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Context

Timed automata

• A model for verification of real-time systems

• Invented by Alur and Dill in early 1990s

• Precursors: time Petri nets (Bethomieu)

• Now: an efficient model for verification, supported by
tools (Uppaal)

• A popular researh topic (¿8000 citation for papers by Alur
and Dill)

• modeling and verification
• decidability and algorithmics
• automata and language theory
• very recent: dynamics

• Inspired by TA: hybrid automata, data automata,
automata on nominal sets
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Before we begin: timed words and

languages

• A word: u = abbabb represents a sequence of events in
some Σ.



Timed
automata

Eugene Asarin

Introduction

TA: the model

Decidability

Timed
language
theory

Timed
symbolic
dynamics

Conclusions

Before we begin: timed words and

languages

• A word: u = abbabb represents a sequence of events in
some Σ.

• A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b
represents a sequence of events and delays.
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Before we begin: timed words and

languages

• A word: u = abbabb represents a sequence of events in
some Σ.

• A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b
represents a sequence of events and delays.

• It lives in a timed monoid Σ∗ ⊕ R+,
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Before we begin: timed words and

languages

• A word: u = abbabb represents a sequence of events in
some Σ.

• A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b
represents a sequence of events and delays.

• It lives in a timed monoid Σ∗ ⊕ R+,but forget about it

• For us it sits in (R+ ×Σ)∗ (words on an infinite alphabet),
that is w =
(0.8, a), (2.66, b), (1.5, b), (0, a), (3.14159, b), (2.71828, b).
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Before we begin: timed words and

languages

• A word: u = abbabb represents a sequence of events in
some Σ.

• A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b
represents a sequence of events and delays.

• It lives in a timed monoid Σ∗ ⊕ R+,but forget about it

• For us it sits in (R+ ×Σ)∗ (words on an infinite alphabet),
that is w =
(0.8, a), (2.66, b), (1.5, b), (0, a), (3.14159, b), (2.71828, b).

• Geometrically w is a point in several copies of Rn:

w = (0.8, 2.66, 1.5, 0, 3.14159, 2.71828) ∈ R
6
abbabb
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Before we begin: timed words and

languages

• A word: u = abbabb represents a sequence of events in
some Σ.

• A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b
represents a sequence of events and delays.

• It lives in a timed monoid Σ∗ ⊕ R+,but forget about it

• For us it sits in (R+ ×Σ)∗ (words on an infinite alphabet),
that is w =
(0.8, a), (2.66, b), (1.5, b), (0, a), (3.14159, b), (2.71828, b).

• Geometrically w is a point in several copies of Rn:

w = (0.8, 2.66, 1.5, 0, 3.14159, 2.71828) ∈ R
6
abbabb

• A timed language is a set of timed words - examples below.
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What are TA

Recipe: how to make a timed automaton

• take a finite automaton

• put it into continuous time

• add some variables x1, . . . , xn, called clocks.

• make all them run: ẋi = 1 everywhere.

• add guards to some transitions (e.g. x3 < 7)

• add resets to some transitions (e.g. x2 := 0)

• serve and enjoy!
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An example of a timed automaton

• Timed automaton (we forget to write ẋ = 1):

q1 q2

a, x ∈ [1; 2]?

b, x := 0
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An example of a timed automaton

• Timed automaton (we forget to write ẋ = 1):

q1 q2

a, x ∈ [1; 2]?

b, x := 0

• Its run

(q1, 0)
1.83
→ (q1, 1.83)

a
→ (q2, 1.83)

4.1
→ (q2, 5.93)

b
→ (q1, 0)

1
→ (q1, 1) →
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An example of a timed automaton

• Timed automaton (we forget to write ẋ = 1):

q1 q2

a, x ∈ [1; 2]?

b, x := 0

• Its run

(q1, 0)
1.83
→ (q1, 1.83)

a
→ (q2, 1.83)

4.1
→ (q2, 5.93)

b
→ (q1, 0)

1
→ (q1, 1) →

• Its trace 1.83 a 4.1 b 1 a a timed word
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An example of a timed automaton

• Timed automaton (we forget to write ẋ = 1):

q1 q2

a, x ∈ [1; 2]?

b, x := 0

• Its run

(q1, 0)
1.83
→ (q1, 1.83)

a
→ (q2, 1.83)

4.1
→ (q2, 5.93)

b
→ (q1, 0)

