Eugene Asarin

Introduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Timed automata models, languages, dynamics

Eugene Asarin

LIAFA - University Paris Diderot and CNRS

PIMS/EQINOCS Workshop on Automata Theory and Symbolic Dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Context

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Timed automata

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Timed automata

- A model for verification of real-time systems
- Invented by Alur and Dill in early 1990s
- Precursors: time Petri nets (Bethomieu)
- Now: an efficient model for verification, supported by tools (UPPAAL)
- A popular researh topic (¿8000 citation for papers by Alur and Dill)
 - modeling and verification
 - decidability and algorithmics
 - automata and language theory
 - very recent: dynamics
- Inspired by TA: hybrid automata, data automata, automata on nominal sets

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

1 TA: the model Decidability

2 Timed language theory

③ Timed symbolic dynamics

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Before we begin: timed words and languages

 A word: u = abbabb represents a sequence of events in some Σ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Before we begin: timed words and languages

- A word: u = abbabb represents a sequence of events in some Σ.
- A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b represents a sequence of events and delays.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Before we begin: timed words and languages

- A word: u = abbabb represents a sequence of events in some Σ.
- A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b represents a sequence of events and delays.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• It lives in a timed monoid $\Sigma^* \oplus \mathbb{R}_+$,

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Before we begin: timed words and languages

- A word: u = abbabb represents a sequence of events in some Σ.
- A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b represents a sequence of events and delays.
- It lives in a timed monoid $\Sigma^* \oplus \mathbb{R}_+,$ but forget about it
- For us it sits in $(\mathbb{R}_+ \times \Sigma)^*$ (words on an infinite alphabet), that is w =

(0.8, a), (2.66, b), (1.5, b), (0, a), (3.14159, b), (2.71828, b).

▲日▼▲□▼▲□▼▲□▼ □ のので

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Before we begin: timed words and languages

- A word: u = abbabb represents a sequence of events in some Σ.
- A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b represents a sequence of events and delays.
- It lives in a timed monoid $\Sigma^* \oplus \mathbb{R}_+,$ but forget about it
- For us it sits in (R₊ × Σ)* (words on an infinite alphabet), that is w = (0.8, a), (2.66, b), (1.5, b), (0, a), (3.14159, b), (2.71828, b).
- Geometrically w is a point in several copies of \mathbb{R}^n :

 $w = (0.8, 2.66, 1.5, 0, 3.14159, 2.71828) \in \mathbb{R}^{6}_{abbabb}$

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Before we begin: timed words and languages

- A word: u = abbabb represents a sequence of events in some Σ.
- A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b represents a sequence of events and delays.
- It lives in a timed monoid $\Sigma^* \oplus \mathbb{R}_+,$ but forget about it
- For us it sits in (R₊ × Σ)* (words on an infinite alphabet), that is w = (0.8, a), (2.66, b), (1.5, b), (0, a), (3.14159, b), (2.71828, b).
- Geometrically w is a point in several copies of \mathbb{R}^n :

 $w = (0.8, 2.66, 1.5, 0, 3.14159, 2.71828) \in \mathbb{R}^{6}_{abbabb}$

• A timed language is a set of timed words - examples below.

▲日▼▲□▼▲□▼▲□▼ □ のので

What are TA

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Timed

Eugene Asarin

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Recipe: how to make a timed automaton

- take a finite automaton
- put it into continuous time
- add some variables x_1, \ldots, x_n , called clocks.
- make all them run: $\dot{x}_i = 1$ everywhere.
- add guards to some transitions (e.g. $x_3 < 7$)
- add resets to some transitions (e.g. $x_2 := 0$)
- serve and enjoy!

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

An example of a timed automaton • Timed automaton (we forget to write $\dot{x} = 1$):

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

An example of a timed automaton

• Timed automaton (we forget to write $\dot{x} = 1$):

Its run

 $(q_1,0) \stackrel{1.83}{
ightarrow} (q_1,1.83) \stackrel{a}{
ightarrow} (q_2,1.83) \stackrel{4.1}{
ightarrow} (q_2,5.93) \stackrel{b}{
ightarrow} (q_1,0) \stackrel{1}{
ightarrow} (q_1,1) \stackrel{a}{
ightarrow}$

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

An example of a timed automaton

• Timed automaton (we forget to write $\dot{x} = 1$):

