Characterizing some limit sets of Cellular Automata

Alexis Ballier

CMM - Universidad de Chile Proyecto Postdoctorado FONDECYT 3110088

FONDECYT

Fondo Nacional de Desarrollo Científico y Tecnólogico

June 6th 2013

Cellular Automata

Dynamical System

Space: $\Sigma^{\mathbb{Z}}$ (fullshift), Σ finite Block map: $F: \Sigma^{[-r;r]} \to \Sigma$

$$f: \quad \Sigma^{\mathbb{Z}} \rightarrow \quad \Sigma^{\mathbb{Z}}$$

 $f(x)_i = F(x_{i-r}, \dots, x_{i+r})$

f 1-block: r = 0

Symbolic dynamics

Shift: $\sigma: \Sigma^{\mathbb{Z}} \to \Sigma^{\mathbb{Z}}$, $\sigma(x)_i = x_{i-1}$

Hedlund: f block map iff f continuous and $f \circ \sigma = \sigma \circ f$

Limit set and stability

Definition

$$\Omega_f = \bigcap_{n \in \mathbb{N}} f^n(\Sigma^{\mathbb{Z}})$$

 Ω_f is compact (f continuous) and σ -invariant (f σ -commuting): A subshift "configurations reachable arbitrary late in its evolution"

Stability (Maass'95)

f stable iff $\exists N, \Omega_f = f^N(\Sigma^{\mathbb{Z}})$ f unstable otherwise

f stable: $f \leftarrow f^N$

Consequences

f stable $\Rightarrow \Omega_f$ is a factor of a fullshift.

Boyle'84: X factor of a fullshift $\Leftrightarrow X$ sofic, mixing and with a receptive fixed point.

The problem

Open problem (Maass'95, Boyle OPSD)

Get a characterization of stable limit sets of CA. Can these be all fullshift factors?

The problem

Open problem (Maass'95, Boyle OPSD)

Get a characterization of stable limit sets of CA. Can these be all fullshift factors?

Conjecture (BGK'11)

X limit set of a stable CA iff:

- X factor of a fullshift
- $\exists \varphi : \mathbf{X} \to \mathbf{S}, \exists \pi : \mathbf{S} \to \mathbf{X}, \mathbf{S} \text{ SFT}$ (**X** is weakly-conjugate to an SFT)
- ← Already done: Boyle'84
- \Rightarrow Open question

Proof of \Leftarrow

$$\Sigma^{\mathbb{Z}}$$
UI φ
X π S

- $\bullet \ \exists \varphi : X \to S, \exists \pi : S \to X$
- S SFT factor of a fullshift

Proof of \Leftarrow

- $\exists \varphi : \mathbf{X} \to \mathbf{S}, \exists \pi : \mathbf{S} \to \mathbf{X}$
- S SFT factor of a fullshift
- $\bullet \ \ \text{Boyle extension lemma:} \ \exists \tilde{\varphi}: \Sigma^{\mathbb{Z}} \to \mathbf{S} \text{, } \tilde{\varphi}_{|\mathbf{X}} = \varphi$

Proof of \Leftarrow

- $\exists \varphi : \mathbf{X} \to \mathbf{S}, \exists \pi : \mathbf{S} \to \mathbf{X}$
- S SFT factor of a fullshift
- ullet Boyle extension lemma: $\exists \tilde{\varphi}: \Sigma^{\mathbb{Z}} \to \mathbf{S}, \ \tilde{\varphi}_{|\mathbf{X}} = \varphi$
- $f = \pi \circ \tilde{\varphi}$

What we will prove today

Theorem

X *limit set of a right-continuing almost-everywhere stable CA iff:*

- X factor of a fullshift
- $\exists \varphi : \mathbf{X} \to \Sigma_R, \exists \pi : \Sigma_R \to \mathbf{X}, \Sigma_R$ minimal right-resolving cover of \mathbf{X} (right Fischer cover)

Facts

All known examples fall under this characterization.

