Effective as PS of sofic

From d + 2 to d + 1

Multidimensional Effective Subshifts

Automata Theory and Symbolic Dynamics Workshop

Nathalie Aubrun & Mathieu Sablik

ENS de Lyon, CNRS

June 3, 2013

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

In this talk. . .

- Multidimensional SFT and effective subshifts
- Projective subdynamics
- Implementation of Turing machines inside SFT
- Substitutive subshifts

Effective	subshifts	and	PS
000000			

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline

1 Effective subshifts and projective subdynamics

- Definition
- Introductive examples

Effective subshifts as projective subdynamics of sofic subshifts

- Hochman's result
- Substitutive subshifts
- Sketch of the proof

3 From d + 2 to d + 1

- A four layers construction
- Computation stripes
- Communication channels

Effective as PS of sofic

From d + 2 to d + 1

Effective subshifts

$\mathsf{SFT} \subsetneq \mathsf{Sofic} \ \mathsf{susbhifts} \subsetneq \textit{Effectively closed}$

Definition

A subshift is *effectively closed* (or *effective*) if its complement is a computable union of cylinders.

Property

 \boldsymbol{X} is effectively closed if and only one of the followings holds

(i) $X = X_F$ for some recursively enumerable set F of forbbiden patterns (ii) $X = X_F$ for some recursive set F of forbbiden patterns

Effective as PS of sofic

From d + 2 to d + 1

うして ふゆう ふほう ふほう うらつ

Projective subdynamics

Initially introduced by Johnson, Kass and Madden in 2007.

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a \mathbb{Z}^d subshift and $L \lneq \mathbb{Z}^d$ a k-dimensional sublattice $(1 \leq k < d)$. The *L-projective subdynamics of* X is

$$P_L(X) := \{x|_L : x \in L\} \subseteq \mathcal{A}^L.$$

- $(P_L(X), \sigma_{L \times P_L(X)})$ is a \mathbb{Z}^k -subshift.
- $P_L(X)$: globally admissible configurations of shape L in X.
- Loss of information about the original subshift.

Effective as PS of sofic

From d + 2 to d + 1

うして ふゆう ふほう ふほう うらつ

Projective subdynamics

Initially introduced by Johnson, Kass and Madden in 2007.

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a \mathbb{Z}^d subshift and $L \lneq \mathbb{Z}^d$ a k-dimensional sublattice $(1 \leq k < d)$. The *L-projective subdynamics of* X is

$$P_L(X) := \{x|_L : x \in L\} \subseteq \mathcal{A}^L.$$

- $(P_L(X), \sigma_{L \times P_L(X)})$ is a \mathbb{Z}^k -subshift.
- $P_L(X)$: globally admissible configurations of shape L in X.
- Loss of information about the original subshift.

In the sequel, we will concentrate on $P_{\vec{e}_1\mathbb{Z}}(X)$ (PS along the horizontal direction).

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Subshifts and projective subdynamics

One approach to understand multidimensional SFT is to study their projective subdynamics.

- What are projective subdynamics of 2D sofic subshifts
- What are projective subdynamics of 2D SFT ?

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Subshifts and projective subdynamics

One approach to understand multidimensional SFT is to study their projective subdynamics.

- What are projective subdynamics of 2D sofic subshifts = effective subshifts
- What are projective subdynamics of 2D SFT ? ???

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Subshifts and projective subdynamics

One approach to understand multidimensional SFT is to study their projective subdynamics.

- What are projective subdynamics of 2D sofic subshifts = effective subshifts
- What are projective subdynamics of 2D SFT ? ???

Proposition

Projective subdynamics of SFT (sofic subshifts) are effective subshifts.

SFT $\Sigma^{\mathbb{Z}}$

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (0)

► Trivially, every 1D sofic subshift...

x19 E -
$x_{18} \in \Sigma$
$x_{17} \in \Sigma$
$x_{16} \in \Sigma$
$x_{15} \in \Sigma$
$x_{14} \in \Sigma$
$x_{13} \in \Sigma$
$x_{12} \in \Sigma$
$x_{11} \in \Sigma$
$x_{10} \in \Sigma$
$x_9 \in \Sigma$
$x_8 \in \Sigma$
$x_7 \in \Sigma$
$x_{6} \in \Sigma$
$x_5 \in \Sigma$

 $X \subset A^{\mathbb{Z}}$ sofic $\Sigma \subset B^{\mathbb{Z}}$ SFT, $\Pi : \Sigma \to X$ block map

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (0)

► Trivially, every 1D sofic subshift...