Its run

 $(q_1,0) \stackrel{1.83}{
ightarrow} (q_1,1.83) \stackrel{a}{
ightarrow} (q_2,1.83) \stackrel{4.1}{
ightarrow} (q_2,5.93) \stackrel{b}{
ightarrow} (q_1,0) \stackrel{1}{
ightarrow} (q_1,1) \stackrel{a}{
ightarrow}$

• Its trace 1.83 a 4.1 b 1 a a timed word

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

An example of a timed automaton

• Timed automaton (we forget to write $\dot{x} = 1$):

Its run

 $(q_1,0) \stackrel{1.83}{
ightarrow} (q_1,1.83) \stackrel{a}{
ightarrow} (q_2,1.83) \stackrel{4.1}{
ightarrow} (q_2,5.93) \stackrel{b}{
ightarrow} (q_1,0) \stackrel{1}{
ightarrow} (q_1,1) \stackrel{a}{
ightarrow}$

- Its trace 1.83 a 4.1 b 1 a a timed word
- Its *timed language*: set of all the traces starting in *q*₁, ending in *q*₂:

$$\{t_1 \ a \ s_1 \ b \ t_2 \ a \ s_2 \ b \dots \ t_n \ a \ | \ \forall i.t_i \in [1;2]\}$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

An example of a timed automaton

• Timed automaton (we forget to write $\dot{x} = 1$):

Its run

 $(q_1,0) \stackrel{1.83}{
ightarrow} (q_1,1.83) \stackrel{a}{
ightarrow} (q_2,1.83) \stackrel{4.1}{
ightarrow} (q_2,5.93) \stackrel{b}{
ightarrow} (q_1,0) \stackrel{1}{
ightarrow} (q_1,1) \stackrel{a}{
ightarrow}$

- Its trace 1.83 a 4.1 b 1 a a timed word
- Its *timed language*: set of all the traces starting in *q*₁, ending in *q*₂:

$$\{t_1 \, a \, s_1 \, b \, t_2 \, a \, s_2 \, b \dots t_n \, a \mid \forall i.t_i \in [1;2]\}$$

Observation

Clock value of x: time since the last reset of x. $(x, y) \in (x, y)$

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Some simple exercises

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Draw timed automata for specifications:

• Request *a* arrives every 5 minutes.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Some simple exercises

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

- Request *a* arrives every 5 minutes.
- Request *a* arrives every 5 to 7 minutes.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Some simple exercises

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Request *a* arrives every 5 minutes.
- Request a arrives every 5 to 7 minutes.
- *a* arrives every 5 to 7 minutes; and *b* arrives every 3 to 10 minutes.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Some simple exercises

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Request *a* arrives every 5 minutes.
- Request *a* arrives every 5 to 7 minutes.
- *a* arrives every 5 to 7 minutes; and *b* arrives every 3 to 10 minutes.
- Request *a* is serviced within 2 minutes by *c* or rejected within 1 minute by *r*.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Some simple exercises

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Request *a* arrives every 5 minutes.
- Request *a* arrives every 5 to 7 minutes.
- *a* arrives every 5 to 7 minutes; and *b* arrives every 3 to 10 minutes.
- Request *a* is serviced within 2 minutes by *c* or rejected within 1 minute by *r*.
- The same, but a arrives every 5 to 7 minutes.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Scheduling

Schedule two jobs on one CPU and one printer with a total execution time up to 16 minutes.

- Job 1 : Compute (10 min); Print (5 min)
- Job 2 : Download (3 min); Compute (1 min); Print (2 min)

Try it :

without preemption;

2 with preemptible computing.

Modeling exercise 2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Main theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

TA: the model

Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Theorem (Alur, Dill)

Reachability is decidable for timed automata.

Eugene Asarin

Introduction

TA: the model

Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Theorem (Alur, Dill)

Reachability is decidable for timed automata.

Classical formulation

Empty language problem is decidable for TA

Main theorem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Main theorem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Timed automata

TA: the model

Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Theorem (Alur, Dill)

Reachability is decidable for timed automata.

Classical formulation

Empty language problem is decidable for TA

Both are the same Non-empty language ⇔ Reach(Init,Fin)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Eugene Asarin

Timed automata

TA: the model

Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

• Split the state space $Q \times \mathbb{R}^n$ into regions s.t.

- all the states in one region have the same behavior;
- there are finitely many regions;

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Timed automata

Eugene Asarin

TA: the model

- Decidability
- Timed language theory
- Timed symbolic dynamics
- Conclusions

• Split the state space $Q imes \mathbb{R}^n$ into regions s.t.

