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Cellular Automata

Dynamical System

Space: X7 (fullshift), ¥ finite
Block map: F: Zl-rl %

f: ¥z 5 Yz
f(X),' - F(Xi—rw 0o 7Xi+r)

f 1-block: r =0
Symbolic dynamics

Shift: o : »Z — EZ, O'(X),' = Xj_1
Hedlund: f block map iff f continuous and foo =00 f
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Limit set and stability

Q=) £(2%)
neN

Q¢ is compact (f continuous) and o-invariant (f
o-commuting): A subshift
“configurations reachable arbitrary late in its evolution”

Stability (Maass’'95)

f stable iff AN, Qr = FV(X%)
f unstable otherwise
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f stable: f «+ N

EZ

N

f

Consequences

f stable = Qf is a factor of a fullshift.

Boyle'84: X factor of a fullshift < X sofic, mixing and with a
receptive fixed point.
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The problem

Open problem (Maass’'95, Boyle OPSD)

Get a characterization of stable limit sets of CA.
Can these be all fullshift factors 7
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The problem

Open problem (Maass’'95, Boyle OPSD)

Get a characterization of stable limit sets of CA.
Can these be all fullshift factors 7

Conjecture (BGK'11)
X limit set of a stable CA iff:
@ X factor of a fullshift

@ Jp: X—S,37:S — X, SSFT
(X is weakly-conjugate to an SFT)

< Already done: Boyle'84
= Open question
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Proof of «

@ Jp: X—=S5,dIr:S—-X
@ S SFT factor of a fullshift

A. Ballier Characterizing some limit sets of Cellular Automata 6/24



Proof of «

@ Jp: X—=S5,dIr:S—-X
@ S SFT factor of a fullshift
@ Boyle extension lemma: 35 : X% = S, gox = ¢

A. Ballier Characterizing some limit sets of Cellular Automata 6/24



Proof of «

@ Jp: X—=S5,dIr:S—-X

@ S SFT factor of a fullshift

@ Boyle extension lemma: 35 : X% = S, gox = ¢
e f=7w0¢
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What we will prove today

X limit set of a right-continuing almost-everywhere stable CA
iff:
@ X factor of a fullshift
@ Jdp: X — Xg,dn: Xg = X, X g minimal right-resolving
cover of X (right Fischer cover)

Facts

All known examples fall under this characterization.
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Right-resolving

Definition

f: X =Y 1-block factor map. f is right-resolving if

Vx € X,y € Y, f(X)(—o0i0] = Y(—o0;0], there exists at most one
X1 € A(X) s.t. X(—o0i0X1 X0y € X and F(x{) = y1.

X

Lf
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Right-e-resolving

Definition

f: X =Y 1-block factor map. f is right-e-resolving if

Vx € X,y € Y, f(X)(—o0;0] = Y(—o0;0]: there exists at least one
X1 € A(X) s.t. X(—o0i0X1 X0y € X and F(x{) = y1.

X

Lf
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Almost-everywhere
x left-transitive if {o"(x), n € N} dense in X

Definition

f: X =Y 1-block factor map. f is right-e-resolving a.e. if
Vx € X,y €Y, x left-transitive in X, f(X)(—o0;0] = ¥(—o0;0]:
there exists at least one x; € A(X) s.t. X(—o0;0 X X)2.00) € X
and F(x;) = y1.
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Almost-everywhere
x left-transitive if {o"(x), n € N} dense in X

Definition

f: X =Y 1-block factor map. f is right-e-resolving a.e. if
Vx € X,y €Y, x left-transitive in X, f(X)(—o0;0] = ¥(—o0;0]:
there exists at least one x; € A(X) s.t. X(—o0;0 X X)2.00) € X
and F(x;) = y1.

Properties
f:X =Y, XSFT.
f is right-continuing (a.e.) if f @ right-resolving = f
is conjugate to a right-e-resolving a.e.
right-e-resolving (a.e.) factor o (right-resolving = f
map.

right-e-resolving) < Y
SFT
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The converse

Theorem (Boyle-Tuncel’84)

If o : X — Xg, Xg SFT, ¥ SFT s.t. X C X then
15 : ¥ — Y, @x = @, ¢ right-continuing.