1
→ (q1, 1) →

• Its trace 1.83 a 4.1 b 1 a a timed word

• Its timed language: set of all the traces starting in q1,
ending in q2:

{t1 a s1 b t2 a s2 b . . . tn a | ∀i .ti ∈ [1; 2]}
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An example of a timed automaton

• Timed automaton (we forget to write ẋ = 1):

q1 q2

a, x ∈ [1; 2]?

b, x := 0

• Its run

(q1, 0)
1.83
→ (q1, 1.83)

a
→ (q2, 1.83)

4.1
→ (q2, 5.93)

b
→ (q1, 0)

1
→ (q1, 1) →

• Its trace 1.83 a 4.1 b 1 a a timed word

• Its timed language: set of all the traces starting in q1,
ending in q2:

{t1 a s1 b t2 a s2 b . . . tn a | ∀i .ti ∈ [1; 2]}

Observation
Clock value of x : time since the last reset of x .
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Some simple exercises

Draw timed automata for specifications:

• Request a arrives every 5 minutes.
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Some simple exercises

Draw timed automata for specifications:

• Request a arrives every 5 minutes.

• Request a arrives every 5 to 7 minutes.
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Some simple exercises

Draw timed automata for specifications:

• Request a arrives every 5 minutes.

• Request a arrives every 5 to 7 minutes.

• a arrives every 5 to 7 minutes; and b arrives every 3 to 10
minutes.
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Some simple exercises

Draw timed automata for specifications:

• Request a arrives every 5 minutes.

• Request a arrives every 5 to 7 minutes.

• a arrives every 5 to 7 minutes; and b arrives every 3 to 10
minutes.

• Request a is serviced within 2 minutes by c or rejected
within 1 minute by r .
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Some simple exercises

Draw timed automata for specifications:

• Request a arrives every 5 minutes.

• Request a arrives every 5 to 7 minutes.

• a arrives every 5 to 7 minutes; and b arrives every 3 to 10
minutes.

• Request a is serviced within 2 minutes by c or rejected
within 1 minute by r .

• The same, but a arrives every 5 to 7 minutes.
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Modeling exercise 2

Scheduling

Schedule two jobs on one CPU and one printer with a total
execution time up to 16 minutes.

• Job 1 : Compute (10 min); Print (5 min)

• Job 2 : Download (3 min); Compute (1 min); Print (2
min)

Try it :

1 without preemption;

2 with preemptible computing.
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Main theorem

Theorem (Alur, Dill)

Reachability is decidable for timed automata.
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Main theorem

Theorem (Alur, Dill)

Reachability is decidable for timed automata.

Classical formulation
Empty language problem is decidable for TA
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Main theorem

Theorem (Alur, Dill)

Reachability is decidable for timed automata.

Classical formulation
Empty language problem is decidable for TA

Both are the same
Non-empty language ⇔ Reach(Init,Fin)
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Proof idea

• Split the state space Q ×R
n into regions s.t.

• all the states in one region have the same behavior;
• there are finitely many regions;
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Proof idea

• Split the state space Q ×R
n into regions s.t.

• all the states in one region have the same behavior;
• there are finitely many regions;

• Build a region automaton (its states are regions)
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Proof idea

• Split the state space Q ×R
n into regions s.t.

• all the states in one region have the same behavior;
• there are finitely many regions;

• Build a finite region automaton (its states are regions)
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Proof idea

• Split the state space Q ×R
n into regions s.t.

• all the states in one region have the same behavior;
• there are finitely many regions;

• Build a finite region automaton (its states are regions)

• Test reachability in this region automaton.
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Proof idea

• Split the state space Q ×R
n into regions s.t.

• all the states in one region have the same behavior;
• there are finitely many regions;

• Build a finite region automaton (its states are regions)

• Test reachability in this region automaton.

Two difficulties

• What does it mean: the same behavior?

• How to invent it?
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Proof idea

• Split the state space Q ×R
n into regions s.t.

• all the states in one region have the same behavior;
• there are finitely many regions;

• Build a finite region automaton (its states are regions)

• Test reachability in this region automaton.

Two difficulties

• What does it mean: the same behavior? Bisimulation.