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-resolving if $\forall x \in \mathbf{X}, y \in \mathbf{Y}, f(x)_{(-\infty;0]} = y_{(-\infty;0]}$, there exists at most one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-resolving if $\forall x \in \mathbf{X}, y \in \mathbf{Y}, f(x)_{(-\infty;0]} = y_{(-\infty;0]}$, there exists at most one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-resolving if $\forall x \in \mathbf{X}, y \in \mathbf{Y}, f(x)_{(-\infty;0]} = y_{(-\infty;0]}$, there exists at most one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-resolving if $\forall x \in \mathbf{X}, y \in \mathbf{Y}, f(x)_{(-\infty;0]} = y_{(-\infty;0]}$, there exists at most one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-e-resolving if $\forall x \in \mathbf{X}, y \in \mathbf{Y}, f(x)_{(-\infty;0]} = y_{(-\infty;0]}$, there exists at least one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-e-resolving if $\forall x \in \mathbf{X}, y \in \mathbf{Y}, f(x)_{(-\infty;0]} = y_{(-\infty;0]}$, there exists at least one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-e-resolving if $\forall x \in \mathbf{X}, y \in \mathbf{Y}, f(x)_{(-\infty;0]} = y_{(-\infty;0]}$, there exists at least one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-e-resolving if $\forall x \in \mathbf{X}, y \in \mathbf{Y}, f(x)_{(-\infty;0]} = y_{(-\infty;0]}$, there exists at least one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-e-resolving if $\forall x \in \mathbf{X}, y \in \mathbf{Y}, f(x)_{(-\infty;0]} = y_{(-\infty;0]}$, there exists at least one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Almost-everywhere

x left-transitive if $\{\sigma^n(x), n \in \mathbb{N}\}$ dense in X

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-e-resolving a.e. if $\forall x \in \mathbf{X}, y \in \mathbf{Y}$, x left-transitive in \mathbf{X} , $f(x)_{(-\infty;0]} = y_{(-\infty;0]}$, there exists at least one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Almost-everywhere

x left-transitive if $\{\sigma^n(x), n \in \mathbb{N}\}$ dense in **X**

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ 1-block factor map. f is right-e-resolving a.e. if $\forall x \in \mathbf{X}, y \in \mathbf{Y}, x$ left-transitive in $\mathbf{X}, f(x)_{(-\infty;0]} = y_{(-\infty;0]},$ there exists at least one $x_1' \in \mathcal{A}(\mathbf{X})$ s.t. $x_{(-\infty;0]}x_1'x_{[2;\infty)}' \in \mathbf{X}$ and $F(x_1') = y_1$.

Definition

f is right-continuing (a.e.) if f is conjugate to a right-e-resolving (a.e.) factor map.

Properties

 $f: \mathbf{X} \to \mathbf{Y}, \mathbf{X} \text{ SFT}.$

- right-resolving $\Rightarrow f$ right-e-resolving a.e.
- (right-resolving $\Rightarrow f$ right-e-resolving) $\Leftrightarrow Y$ SFT

The converse

Theorem (Boyle-Tuncel'84)

If $\varphi : \mathbf{X} \to \Sigma_R$, Σ_R SFT, Σ SFT s.t. $\mathbf{X} \subseteq \Sigma$ then $\exists \tilde{\varphi} : \Sigma \to \Sigma_R$, $\tilde{\varphi}_{|\mathbf{X}} = \varphi$, $\tilde{\varphi}$ right-continuing.

Corollary

 $f = \pi_R \circ \tilde{\varphi}$ is right-continuing a.e.

Definition

f right-e-resolving almost-everywhere stable CA if $f: \Sigma^{\mathbb{Z}} \to \Omega_f$ is a right-e-resolving almost-everywhere factor map.

Theorem

X *limit set of a right-e-resolving almost-everywhere stable CA then:*

- X factor of a fullshift
- $\exists \varphi : \mathbf{X} \to \Sigma_R, \exists \pi : \Sigma_R \to \mathbf{X}, \Sigma_R$ minimal right-resolving cover of \mathbf{X}

Remark

We just proved the converse!

If f right-e-resolving a.e. then $\exists \varphi : \Sigma^{\mathbb{Z}} \to \Sigma_R$ s.t. $f = \pi_R \circ \varphi$.

If f right-e-resolving a.e. then $\exists \varphi : \Sigma^{\mathbb{Z}} \to \Sigma_R$ s.t. $f = \pi_R \circ \varphi$.

Lemma

$$\left. \begin{array}{l} \varphi(\Omega_f) \subseteq \Sigma_R \\ h(\Omega_f) = h(\Sigma_R) \\ \Omega_f, \Sigma_R \ \textit{irreducible} \end{array} \right\} \Rightarrow \varphi(\Omega_f) = \Sigma_R$$

Followers

 $f: \mathbf{X} \to \mathbf{Y}$ a 1-block map.