$\Pi(x_{19}) \in A$
$\sqcap(x_{18}) \in X$
$\sqcap(x_{17}) \in X$
$\Pi(\mathbf{x_{16}}) \in \mathbf{X}$
$\Pi(x_{15}) \in X$
$\Pi(x_{\texttt{14}}) \in X$
$\Pi(x_{13}) \in X$
$\Pi(x_{12}) \in X$
$\Pi(x_{\texttt{11}}) \in X$
$\Pi(x_{10}) \in X$
$\sqcap(\mathbf{x_g}) \in \mathbf{X}$
$\sqcap(x_8) \in X$
$\sqcap(x_7) \in X$
$\sqcap(x_6) \in X$
\neg (x_5) $\in X$

 $X\subset A^{\mathbb{Z}}$ sofic $\Sigma\subset B^{\mathbb{Z}}$ SFT, $\Pi:\Sigma o X$ block map

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

SFT $\Sigma^{\mathbb{Z}}$

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (I)

▶ The 1D subshift $X_{a^n b^n}$ (not sofic).

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (I)

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (I)

▶ The 1D subshift $X_{a^nb^n}$ (not sofic).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (I)

▶ The 1D subshift $X_{a^nb^n}$ (not sofic).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (I)

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (I)

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (I)

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (I)

			_	_					-	_																				
U	Ь	Ŭ	0	0	0	0	Ь	J	0	0	0	υ	υ	0	J	υ	0	0	υ	0	0	~	0	J	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	\nearrow	$\overline{\ }$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
)	0	0	0	0	0	\nearrow	↑	↑		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	\nearrow	0	↑	↑	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	\nearrow	~	0	0	0	L
)	0	0	0	\nearrow	0	0	↑	↑	0	0		0	0	0	0	0	0	0	0	0	0	0	0	$^{\times}$	↑	↑	$^{\sim}$	0	0	0
0	0	0	\nearrow	0	0	0	↑	↑	0	0	0		0	0	0	0	0	0	0	0	0	0	$^{\times}$	0	↑	↑	0	$^{\sim}$	0	С
С	C	С	а	а	а	а	а	Ь	b	b	b	Ь	С	С	С	С	С	С	С	С	С	С	а	а	а	Ь	b	b	С	4
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٢
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
^	0	0	0	0	^	n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ŋ	0	0	\sim	0	0	0	C

Effective as PS of sofic

From d + 2 to d + 1

What can be PS of sofic subshifts ? (II)

▶ The 1D subshift $X_{a^n b^n c^n}$ (neither sofic nor algebraic).

										-		-							-					_						
)	0	υ	U	U	L,	J	6	0	0	J	Ь	0	0	0	0	U	0	0	0	U	0	-	0	0	Ŀ	0	0	V	0	U
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	\nearrow		0	0	0	0	$^{\times}$	$^{\!$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٢
0	0	0	0	0	0	0	$^{\times}$	↑	↑		0	0	$^{\times}$	↑	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	$^{\times}$	0	↑	↑	0		$^{\times}$	0	↑	1	0		0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	$^{\times}$	0	0	↑	↑	0	$^{\times}$		0	↑	1	0	0		0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	$^{\times}$	0	0	0	↑	↑	\nearrow	0	0		1	1	0	0	0		0	0	0	0	0	0	0	0	0	0	0
0	0	0	$^{\times}$	0	0	0	0	↑	1	0	0	0	0	*	1	0	0	0	0		0	0	0	0	0	0	0	0	0	(
d	d	d	а	а	а	а	а	а	b	b	b	b	b	b	С	С	С	С	С	С	d	d	d	d	d	d	d	d	d	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0		0	0	0	0	0	2	0	0	٥	0	0	0	0	0	0	0	٢	0	0	r	0	٦	0

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline

1 Effective subshifts and projective subdynamics

- Definition
- Introductive examples

Effective subshifts as projective subdynamics of sofic subshifts

- Hochman's result
- Substitutive subshifts
- Sketch of the proof

3 From d + 2 to d + 1

- A four layers construction
- Computation stripes
- Communication channels

Hochman's result

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Theorem (Hochman 2008)

Any effective \mathbb{Z}^d subshift may be obtained as the projective subdynamics of a \mathbb{Z}^{d+2} sofic subshift.