Corollary

f = mr o ¢ is right-continuing a.e.

ZZ

¢\\ER
7N
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f right-e-resolving almost-everywhere stable CA if

f: X2 — Qf is a right-e-resolving almost-everywhere factor
map.

X limit set of a right-e-resolving almost-everywhere stable CA
then:

@ X factor of a fullshift

@ dp: X — Xg,dn: Xg = X, Xr minimal right-resolving
cover of X

We just proved the converse!
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Theorem
If f right-e-resolving a.e. then 3p : X2 — Mg s.t. f = TR0 .
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If f right-e-resolving a.e. then 3p : X2 — Mg s.t. f = TR0 .

Z

AER
v

)y
Qf

Qf

N
f

Lemma

() C Xg
h(€kr) = h(ZR) = ¢(Qr) = Xg
Qf, X irreducible

A. Ballier Characterizing some limit sets of Cellular Automata 13 /24



Followers

f: X —=Y al-block map.
For a € A(X), define: FX(a) = {f(aw), aw C X}

Follower-separated
f: X =Y a 1-block map is follower-separated if
FX(a) = FX(b) = a=b.

Example: minimal right-resolving cover
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Current picture

b YR

N S

X

Hypothesis

@ f onto, right-e-resolving a.e., 1-block
@ X, Yr l-step irreducible SFTs
@ 7R onto, right-resolving, 1-block, follower-separated

@ X irreducible sofic
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Fiber product

F = {(xy)
x €Yl yc Xpg,

f(x) =mr(y)}
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Fiber product

@ F 1-step irreducible SFT

F = {00y), ® p1, p2 onto
x € X%y € Xp, @ p; right-resolving,
f(x) = mr(y)} right-e-resolving
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Very useful

Lemma (Trow’95)
Jdp: X2 5 Y, f = TR o & py is bijective.

Entropy + irreducibility |
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The proof at least!

p1 Is bijective.

@ Assume not: (x,y'),(x,y?) € F / \
o yi # 3, mr(y?) = mr(y?)
@ Irreducibility: (x,y’)

- 7
left-transitive, \ /
! 1

(X Y )[0;00) - (Xay )[0;00)
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But it is long...

/\

@ 7r follower-separated: w,
yaw C Xg, YW, mg(W') =

WR(W),ng' Z YR
) y(/—oo;l}W"‘ € Xg
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..very long...

/\

@ f right-e-resolving a.e., x’'
left-transitive:

ElXN7 f(XH) = ﬂ—R(y(lfoc;l]W T )’ \ /
1! _ /
X(=o000] = X(—o0030]
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..but is ending

TR — W

® X5 = Xo / \
@ p1: right-e-resolving
(-] f(X//)[l;\wH = 7TR(W)

@ Complete y?: contradiction! \ /
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If f right-e-resolving a.e. then dp : ¥ — Yg s.t. f =g o0 .

)3 f

N

ZRTR)X

A. Ballier Characterizing some limit sets of Cellular Automata 22/24



If f right-e-resolving a.e. then dp : ¥ — Yg s.t. f =g o0 .

Going back
If f: X —= X, p(X) C Xg. Irreducibility + same entropy =
p(X) =Zr

Remember the Boyle-Tuncel result?
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X limit set of a right-continuing almost-everywhere stable CA
iff:
@ X factor of a fullshift (trivial necessary condition)

@ Jdyp: X — Xg,dn: g — X, X g minimal right-resolving
cover of X

YR

7N

Qy f
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Conclusions and questions

What we did

Characterized stable limit sets of CAs for the cases we know
how to construct.
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Conclusions and questions

What we did

Characterized stable limit sets of CAs for the cases we know
how to construct.

Does there exist other types of stable limit sets of CA?

2,3
1 1
2
4
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