For $a \in \mathcal{A}(\mathbf{X})$, define: $\mathcal{F}_f^{\mathbf{X}}(a) = \{f(aw), aw \sqsubseteq \mathbf{X}\}$

Follower-separated

 $f: \mathbf{X} \to \mathbf{Y}$ a 1-block map is follower-separated if $\mathcal{F}_f^{\mathbf{X}}(a) = \mathcal{F}_f^{\mathbf{X}}(b) \Rightarrow a = b$.

Example: minimal right-resolving cover

$$\pi_R(\Box, q) = \Box$$

Current picture

Hypothesis

- f onto, right-e-resolving a.e., 1-block
- Σ, Σ_R 1-step irreducible SFTs
- \bullet π_R onto, right-resolving, 1-block, follower-separated
- X irreducible sofic

Fiber product

Definition

$$\mathsf{F} = \{(x, y), \\ x \in \Sigma^{\mathbb{Z}}, y \in \Sigma_{R}, \\ f(x) = \pi_{R}(y)\}$$

Fiber product

Definition

$$\begin{aligned} \mathsf{F} &=& \{(x,y), \\ & x \in \Sigma^{\mathbb{Z}}, y \in \Sigma_R, \\ & f(x) = \pi_R(y) \} \end{aligned}$$

Properties

- F 1-step irreducible SFT
- ρ_1, ρ_2 onto
- ρ₁ right-resolving,
 right-e-resolving

Very useful

Lemma (Trow'95)

 $\exists \varphi : \Sigma^{\mathbb{Z}} \to \Sigma_R, f = \pi_R \circ \varphi \Leftrightarrow \rho_1 \text{ is bijective.}$

Proof.

Entropy + irreducibility

The proof at least!

Lemma

 ρ_1 is bijective.

Proof.

- Assume not: $(x, y^1), (x, y^2) \in F$
- $y_0^1 \neq y_0^2, \ \pi_R(y^1) = \pi_R(y^2)$
- Irreducibility: (x', y')left-transitive, $(x', y')_{[0:\infty)} = (x, y^1)_{[0:\infty)}$

But it is long...

Proof.

- π_R follower-separated: w, $y_0^1 w \sqsubseteq \Sigma_R$, $\forall w', \pi_R(w') = \pi_R(w), y_0^2 w' \not\sqsubseteq \Sigma_R$
- $\bullet \ y'_{(-\infty;1]}w\ldots\in\Sigma_R$

...very long...

Proof.

• *f* right-e-resolving a.e., *x'* left-transitive:

$$\exists x'', f(x'') = \pi_R(y'_{(-\infty;1]}w...),$$

 $x''_{(-\infty;0]} = x'_{(-\infty;0]}$

...but is ending

Proof.

- $x_0'' = x_0$
- ρ_1 : right-e-resolving
- $f(x'')_{[1;|w|]} = \pi_R(w)$
- Complete y^2 : contradiction!

If f right-e-resolving a.e. then $\exists \varphi : \Sigma \to \Sigma_R \text{ s.t. } f = \pi_R \circ \varphi$.

If f right-e-resolving a.e. then $\exists \varphi : \Sigma \to \Sigma_R \text{ s.t. } f = \pi_R \circ \varphi$.

Going back

If $f: \mathbf{X} \to \mathbf{X}$, $\varphi(\mathbf{X}) \subseteq \Sigma_R$. Irreducibility + same entropy $\Rightarrow \varphi(\mathbf{X}) = \Sigma_R$

Remember the Boyle-Tuncel result?

X *limit* set of a right-continuing almost-everywhere stable CA iff:

- X factor of a fullshift (trivial necessary condition)
- $\exists \varphi : \mathbf{X} \to \Sigma_R, \exists \pi : \Sigma_R \to \mathbf{X}, \Sigma_R$ minimal right-resolving cover of \mathbf{X}

Conclusions and questions

What we did

Characterized stable limit sets of CAs for the cases we know how to construct.

Conclusions and questions

What we did

Characterized stable limit sets of CAs for the cases we know how to construct.

Question

Does there exist other types of stable limit sets of CA?