The proof is based on

- the use of Turing machines as SFT,
- *substitutive tilings* to construct computation zones in 3D.

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Substitutive subshifts

We consider only *rectangular substitutions* on a finite alphabet A.

If s is such a substitution, the *s*-patterns are the $s^n(a)$ for every letter a and every integer $n \in \mathbb{N}$ (if they are well-defined).

Definition

Let s be a rectangular substitution on A. Then the *substitutive subshift* generated by s is

$$X_s = \left\{ x \in A^{\mathbb{Z}^2} : \text{ every pattern of } x \text{ is a } s\text{-pattern}
ight\}.$$

Effective as PS of sofic

From d + 2 to d + 1

Mozes' Theorem

Theorem (Mozes, 1989)

If the substitution s has good properties (for instance deterministic), then the subshift X_s is sofic.

Idea of the proof for 2×2 substitutions

Effective as PS of sofic

From d + 2 to d + 1

Mozes' Theorem

Theorem (Mozes, 1989)

If the substitution s has good properties (for instance deterministic), then the subshift X_s is sofic.

Idea of the proof for 2×2 substitutions

Effective as PS of sofic

From d + 2 to d + 1

Mozes' Theorem

Theorem (Mozes, 1989)

If the substitution s has good properties (for instance deterministic), then the subshift X_s is sofic.

Idea of the proof for 2×2 substitutions

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Hochman's proof: a 3D construction

Start with two rectangular substitutions s_3 and s_5

Mozes' result \Rightarrow 2D *sofic subshifts* W_3 and W_5 .

Effective as PS of sofic

From d + 2 to d + 1

・ロト ・得ト ・ヨト ・ヨト

э

Hochman's proof: a 3D construction

Identical copies of W_3 along direction $\vec{e_3}$ and of W_5 along $\vec{e_2}$

- ► Copies of *W*₃ produce *vertical lines*
- ► Copies of *W*₃ produce *horizontal lines*

Effective as PS of sofic

From d + 2 to d + 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hochman's proof: a 3D construction

Thus some rectangles appear !

And all rectangles are the same on one plane.

Effective as PS of sofic

From d + 2 to d + 1

(ロ) (型) (E) (E) (E) (O)

Hochman's proof: a 3D construction

These rectangles have good properties

- there are only finitely many planes with infinite rectangles
- each set $[k, k + n]\vec{e_2}$ will appear in arbitrarily large rectangles

Thus if \mathcal{M} is a TM that enumerates F

- \bullet we can put calculations of $\mathcal M$ (real time Turing machine) in each rectangle
- each time a forbidden pattern is produced, its presence is checked inside the rectangle
- \bullet rectangles repartition $\Rightarrow \mathbb{Z} \vec{e_2}$ is entirely scanned

 \Rightarrow The subshift X_F exactly appears on $\mathbb{Z}\vec{e_2}$.

Effective as PS of sofic 0000

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline

1 Effective subshifts and projective subdynamics

- Definition
- Introductive examples

Effective subshifts as projective subdynamics of sofic subshifts

- Hochman's result
- Substitutive subshifts
- Sketch of the proof

3 From d + 2 to d + 1

- A four layers construction
- Computation stripes
- Communication channels

Effective as PS of sofic

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

From d + 2 to d + 1

Hochman's result for effective subshifts can be made *optimal* in terms of dimension.

(since there exist non-sofic effective subshifts, dimension d is impossible)

Theorem (Durand, Romaschenko & Shen 2011, A.& Sablik 2013)

Any effective \mathbb{Z}^d -subshift may be obtained as the projective subdynamics of a \mathbb{Z}^{d+1} sofic subshift.

Effective as PS of sofic

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

From d + 2 to d + 1

Hochman's result for effective subshifts can be made *optimal* in terms of dimension.

