| < c1,

then p(2, x0, x1) ≥ c2.

Proof. Let ϕ(x) = c1e
−|x−x1|2/2, where c3 is chosen so that

∫
Rd ϕ(x) dx = 1. We will

choose r later on and we suppose |x1 − x0| < r/2. Define

G(t) =
∫

log pt(x)ϕ(x) dx.

Then

G′(t) =
∫
Lpt
pt

ϕdx

= −
∫

(∇pt) · a
(
∇ ϕ

pt

)
=

∫
∇pt · a

∇pt
p2
t

ϕ−
∫
∇pt
pt

· a∇ϕ

=
1
2

∫
∇pt
pt

· a∇pt
pt

ϕ+
1
2

∫ [∇pt
pt

· a∇pt
pt

+ 2
∇pt
pt

· ax+ x · ax
]
ϕ

− 1
2

∫
x · axϕ

≥ 1
2

∫
|∇ log pt|2ϕ− c4

≥ c5

∫
| log pt −G(t)|2ϕ− c4

≥ c5

∫
Dt

| log pt −G(t)|2ϕ− c4,

where Dt = {x ∈ B(x0, r) : pt(x) ≥ e−K} and r and K will be chosen in a moment.
First choose r such that∫

B(x0,r)c

pt(x) dx ≤ 1
4 , t ≤ 1.

So
3
4 ≤

∫
B(x0,r)

pt(x) dx =
∫
Dt

+
∫
B(x0,r)−Dt

≤ c6|Dt|t−d/2 + c7r
de−K .
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Choose K so that c7rde−K ≤ 1/4. Then c6|Dt|t−d/2 ≥ 1/2, or |Dt| ≥ td/2/(2c6) ≥ c8 if
t ∈ [1/2, 1].

For any t, by Jensen’s inequality,

G(t) =
∫

(log pt(x))ϕ ≤ log
∫
ptϕ ≤ log

∫
pt = log 1 = 0.

So G(t) ≤ 0. If log pt > 0, then | log pt − G(t)| ≥ |G(t)|. If −K ≤ log pt ≤ 0, then either
(a): |G(t)| ≥ 2K or (b): |G(t)| < 2K. In case (a),

(log pt −G)2 = (−| log pt|+ |G(t)|)2 ≥ 1
4 |G(t)|2.

In case (b),

(log pt −G)2 = (−| log pt|+ |G(t)|)2 ≥ 0 ≥ 1
4 |G(t)|2 −K2.

Therefore, using the fact that ϕ is bounded below by a positive constant on B(x0, r) and
D ⊂ B(x0, r),∫

Dt

| log pt −G(t)|2ϕ ≥ c9|Dt|(|G(t)|2 −K2) ≥ c10G(t)2 − c11.

We thus have
G′(t) ≥ BG(t)2 −A, t ∈ [1/2, 1]

for some constants A and B.
Now we do some calculus. Suppose G(1) ≤ −Q where Q = max(4A, (16A/B)1/2).

Since G′(t) ≥ −A,
G(1)−G(t) ≥ −A/2, t ∈ [1/2, 1],

or
G(t) ≤ G(1) +A/2.

This implies G(t) ≤ −Q/2. Since BQ2/4 ≥ 4A, then A < B
2 G(t)2, and hence

G′(t) ≥ B

2
G(t)2.

Solving, G′/G2 ≥ B/2, or (1/G)′ = −G′/G2 ≤ −B/2, and then

1
G(1)

− 1
G(t)

≤ −B
2

(1− t) ≤ −B
4
.

Since G(t) ≤ 0, then 1/G(1) ≤ −B/4, or 1 ≥ −BG(1)/4, or

G(1) ≥ − 4
B
.
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So either G(1) ≥ −Q or G(1) ≥ −4/B. In either case there exists R > 0 such that
G(1) ≥ −R.

Finally, applying the above first with x0 and then with x0 replaced by x1

log p(2, x0, x1) = log
∫
p(1, x0, z)p(1, x1, z) dz

≥ log
∫
p(1, x0, z)p(1, x1, z)ϕ(z) dz

≥
∫

log(p(1, x0, z)p(1, x1, z))ϕ(z) dz

=
∫

log p(1, x0, z)ϕ(z)dz +
∫

log p(1, x1, z)ϕ(z)dz

≥ −2R.

This gives our result.

We now complete the proof of the lower bound by what is known as a chaining
argument.

Theorem 30.3. There exist c1 and c2 depending only on Λ such that

p(t, x, y) ≥ c1t
−d/2e−c2|x−y|

2/t.

Proof. By Theorem 30.2 with x0 = x and scaling, there exists c3 such that if |x − y| <
c3t

1/2, then p(t, x, y) ≥ c4t
−d/2. Thus to prove the theorem, it suffices to consider the case

|x− y| ≥ c3t
1/2.

By Theorem 30.2 (with x0 = w) and scaling, there exist c4 and c5 such that if
|z − w| ≤ c4(t/n)1/2,

p(t/n, w, z) ≥ c5(t/n)−d/2. (30.1)

Let R = |x − y| and let n be the smallest positive integer greater than 9R2/c24t. So
3R/n ≤ c4(t/n)1/2. Let v0 = x, vn = y, and v1, . . . , vn−1 be points equally spaced on the
line segment connecting x and y. Let Bi = B(vi, R/n). If w ∈ Bi and z ∈ Bi+1, then
|z − w| ≤ 3R/n ≤ c4(t/n)1/2, and so p(t/n, w, z) ≥ c5(t/n)−d/2 by (30.1).

By the semigroup property,

p(t, x, y)

=
∫
· · ·

∫
p(t/n, x, z1)p(t/n, z1, z2) · · · p(t/n, zn−1, y) dz1 · · · dzn−1

≥
∫
Bn−1

· · ·
∫
B1

p(t/n, x, z1)p(t/n, z1, z2) · · · p(t/n, zn−1, y) dz1 · · · dzn−1

≥ (c6(t/n)−d/2)n
n−1∏
i=1

|Bi|.
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Since |Bi| ≥ c7(R/n)d and (R/n)(t/n)−1/2 is bounded below by a positive constant, then

p(t, x, y) ≥ c8c
n
9 (n/t)d/2 ≥ c8t

−d/2 exp(−n log c−1
9 ).

If n > 2, then n/2 ≤ 9R2/c24t, so

p(t, x, y) ≥ c8t
−d/2 exp(−18R2 log c−1

9 /c24t).

If n ≤ 2, then 9R2/c24t ≤ 2, and

p(t, x, y) ≥ c8t
−d/2 exp(−2 log c−1

9 ).

The result follows with c1 = c8(c29 ∧ 1) and c2 = 18(log(c−1
9 ) ∧ 1)/c24.
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