• How to invent it? A&D invented it using ideas of
Berthomieu (Time Petri nets). In fact it is rather natural.
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Region equivalence

Definition
Two states of a TA are region equivalent: (q, x) ≈ (p, y) if

• Same location: p = q

• Same integer parts of clocks: ∀i (⌊xi⌋ = ⌊yi⌋)

• Same order of fractional parts of clocks
∀i , j ({xi} < {xj} ⇔ {yi} < {yj})

Look at the picture!
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Region equivalence

Definition
Two states of a TA are region equivalent: (q, x) ≈ (p, y) if

• Same location: p = q

• Same integer parts of clocks: ∀i (⌊xi⌋ = ⌊yi⌋)

• Same order of fractional parts of clocks
∀i , j ({xi} < {xj} ⇔ {yi} < {yj})

Look at the picture!
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Region equivalence

Definition
Two states of a TA are region equivalent: (q, x) ≈ (p, y) if

• Same location: p = q

• Same integer parts of clocks: ∀smalli (⌊xi⌋ = ⌊yi⌋)

• Same order of fractional parts of clocks
∀smalli , j ({xi} < {xj} ⇔ {yi} < {yj})

• Or they are both big : ∀i ((xi > M) ⇔ (yi > M))

Look at the picture!
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Region equivalence

Definition
Two states of a TA are region equivalent: (q, x) ≈ (p, y) if

• Same location: p = q

• Same integer parts of clocks: ∀smalli (⌊xi⌋ = ⌊yi⌋)

• Same order of fractional parts of clocks
∀smalli , j ({xi} < {xj} ⇔ {yi} < {yj})

• Or they are both big : ∀i ((xi > M) ⇔ (yi > M))

Look at the picture!

Definition
Equivalence classes of ≈ are called regions.
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Region equivalence

Definition
Two states of a TA are region equivalent: (q, x) ≈ (p, y) if

• Same location: p = q

• Same integer parts of clocks: ∀smalli (⌊xi⌋ = ⌊yi⌋)

• Same order of fractional parts of clocks
∀smalli , j ({xi} < {xj} ⇔ {yi} < {yj})

• Or they are both big : ∀i ((xi > M) ⇔ (yi > M))

Look at the picture!

Definition
Equivalence classes of ≈ are called regions.

Lemma (Region equivalence is a bisimulation)

Equivalent states can make the same transitions, and arrive to
equivalent states.
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Decision algorithm

• Build a region automaton RA
• States are regions.
• There is a transition r1

a
→ r2 if some (all) element of r1 can

go to some element of r2 on a.
• There is a transition r1

τ

→ r2 if some (all) element of r1 can
go to some element of r2 on some t > 0
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Decision algorithm

• Build a region automaton RA
• States are regions.
• There is a transition r1

a
→ r2 if some (all) element of r1 can

go to some element of r2 on a.
• There is a transition r1

τ

→ r2 if some (all) element of r1 can
go to some element of r2 on some t > 0

• Check whether some final region in RA is reachable from
initial region.
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Closure properties

Definition
Timed regular language is a language accepted by a TA



Timed
automata

Eugene Asarin

Introduction

TA: the model

Decidability

Timed
language
theory

Timed
symbolic
dynamics

Conclusions

Closure properties

Definition
Timed regular language is a language accepted by a TA

Theorem
Timed regular languages are closed under ∩,∪, projection, but
not complementation.
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Closure properties

Definition
Timed regular language is a language accepted by a TA

Theorem
Timed regular languages are closed under ∩,∪, projection, but
not complementation.

Fact
Determinization impossible for timed automata.
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Decidability properties

Definition
Timed regular language (TRL) is a language accepted by a TA
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Decidability properties

Definition
Timed regular language (TRL) is a language accepted by a TA

Theorem
Decidable for TRL (represented by TA): L = ∅, w ∈ L,
L ∩M = ∅.
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Decidability properties

Definition
Timed regular language (TRL) is a language accepted by a TA

Theorem
Decidable for TRL (represented by TA): L = ∅, w ∈ L,
L ∩M = ∅.

Proof.
Immediate from Alur&Dill’s theorem.
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Decidability properties

Definition
Timed regular language (TRL) is a language accepted by a TA

Theorem
Decidable for TRL (represented by TA): L = ∅, w ∈ L,
L ∩M = ∅.

Theorem
Undecidable for TRL (represented by TA): L universal (contains
all the timed words), L ⊂ M, L = M.
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Decidability properties

Definition
Timed regular language (TRL) is a language accepted by a TA

Theorem
Decidable for TRL (represented by TA): L = ∅, w ∈ L,
L ∩M = ∅.