- all the states in one region have the same behavior;
- there are finitely many regions;
- Build a region automaton (its states are regions)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Timed automata

TA: the model

- Decidability
- Timed language theory
- Timed symbolic dynamics
- Conclusions

• Split the state space $Q imes \mathbb{R}^n$ into regions s.t.

- all the states in one region have the same behavior;
- there are finitely many regions;
- Build a finite region automaton (its states are regions)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Timed automata

TA: the model

Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

- Split the state space $Q \times \mathbb{R}^n$ into regions s.t.
 - all the states in one region have the same behavior;
 - there are finitely many regions;
- Build a finite region automaton (its states are regions)
- Test reachability in this region automaton.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Timed automata

Eugene Asarin

TA: the model

Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

• Split the state space $Q \times \mathbb{R}^n$ into regions s.t.

- all the states in one region have the same behavior;
- there are finitely many regions;
- Build a finite region automaton (its states are regions)
- Test reachability in this region automaton.

Two difficulties

- What does it mean: the same behavior?
- How to invent it?

Introduction

Timed automata

Eugene Asarin

TA: the model

Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

• Split the state space $Q \times \mathbb{R}^n$ into regions s.t.

- all the states in one region have the same behavior;
- there are finitely many regions;
- Build a finite region automaton (its states are regions)
- Test reachability in this region automaton.

Two difficulties

- What does it mean: the same behavior? Bisimulation.
- How to invent it? A&D invented it using ideas of Berthomieu (Time Petri nets). In fact it is rather natural.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Region equivalence

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Two states of a TA are region equivalent: $(q, \mathbf{x}) \approx (p, \mathbf{y})$ if

- Same location: p = q
- Same integer parts of clocks: $\forall i (\lfloor x_i \rfloor = \lfloor y_i \rfloor)$
- Same order of fractional parts of clocks $\forall i, j (\{x_i\} < \{x_i\} \Leftrightarrow \{y_i\} < \{y_i\})$

Look at the picture!

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Region equivalence

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Two states of a TA are region equivalent: $(q, \mathbf{x}) \approx (p, \mathbf{y})$ if

- Same location: p = q
- Same integer parts of clocks: $\forall i (\lfloor x_i \rfloor = \lfloor y_i \rfloor)$
- Same order of fractional parts of clocks $\forall i, j (\{x_i\} < \{x_i\} \Leftrightarrow \{y_i\} < \{y_i\})$

Look at the picture!

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Region equivalence

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Two states of a TA are region equivalent: $(q, \mathbf{x}) \approx (p, \mathbf{y})$ if

- Same location: p = q
- Same integer parts of clocks: \forall small $i(\lfloor x_i \rfloor = \lfloor y_i \rfloor)$
- Same order of fractional parts of clocks $\forall \text{small}i, j(\{x_i\} < \{x_j\} \Leftrightarrow \{y_i\} < \{y_j\})$
- Or they are both big : $\forall i ((x_i > M) \Leftrightarrow (y_i > M))$

Look at the picture!

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Region equivalence

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Two states of a TA are region equivalent: $(q, \mathbf{x}) \approx (p, \mathbf{y})$ if

- Same location: p = q
- Same integer parts of clocks: \forall small $i(\lfloor x_i \rfloor = \lfloor y_i \rfloor)$
- Same order of fractional parts of clocks $\forall \text{small}i, j(\{x_i\} < \{x_j\} \Leftrightarrow \{y_i\} < \{y_j\})$
- Or they are both big : $\forall i ((x_i > M) \Leftrightarrow (y_i > M))$

Look at the picture!

Definition

Equivalence classes of \approx are called regions.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Region equivalence

Definition

Two states of a TA are region equivalent: $(q, \mathbf{x}) \approx (p, \mathbf{y})$ if

- Same location: p = q
- Same integer parts of clocks: \forall small $i(\lfloor x_i \rfloor = \lfloor y_i \rfloor)$
- Same order of fractional parts of clocks $\forall \text{small}i, j(\{x_i\} < \{x_j\} \Leftrightarrow \{y_i\} < \{y_j\})$
- Or they are both big : $\forall i ((x_i > M) \Leftrightarrow (y_i > M))$

Look at the picture!

Definition

Equivalence classes of \approx are called regions.

Lemma (Region equivalence is a bisimulation)

Equivalent states can make the same transitions, and arrive to equivalent states.