(since there exist non-sofic effective subshifts, dimension d is impossible)

Theorem (Durand, Romaschenko & Shen 2011, A.& Sablik 2013)

Any effective \mathbb{Z}^d -subshift may be obtained as the projective subdynamics of a \mathbb{Z}^{d+1} sofic subshift.

Two independent proofs

- the first one is based on *self-similar tilings*
- the second one uses Robinson like techniques

Effective as PS of sofic

From d + 2 to d + 1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

From d + 2 to d + 1: Sketch of the proof

What about Robinson tiling ?

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

From d + 2 to d + 1: Sketch of the proof

What about Robinson tiling ?

Effective as PS of sofic

From d + 2 to d + 1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

From d + 2 to d + 1: Sketch of the proof

What about Robinson tiling ?

Effective as PS of sofic

From d + 2 to d + 1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

From d + 2 to d + 1: Sketch of the proof

What about Robinson tiling ?

But ...

- Computation zones are squares !
- How to solve the *disconnected tape* problem ?

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}{}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

 $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$

Effective as PS of sofic

From d + 2 to d + 1

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}{}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x\in \mathcal{A}^{\mathbb{Z}}_{\Sigma}$
$x\in\mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in\mathcal{A}_{\Sigma}^{\mathbb{Z}}$
$x\in \mathcal{A}^{\mathbb{Z}}_{\Sigma}$
$x\in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Effective as PS of sofic

From d + 2 to d + 1

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}{}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

Effective as PS of sofic

From d + 2 to d + 1

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}{}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

Effective as PS of sofic

From d + 2 to d + 1

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}{}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

Effective as PS of sofic

From d + 2 to d + 1

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}{}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\texttt{Search}}$ that helps the TM \mathcal{M}_F to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x \in \Sigma$
$x \in \Sigma$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Effective as PS of sofic

From d + 2 to d + 1

∋ \$\\$<</p>\$\\$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト …

Layer 2: Computation zones

Effective as PS of sofic

From d + 2 to d + 1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Layer 2: Computation zones

After some iterations. . .

 \Box : communication tile $\exists, \in, \blacksquare$: computation tiles

Effective as PS of sofic

From d + 2 to d + 1

Layer 2: Computation zones

After some iterations...

 \Box : communication tile \exists, e, \blacksquare : computation tiles

Effective as PS of sofic

From d + 2 to d + 1

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Layer 2: Computation zones

Stripes of different levels (level 1, level 2, level 3):

A stripe of level n has the following properties

- width 2ⁿ,
- one line of computation every 2ⁿ lines.

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Layer 2: Computation zones

Stripes of different levels (level 1, level 2, level 3):

A stripe of level n has the following properties

- width 2ⁿ,
- one line of computation every 2^n lines.

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Layer 2: Computation zones

Stripes of different levels (level 1, level 2, level 3):

A stripe of level n has the following properties

- width 2ⁿ,
- one line of computation every 2^n lines.

Effective as PS of sofic

From d + 2 to d + 1

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Layer 2: the clock

To initialize calculations we code a clock by local rules

In a level *n* stripe, calculations are initialized every 2^{2^n} steps of calculation.

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Layer 3: How to detect forbidden patterns ?

 $\bullet~\mathcal{M}_{\texttt{Forbid}}$ generates forbidden patterns of Σ

Effective as PS of sofic

From d + 2 to d + 1

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Layer 3: How to detect forbidden patterns ?

- $\bullet~\mathcal{M}_{\texttt{Forbid}}$ generates forbidden patterns of Σ
- each stripe has a *responsibility zone* and $\mathcal{M}_{\texttt{Forbid}}$ verifies that no forbidden pattern appears inside this zone;

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Layer 3: How to detect forbidden patterns ?

- $\bullet~\mathcal{M}_{\texttt{Forbid}}$ generates forbidden patterns of Σ
- each stripe has a *responsibility zone* and $\mathcal{M}_{\texttt{Forbid}}$ verifies that no forbidden pattern appears inside this zone;

• to get symbol a_k from level 1, $\mathcal{M}_{\text{Forbid}}$ is helped by $\mathcal{M}_{\text{Search}}$: $\mathcal{M}_{\text{Forbid}}$ gives the address k and gets a_k .