Theorem
Undecidable for TRL (represented by TA): L universal (contains
all the timed words), L ⊂ M, L = M.

Proof.
Encoding of runs of Minsky Machine as a timed languages.
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Reminder: regular expressions

Definition
Regular expressions: E ::= 0 | ε | a | E + E | E · E | E ∗

Theorem (Kleene)

Finite automata and regular expression define the same class of
languages.
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Reminder: regular expressions

Definition
Regular expressions: E ::= 0 | ε | a | E + E | E · E | E ∗

Theorem (Kleene)

Finite automata and regular expression define the same class of
languages.

Example

q p r

a,b

a

b

((a + b)a)∗(a + b)b
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Timed regular expressions

A natural question

How to define regular expressions for timed languages?
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Timed regular expressions

A natural question

How to define regular expressions for timed languages?

E ::= 0 | ε | t | a | E + E | E · E | E ∗ | 〈E 〉I | E ∧ E | [a 7→ z ]E



Timed
automata

Eugene Asarin

Introduction

TA: the model

Decidability

Timed
language
theory

Timed
symbolic
dynamics

Conclusions

Timed regular expressions

A natural question

How to define regular expressions for timed languages?

E ::= 0 | ε | t | a | E + E | E · E | E ∗ | 〈E 〉I | E ∧ E | [a 7→ z ]E

Semantics:

‖t‖ = R≥0 ‖a‖ = {a} ‖0‖ = ∅ ‖ε‖ = {ε}

‖E1 · E2‖ = ‖E1‖ · ‖E2‖ ‖E1 + E2‖ = ‖E1‖ ∪ ‖E2‖

‖〈E 〉‖I = {σ ∈ ‖E‖ | ℓ(σ) ∈ I} ‖E ∗‖ = ‖E‖∗

‖E1 ∧ E2‖ = ‖E1‖ ∩ ‖E2‖ ‖[a 7→ z ]E‖ = [a 7→ z ]‖E‖
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A good example and a theorem

q1 q2

a, x ∈ [1; 2]?

b, x := 0

{L = {t1 a s1 b t2 a s2 b . . . tn a | ∀i .ti ∈ [1; 2]}
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A good example and a theorem

q1 q2

a, x ∈ [1; 2]?

b, x := 0

{L = {t1 a s1 b t2 a s2 b . . . tn a | ∀i .ti ∈ [1; 2]}

An expression for L :
(

〈ta〉[1;2]tb
)∗

Theorem (A., Caspi, Maler,95)

Timed Automata and Timed regular expressions (with ∧ and
[a 7→ z ]) define the same class of timed languages
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A nasty example

Intersection needed [ACM]

a
x2 := 0

b
x1 = 1?

c
x2 = 1?

{t1at2bt3c | t1 + t2 = 1, t2 + t3 = 1} = ta〈tbtc〉1 ∧ 〈tatb〉1tc
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Another nasty example

Renaming needed [Herrmann]

y := 0 x = 1? y = 1?

a

a a a

a

[b 7→ a]
(

(ta)∗〈tb(ta)∗〉1 ∧ 〈(ta)∗tb〉1(ta)
∗
)

.



Timed
automata

Eugene Asarin

Introduction

TA: the model

Decidability

Timed
language
theory

Timed
symbolic
dynamics

Conclusions

Outline

1 TA: the model
Decidability

2 Timed language theory

3 Timed symbolic dynamics

4 Conclusions
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Preliminary considerations

• Aim: describe timed regular languages as dynamical
systems

• Solution: from Nicolas Basset’s MSc thesis (2010)

• Limitations: deterministic automata, bounded intervals
between events
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Shifts

Full timed shift

• Fix Σ an alphabet and M ∈ R.

• Let C = Σ× [0;M] - a compact set (with a natural
metrics).

• S = CZ: set of bi-infinite timed words (with a natural
metrics). E.g. . . . t−1a−1t0a0t1a1t2 . . .

• Shift σ : S → S E.g. σ({cn}) = {cn+1}.
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Shifts

Full timed shift

• Fix Σ an alphabet and M ∈ R.

• Let C = Σ× [0;M] - a compact set (with a natural
metrics).

• S = CZ: set of bi-infinite timed words (with a natural
metrics). E.g. . . . t−1a−1t0a0t1a1t2 . . .