Eugene Asarin

Introduction

TA: the model

Decidability

- Timed language theory
- Timed symbolic dynamics
- Conclusions

Decision algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Build a region automaton RA
 - States are regions.
 - There is a transition $r_1 \xrightarrow{a} r_2$ if some (all) element of r_1 can go to some element of r_2 on a.
 - There is a transition $r_1 \xrightarrow{\tau} r_2$ if some (all) element of r_1 can go to some element of r_2 on some t > 0

Eugene Asarin

Introduction

TA: the model

Decidability

- Timed language theory
- Timed symbolic dynamics
- Conclusions

Decision algorithm

▲日▼▲□▼▲□▼▲□▼ □ のので

- Build a region automaton RA
 - States are regions.
 - There is a transition $r_1 \xrightarrow{a} r_2$ if some (all) element of r_1 can go to some element of r_2 on a.
 - There is a transition $r_1 \xrightarrow{\tau} r_2$ if some (all) element of r_1 can go to some element of r_2 on some t > 0
- Check whether some final region in RA is reachable from initial region.

Eugene Asarin

Introduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

1 TA: the model Decidability

2 Timed language theory

3 Timed symbolic dynamics

4 Conclusions

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Closure properties

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Definition

Timed regular language is a language accepted by a TA

Eugene Asarin

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Closure properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language is a language accepted by a TA

Theorem

Timed regular languages are closed under \cap, \cup , projection, but not complementation.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Closure properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language is a language accepted by a TA

Theorem

Timed regular languages are closed under \cap, \cup , projection, but not complementation.

Fact

Determinization impossible for timed automata.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Decidability properties

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Definition

Timed regular language (TRL) is a language accepted by a TA

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Decidability properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language (TRL) is a language accepted by a TA

Theorem Decidable for TRL (represented by TA): $L = \emptyset$, $w \in L$, $L \cap M = \emptyset$.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Decidability properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language (TRL) is a language accepted by a TA

Theorem

Decidable for TRL (represented by TA): $L = \emptyset$, $w \in L$, $L \cap M = \emptyset$.

Proof.

Immediate from Alur&Dill's theorem.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Decidability properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language (TRL) is a language accepted by a TA

Theorem Decidable for TRL (represented by TA): $L = \emptyset$, $w \in L$, $L \cap M = \emptyset$.

Theorem

Undecidable for TRL (represented by TA): L universal (contains all the timed words), $L \subset M$, L = M.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Decidability properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language (TRL) is a language accepted by a TA

Theorem Decidable for TRL (represented by TA): $L = \emptyset$, $w \in L$, $L \cap M = \emptyset$.

Theorem

Undecidable for TRL (represented by TA): L universal (contains all the timed words), $L \subset M$, L = M.

Proof.

Encoding of runs of Minsky Machine as a timed languages.

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Reminder: regular expressions

Definition

Regular expressions: $E ::= 0 | \varepsilon | a | E + E | E \cdot E | E^*$

Theorem (Kleene)

Finite automata and regular expression define the same class of languages.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Reminder: regular expressions

Definition

Regular expressions: $E ::= 0 | \varepsilon | a | E + E | E \cdot E | E^*$

Theorem (Kleene)

Finite automata and regular expression define the same class of languages.

Example

 $((a+b)a)^*(a+b)b$

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Timed regular expressions

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

A natural question

How to define regular expressions for timed languages?

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Timed regular expressions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A natural question

How to define regular expressions for timed languages?

$E ::= 0 | \varepsilon | \underline{\mathbf{t}} | a | E + E | E \cdot E | E^* | \langle E \rangle_I | E \wedge E | [a \mapsto z]E$

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Timed regular expressions

A natural question

How to define regular expressions for timed languages?

$$E ::= 0 | \varepsilon | \underline{\mathbf{t}} | a | E + E | E \cdot E | E^* | \langle E \rangle_I | E \wedge E | [a \mapsto z]E$$

Semantics:

$$\begin{split} \|\underline{\mathbf{t}}\| &= \mathbb{R}_{\geq 0} \quad \|a\| = \{a\} \\ \|E_1 \cdot E_2\| &= \|E_1\| \cdot \|E_2\| \\ \|\langle E\rangle\|_I &= \{\sigma \in \|E\| \mid \ell(\sigma) \in I\} \\ \|E_1 \wedge E_2\| &= \|E_1\| \cap \|E_2\| \\ \|E_1 \wedge E_2\| &= \|E_1\| \cap \|E_2\| \\ \|E_1 \mapsto Z]E\| &= [a \mapsto Z]\|E\| \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