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Responsibility zone of \mathcal{M}_{Forbid}

Responsibility zones must overlap

A Turing machine $\mathcal{M}_{\text{Forbid}}$ of level *n* may ask help from a $\mathcal{M}_{\text{Search}}$ of same level or an adjacent $\mathcal{M}_{\text{Search}}$ of same level.

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Responsibility zone of \mathcal{M}_{Forbid}

Responsibility zones must overlap

A Turing machine $\mathcal{M}_{\text{Forbid}}$ of level *n* may ask help from a $\mathcal{M}_{\text{Search}}$ of same level or an adjacent $\mathcal{M}_{\text{Search}}$ of same level.

Effective as PS of sofic

From d + 2 to d + 1

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Layer 4 : Turing machine $\mathcal{M}_{\text{Search}}$

A $\mathcal{M}_{\text{Search}}$ machine of level *n* can communicate with $\mathcal{M}_{\text{Search}}$ machines of levels n - 1 and n + 1.

Given a computation stripe of level n, each symbol is given an address, and this address is compatible with addresses of levels n - 1 and n + 1.

The address of \blacksquare is 231 and the address of \blacksquare is 020.

Effective as PS of sofic

From d + 2 to d + 1

Communication between $\mathcal{M}_{\text{Search}}$ of different levels

With a new alphabet \mathcal{G}_2 , we construct *communication channels*

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Effective	subshifts	and	PS
000000			

Effective as PS of sofic

From d + 2 to d + 1

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

Communication between $\mathcal{M}_{\texttt{Search}}$ of different levels

Communication channels are such that

- every tile \square or \square is in the center of a rectangle of level *n*;
- every rectangle of level n is connected to the \boxdot and \bowtie of two stripes of level n-1

Effective as PS of sofic

From d + 2 to d + 1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

$\mathcal{M}_{\texttt{Search}}$ works !

The machines $\mathcal{M}_{\text{Search}}$ work as we expect:

- \bullet every $\mathcal{M}_{\tt Search}$ has enough space to code addresses
- \bullet every $\mathcal{M}_{\texttt{Search}}$ has enough time to perform calculations (exponential clock)

Effective as PS of sofic

From d + 2 to d + 1

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x\in\Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\tt Search}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

Effective as PS of sofic

From d + 2 to d + 1

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

A four layers construction

How to realize an effective 1D-subshift $\Sigma\subset \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ as PS of a 2D sofic subshift ?

- SFT made of four layers
 - first layer: configuration $x \in \mathcal{A}_{\Sigma}^{\mathbb{Z}}$ that will be checked
 - second layer: hierarchical structure: computation zones for TM
 - third layer: TM \mathcal{M}_F that enumerates forbidden patterns of Σ and checks if $x \in \Sigma$
 - $\bullet\,$ fourth layer: TM $\mathcal{M}_{\tt Search}$ that helps the TM \mathcal{M}_{F} to scan entirely x
- all layers but the first are finally erased with a letter-to-letter block map

$x\in\Sigma$
$x \in \Sigma$

Effective as PS of sofic

From d + 2 to d + 1

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Some applications

- Characterization of possible entropies of 2D SFT [Hochman & Meyerovitch, 2010]
- Multidimensional effective S-adic subshifts are sofic [A. & Sablik, submitted]
- There exists a sofic subshift whose quasi-periodic configurations have a non-recursively bounded periodicity function [Ballier & Jeandel, 2010]
- A computable planar tiling admits local rules [Fernique & Sablik, 2012]

Effective as PS of sofic 0000

From d + 2 to d + 1

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Improvement, Limitation and Question

Is it possible to determinize the construction (deterministic SFT) ?
 →→ It should be... [Guillon & Zinoviadis, in progress]

 The construction is highly constrained, in the sense that the sofic subshift is constant along the vertical direction (⇒ zero entropy).
 → What are PS of mixing sofic subshifts/SFT ?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Conclusion

- 1D effective subshifts as PS of 2D sofic subshifts...
- ... but very constrained construction (zero entropy) !
- Another approach: impose that lines are in some subshift X_H , what subshift X_V can you get on the columns ?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Conclusion

- 1D effective subshifts as PS of 2D sofic subshifts...
- ... but very constrained construction (zero entropy) !
- Another approach: impose that lines are in some subshift X_H , what subshift X_V can you get on the columns ?

Thank you for your attention !