• Shift σ : S → S E.g. σ({cn}) = {cn+1}.

The simplest example: studied by Weiss and Lindenstrauss!

• Σ = {a};M = 1;C ∼= [0; 1]

• S = [0; 1]Z = {t−1, t0, t1, . . . }
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Timed subshifts

Definition
A subshift X ⊂ S with X closed and σ-invariant.

Two standard ways to define subshifts

• by an open set of forbidden patterns;

• by a closed set of allowed patterns for some lengths.

A timed automaton

• which is deterministic, w/o initial final states;

• with closed guards;

• corresponds to a timed subshift;

• we call it sofic!
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Timed dynamics – an example

p q

a, x ∈ [1; 2]?

b, x ∈ [5; 10], x := 0

exercice
Compute forbidden patterns.
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What about entropy?

We try to compute it for [0; 1]Z

• Define C (n, ǫ): size of ǫ-net in [0; 1]n .

• Compute it: C (n, ǫ) = (1/ǫ)n.



Timed
automata

Eugene Asarin

Introduction

TA: the model

Decidability

Timed
language
theory

Timed
symbolic
dynamics

Conclusions

What about entropy?

We try to compute it for [0; 1]Z

• Define C (n, ǫ): size of ǫ-net in [0; 1]n .

• Compute it: C (n, ǫ) = (1/ǫ)n.

• Growth rate of C :

hǫ = lim
n

logC (n, ǫ)

n
= log

1

ǫ
.

• Entropy h = limǫ→0 hǫ =
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What about entropy?

We try to compute it for [0; 1]Z

• Define C (n, ǫ): size of ǫ-net in [0; 1]n .

• Compute it: C (n, ǫ) = (1/ǫ)n.

• Growth rate of C :

hǫ = lim
n

logC (n, ǫ)

n
= log

1

ǫ
.

• Entropy h = limǫ→0 hǫ = ∞
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What about entropy?

We try to compute it for [0; 1]Z

• Define C (n, ǫ): size of ǫ-net in [0; 1]n .

• Compute it: C (n, ǫ) = (1/ǫ)n.

• Growth rate of C :

hǫ = lim
n

logC (n, ǫ)

n
= log

1

ǫ
.

• Entropy h = limǫ→0 hǫ = ∞

The same is true for almost all reasonable timed subshifts.
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Entropy renormalized
We still try!

Given a timed subshift L

• Define Ln -set of timed words of length n (btw
Ln ⊂ R

n × Σn)

• Define C (n, ǫ): size of ǫ-net in Ln.

• Compute it: C (n, ǫ) = (1/ǫ)n Vol(Ln).
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Entropy renormalized
We still try!

Given a timed subshift L

• Define Ln -set of timed words of length n (btw
Ln ⊂ R

n × Σn)

• Define C (n, ǫ): size of ǫ-net in Ln.

• Compute it: C (n, ǫ) = (1/ǫ)n Vol(Ln).

• Growth rate of C :

hǫ = lim
n

logC (n, ǫ)

n
= log

1

ǫ
+ lim

n

log Vol(Ln)

n
.

• We call the last term volumic entropy:

H(L) = lim
n

log Vol(Ln)

n
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Entropy renormalized
We still try!

Given a timed subshift L

• Define Ln -set of timed words of length n (btw
Ln ⊂ R

n × Σn)

• Define C (n, ǫ): size of ǫ-net in Ln.

• Compute it: C (n, ǫ) = (1/ǫ)n Vol(Ln).

• Growth rate of C :

hǫ = lim
n

logC (n, ǫ)

n
= log

1

ǫ
+ lim

n

log Vol(Ln)

n
.

• We call the last term volumic entropy:

H(L) = lim
n

log Vol(Ln)

n

Information production in a timed subshift
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It was in this talk

• Timed automata: a beautiful variant of automat coming
from practice

• Infinite-state, but many questions decidable

• A non-trivial theory of languages

• Symbolic dynamics can be defined, many thing remain to
study

• . . . in particular the flow



Timed
automata

Eugene Asarin

Introduction

TA: the model

Decidability

Timed
language
theory

Timed
symbolic
dynamics

Conclusions

Advertisement

• Next talk (Aldric): how to characterize and compute the
volumes and the volumic entropy.

• After that (Nicolas): MME for timed automata

• Merci EQINOCS, more results will follow
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