A good example and a theorem

$$\{L = \{t_1 \ a \ s_1 \ b \ t_2 \ a \ s_2 \ b \dots t_n \ a \ | \ \forall i.t_i \in [1;2]\}$$

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

A

A good example and a theorem

$$\{L = \{t_1 \ a \ s_1 \ b \ t_2 \ a \ s_2 \ b \dots t_n \ a \ | \ \forall i.t_i \in [1;2]\}$$

An expression for L : $(\langle \underline{t}a \rangle_{[1;2]} \underline{t}b)^*$
Theorem (A., Caspi, Maler,95)
Timed Automata and Timed regular expressions (with \land and

 $[a \mapsto z]$) define the same class of timed languages

Eugene Asarin

A nasty example

・ロト ・ 一下・ ・ ヨト

ъ

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Intersection needed [ACM]

 $\{t_1 a t_2 b t_3 c \mid t_1 + t_2 = 1, t_2 + t_3 = 1\} = \underline{\mathbf{t}} a \langle \underline{\mathbf{t}} b \underline{\mathbf{t}} c \rangle_1 \wedge \langle \underline{\mathbf{t}} a \underline{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} c$

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Another nasty example

Renaming needed [Herrmann]

 $[b \mapsto a]((\underline{\mathbf{t}}a)^* \langle \underline{\mathbf{t}}b(\underline{\mathbf{t}}a)^* \rangle_1 \wedge \langle (\underline{\mathbf{t}}a)^* \underline{\mathbf{t}}b \rangle_1 (\underline{\mathbf{t}}a)^*).$

Eugene Asarin

Introduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

1 TA: the model Decidability

2 Timed language theory

3 Timed symbolic dynamics

4 Conclusions

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Preliminary considerations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Aim: describe timed regular languages as dynamical systems
- Solution: from Nicolas Basset's MSc thesis (2010)
- Limitations: deterministic automata, bounded intervals between events

Shifts

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Timed automata

Eugene Asarin

ntroduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Full timed shift

- Fix Σ an alphabet and $M \in \mathbb{R}$.
- Let C = Σ × [0; M] a compact set (with a natural metrics).
- S = C^ℤ: set of bi-infinite timed words (with a natural metrics). E.g. ... t₋₁a₋₁t₀a₀t₁a₁t₂...
- Shift $\sigma: S \to S$ E.g. $\sigma(\{c_n\}) = \{c_{n+1}\}.$

Shifts

Timed automata

Eugene Asarin

ntroduction

- TA: the mode Decidability
- Timed language theory
- Timed symbolic dynamics
- Conclusions

Full timed shift

- Fix Σ an alphabet and $M \in \mathbb{R}$.
- Let C = Σ × [0; M] a compact set (with a natural metrics).
- S = C^ℤ: set of bi-infinite timed words (with a natural metrics). E.g. ... t₋₁a₋₁t₀a₀t₁a₁t₂...
- Shift $\sigma: S \to S$ E.g. $\sigma(\{c_n\}) = \{c_{n+1}\}.$

The simplest example: studied by Weiss and Lindenstrauss!

•
$$\Sigma = \{a\}; M = 1; C \cong [0; 1]$$

• $S = [0; 1]^{\mathbb{Z}} = \{t_{-1}, t_0, t_1, \dots\}$

Eugene Asarin

Introduction

- TA: the model Decidability
- Timed language theory
- Timed symbolic dynamics
- Conclusions

Timed subshifts

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

A subshift $X \subset S$ with X closed and σ -invariant.

Two standard ways to define subshifts

- by an open set of forbidden patterns;
- by a closed set of allowed patterns for some lengths.

A timed automaton

- which is deterministic, w/o initial final states;
- with closed guards;
- corresponds to a timed subshift;
- we call it sofic!

Eugene Asarin

Introduction

TA: the model Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Timed dynamics – an example

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

exercice

Compute forbidden patterns.

Eugene Asarin

Introduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

What about entropy?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

We try to compute it for $[0; 1]^{\mathbb{Z}}$

- Define $C(n, \epsilon)$: size of ϵ -net in $[0; 1]^n$.
- Compute it: $C(n, \epsilon) = (1/\epsilon)^n$.

Eugene Asarin

Introduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

What about entropy?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We try to compute it for $[0; 1]^{\mathbb{Z}}$

- Define $C(n, \epsilon)$: size of ϵ -net in $[0; 1]^n$.
- Compute it: $C(n, \epsilon) = (1/\epsilon)^n$.
- Growth rate of C:

$$h_{\epsilon} = \lim_{n} \frac{\log C(n, \epsilon)}{n} = \log \frac{1}{\epsilon}.$$

• Entropy $h = \lim_{\epsilon \to 0} h_{\epsilon} =$

Eugene Asarin

Introduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

What about entropy?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We try to compute it for $[0; 1]^{\mathbb{Z}}$

- Define $C(n, \epsilon)$: size of ϵ -net in $[0; 1]^n$.
- Compute it: $C(n, \epsilon) = (1/\epsilon)^n$.
- Growth rate of C:

$$h_{\epsilon} = \lim_{n} \frac{\log C(n, \epsilon)}{n} = \log \frac{1}{\epsilon}.$$

• Entropy $h = \lim_{\epsilon \to 0} h_{\epsilon} = \infty$

Eugene Asarin

Introduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

What about entropy?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We try to compute it for $[0; 1]^{\mathbb{Z}}$

- Define $C(n, \epsilon)$: size of ϵ -net in $[0; 1]^n$.
- Compute it: $C(n, \epsilon) = (1/\epsilon)^n$.
- Growth rate of C:

$$h_{\epsilon} = \lim_{n} \frac{\log C(n, \epsilon)}{n} = \log \frac{1}{\epsilon}.$$

• Entropy $h = \lim_{\epsilon \to 0} h_{\epsilon} = \infty$

The same is true for almost all reasonable timed subshifts.

Eugene Asarin

ntroduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Entropy renormalized

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We still try!

Given a timed subshift L

- Define L_n -set of timed words of length n (btw $L_n \subset \mathbb{R}^n \times \Sigma^n$)
- Define $C(n, \epsilon)$: size of ϵ -net in L_n .
- Compute it: $C(n,\epsilon) = (1/\epsilon)^n \operatorname{Vol}(L_n)$.

Eugene Asarin

ntroduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Entropy renormalized

We still try!

Given a timed subshift L

- Define L_n -set of timed words of length n (btw $L_n \subset \mathbb{R}^n \times \Sigma^n$)
- Define $C(n, \epsilon)$: size of ϵ -net in L_n .
- Compute it: $C(n,\epsilon) = (1/\epsilon)^n \operatorname{Vol}(L_n)$.
- Growth rate of C:

$$h_{\epsilon} = \lim_{n} \frac{\log C(n,\epsilon)}{n} = \log \frac{1}{\epsilon} + \lim_{n} \frac{\log \operatorname{Vol}(L_{n})}{n}$$

• We call the last term volumic entropy:

$$H(L) = \lim_{n} \frac{\log \operatorname{Vol}(L_n)}{n}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Introduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

Entropy renormalized

We still try!

Given a timed subshift L

- Define L_n -set of timed words of length n (btw $L_n \subset \mathbb{R}^n \times \Sigma^n$)
- Define $C(n, \epsilon)$: size of ϵ -net in L_n .
- Compute it: $C(n,\epsilon) = (1/\epsilon)^n \operatorname{Vol}(L_n)$.
- Growth rate of C:

$$h_{\epsilon} = \lim_{n} \frac{\log C(n,\epsilon)}{n} = \log \frac{1}{\epsilon} + \lim_{n} \frac{\log \operatorname{Vol}(L_{n})}{n}$$

• We call the last term volumic entropy:

$$H(L) = \lim_{n} \frac{\log \operatorname{Vol}(L_n)}{n}$$

Information production in a timed subshift $\rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle$

Eugene Asarin

Introduction

TA: the mode Decidability

Timed language theory

Timed symbolic dynamics

Conclusions

1 TA: the model Decidability

2 Timed language theory

③ Timed symbolic dynamics

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

It was in this talk

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Timed automata

Eugene Asarin

TA: the model Decidability

- Timed language theory
- Timed symbolic dynamics

Conclusions

- Timed automata: a beautiful variant of automat coming from practice
- Infinite-state, but many questions decidable
- A non-trivial theory of languages
- Symbolic dynamics can be defined, many thing remain to study
- ... in particular the flow

Advertisement

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Timed automata

Eugene Asarin

TA: the model Decidability

- Timed language theory
- Timed symbolic dynamics
- Conclusions

- Next talk (Aldric): how to characterize and compute the volumes and the volumic entropy.
- After that (Nicolas): MME for timed automata
- Merci EQINOCS, more results will follow